E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	8051
Core Size	8-Bit
Speed	25MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	13
Program Memory Size	4KB (4K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	-
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	16-SOIC (0.154", 3.90mm Width)
Supplier Device Package	16-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f835-gs

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1. System Overview	15
2. Ordering Information	25
3. Pin Definitions	28
4. QFN-20 Package Specifications	33
5. QSOP-24 Package Specifications	35
6. SOIC-16 Package Specifications	37
7. Electrical Characteristics	39
7.1. Absolute Maximum Specifications	39
7.2. Electrical Characteristics	40
8. 10-Bit ADC (ADC0)	46
8.1. Output Code Formatting	47
8.2. 8-Bit Mode	47
8.3. Modes of Operation	47
8.3.1. Starting a Conversion	47
8.3.2. Tracking Modes	48
8.3.3. Settling Time Requirements	49
8.4. Programmable Window Detector	53
8.4.1. Window Detector Example	55
8.5. ADC0 Analog Multiplexer	56
9. Temperature Sensor	58
9.1. Calibration	58
10. Voltage and Ground Reference Options	60
10.1. External Voltage References	61
10.2. Internal Voltage Reference Options	61
10.3. Analog Ground Reference	61
10.4. Temperature Sensor Enable	61
11. Voltage Regulator (REG0)	63
12. Comparator0	65
12.1. Comparator Multiplexer	69
13. Capacitive Sense (CS0)	71
13.1. Configuring Port Pins as Capacitive Sense Inputs	72
13.2. Capacitive Sense Start-Of-Conversion Sources	72
13.3. Automatic Scanning	72
13.4. CS0 Comparator	73
13.5. CS0 Conversion Accumulator	74
13.6. Capacitive Sense Multiplexer	80
14. CIP-51 Microcontroller	82
14.1. Instruction Set	83
14.1.1. Instruction and CPU Timing	83
14.2. CIP-51 Register Descriptions	88
15. Memory Organization	92
15.1. Program Memory	93
15.1.1. MOVX Instruction and Program Memory	93

C8051F80x-83x

	Table 18.1. Interrupt Summary	104
19	. Flash Memory	
	Table 19.1. Flash Security Summary	115
20	. Power Management Modes	
21	. Reset Sources	
22	. Oscillators and Clock Selection	
23	. Port Input/Output	
	Table 23.1. Port I/O Assignment for Analog Functions	141
	Table 23.2. Port I/O Assignment for Digital Functions	142
	Table 23.3. Port I/O Assignment for External Digital Event Capture Functions	142
24	. Cyclic Redundancy Check Unit (CRC0)	
	Table 24.1. Example 16-bit CRC Outputs	160
	Table 24.2. Example 32-bit CRC Outputs	161
25	. Enhanced Serial Peripheral Interface (SPI0)	
	Table 25.1. SPI Slave Timing Parameters	179
26	. SMBus	
	Table 26.1. SMBus Clock Source Selection	184
	Table 26.2. Minimum SDA Setup and Hold Times	185
	Table 26.3. Sources for Hardware Changes to SMB0CN	189
	Table 26.4. Hardware Address Recognition Examples (EHACK = 1)	190
	Table 26.5. SMBus Status Decoding With Hardware ACK Generation Disabled	
	(EHACK = 0)	197
	Table 26.6. SMBus Status Decoding With Hardware ACK Generation Enabled	
	(FHACK = 1)	199
27	. UARTO	
	Table 27.1 Timer Settings for Standard Baud Rates	
	Using The Internal 24 5 MHz Oscillator	208
	Table 27.2 Timer Settings for Standard Baud Rates	200
	Using an External 22 1184 MHz Oscillator	208
28	Timers	200
29	Programmable Counter Array	
20	Table 29.1 PCA Timebase Input Ontions	226
	Table 29.2 PCA0CPM and PCA0PW/M Bit Settings for PCA Capture/Compare M	0d-
	1,2,3,4,5,6	228
	Table 29.3 Watchdog Timer Timeout Intervals1	227
30	C2 Interface	201
00		

2. Ordering Information

All C8051F80x-83x devices have the following features:

- 25 MIPS (Peak)
- Calibrated Internal Oscillator
- SMBus/I2C
- Enhanced SPI
- UART
- Programmable counter array (3 channels)
- 3 Timers (16-bit)
- 1 Comparator
- Pb-Free (RoHS compliant) package

In addition to the features listed above, each device in the C8051F80x-83x family has a set of features that vary across the product line. See Table 2.1 for a complete list of the unique feature sets for each device in the family.

Table 7.13. Comparator Electrical Characteristics

 V_{DD} = 3.0 V, -40 to +85 °C unless otherwise noted.

Parameter	Conditions	Min	Тур	Мах	Units
Response Time:	CP0+ - CP0- = 100 mV		220	—	ns
Mode 0, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV		225	—	ns
Response Time:	CP0+ - CP0- = 100 mV		340	—	ns
Mode 1, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV	—	380	—	ns
Response Time:	CP0+ - CP0- = 100 mV	—	510	—	ns
Mode 2, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV		945	—	ns
Response Time:	CP0+ - CP0- = 100 mV	—	1500	—	ns
Mode 3, Vcm [*] = 1.5 V	CP0+ - CP0- = -100 mV		5000	—	ns
Common-Mode Rejection Ratio		—	1	4	mV/V
Positive Hysteresis 1	Mode 2, CP0HYP1–0 = 00b		0	1	mV
Positive Hysteresis 2	Mode 2, CP0HYP1–0 = 01b	2	5	10	mV
Positive Hysteresis 3	Mode 2, CP0HYP1–0 = 10b	7	10	20	mV
Positive Hysteresis 4	Mode 2, CP0HYP1–0 = 11b	10	20	30	mV
Negative Hysteresis 1	Mode 2, CP0HYN1–0 = 00b		0	1	mV
Negative Hysteresis 2	Mode 2, CP0HYN1–0 = 01b	2	5	10	mV
Negative Hysteresis 3	Mode 2, CP0HYN1–0 = 10b	7	10	20	mV
Negative Hysteresis 4	Mode 2, CP0HYN1–0 = 11b	10	20	30	mV
Inverting or Non-Inverting Input Voltage Range		-0.25	_	V _{DD} + 0.25	V
Input Offset Voltage		-7.5		7.5	mV
Power Specifications	•				
Power Supply Rejection			0.1	—	mV/V
Powerup Time		—	10	—	μs
Supply Current at DC	Mode 0	—	20	—	μA
	Mode 1	—	8	—	μA
	Mode 2	—	3	—	μA
	Mode 3	—	0.5	—	μA
Note: Vcm is the common-mode vo	Itage on CP0+ and CP0				

8. 10-Bit ADC (ADC0)

ADC0 on the C8051F800/1/2/3/4/5, C8051F812/3/4/5/6/7, C8051F824/5/6, and C8051F830/1/2 is a 500 ksps, 10-bit successive-approximation-register (SAR) ADC with integrated track-and-hold, a gain stage programmable to 1x or 0.5x, and a programmable window detector. The ADC is fully configurable under software control via Special Function Registers. The ADC may be configured to measure various different signals using the analog multiplexer described in Section "8.5. ADC0 Analog Multiplexer" on page 56. The voltage reference for the ADC is selected as described in Section "9. Temperature Sensor" on page 58. The ADC0 subsystem is enabled only when the AD0EN bit in the ADC0 Control register (ADC0CN) is set to logic 1. The ADC0 subsystem is in low power shutdown when this bit is logic 0.

Figure 8.1. ADC0 Functional Block Diagram

10.1. External Voltage References

To use an external voltage reference, REFSL[1:0] should be set to 00. Bypass capacitors should be added as recommended by the manufacturer of the external voltage reference.

10.2. Internal Voltage Reference Options

A 1.65 V high-speed reference is included on-chip. The high speed internal reference is selected by setting REFSL[1:0] to 11. When selected, the high speed internal reference will be automatically enabled on an as-needed basis by ADC0.

For applications with a non-varying power supply voltage, using the power supply as the voltage reference can provide ADC0 with added dynamic range at the cost of reduced power supply noise rejection. To use the 1.8 to 3.6 V power supply voltage (V_{DD}) or the 1.8 V regulated digital supply voltage as the reference source, REFSL[1:0] should be set to 01 or 10, respectively.

10.3. Analog Ground Reference

To prevent ground noise generated by switching digital logic from affecting sensitive analog measurements, a separate analog ground reference option is available. When enabled, the ground reference for ADC0 is taken from the P0.1/AGND pin. Any external sensors sampled by ADC0 should be referenced to the P0.1/AGND pin. The separate analog ground reference option is enabled by setting REFGND to 1. Note that when using this option, P0.1/AGND must be connected to the same potential as GND.

10.4. Temperature Sensor Enable

The TEMPE bit in register REF0CN enables the temperature sensor. While disabled, the temperature sensor defaults to a high impedance state and any ADC0 measurements performed on the sensor result in meaningless data.

13. Capacitive Sense (CS0)

The Capacitive Sense subsystem included on the C8051F800/1/3/4/6/7/9, C8051F810/2/3/5/6/8/9, C8051F821/2/4/5/7/8, C8051F830/1/3/4 uses a capacitance-to-digital circuit to determine the capacitance on a port pin. The module can take measurements from different port pins using the module's analog multiplexer. The multiplexer supports up to 16 channels. See SFR Definition 13.9. "CSOMX: Capacitive Sense Mux Channel Select" on page 81 for channel availability for specific part numbers. The module is enabled only when the CS0EN bit (CS0CN) is set to 1. Otherwise the module is in a low-power shutdown state. The module can be configured to take measurements on one port pin or a group of port pins, using auto-scan. An accumulator can be configured to accumulate multiple conversions on an input channel. Interrupts can be generated when CS0 completes a conversion or when the measured value crosses a threshold defined in CS0THH:L.

SFR Definition 13.7. CS0THH: Capacitive Sense Comparator Threshold High Byte

Bit	7	6	5	4	3	2	1	0
Name	CS0THH[7:0]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x97

Bit	Name	Description
7:0	CS0THH[7:0]	CS0 Comparator Threshold High Byte.
		High byte of the 16-bit value compared to the Capacitive Sense conversion result.

SFR Definition 13.8. CS0THL: Capacitive Sense Comparator Threshold Low Byte

Bit	7	6	5	4	3	2	1	0
Name	CS0THL[7:0]							
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x96

Bit	Name	Description
7:0	CS0THL[7:0]	CS0 Comparator Threshold Low Byte.
		Low byte of the 16-bit value compared to the Capacitive Sense conversion result.

Table 17.2. Special Function Registers (Continued)

SFRs are listed in alphabetical order. All undefined SFR locations are reserved

Register	Address	Description	Page
P1MAT	0xED	P1 Match	152
P1MDIN	0xF2	Port 1 Input Mode Configuration	156
P1MDOUT	0xA5	Port 1 Output Mode Configuration	156
P1SKIP	0xD5	Port 1 Skip	157
P2	0xA0	Port 2 Latch	157
P2MDOUT	0xA6	Port 2 Output Mode Configuration	158
PCA0CN	0xD8	PCA Control	238
PCA0CPH0	0xFC	PCA Capture 0 High	243
PCA0CPH1	0xEA	PCA Capture 1 High	243
PCA0CPH2	0xEC	PCA Capture 2 High	243
PCA0CPL0	0xFB	PCA Capture 0 Low	243
PCA0CPL1	0xE9	PCA Capture 1 Low	243
PCA0CPL2	0xEB	PCA Capture 2 Low	243
PCA0CPM0	0xDA	PCA Module 0 Mode Register	241
PCA0CPM1	0xDB	PCA Module 1 Mode Register	241
PCA0CPM2	0xDC	PCA Module 2 Mode Register	241
PCA0H	0xFA	PCA Counter High	242
PCA0L	0xF9	PCA Counter Low	242
PCA0MD	0xD9	PCA Mode	239
PCA0PWM	0xF7	PCA PWM Configuration	240
PCON	0x87	Power Control	122
PSCTL	0x8F	Program Store R/W Control	118
PSW	0xD0	Program Status Word	91
REF0CN	0xD1	Voltage Reference Control	62
REG0CN	0xC9	Voltage Regulator Control	64
REVID	0xB6	Revision ID	96
RSTSRC	0xEF	Reset Source Configuration/Status	128

SFR Definition 18.4. EIE2: Extended Interrupt Enable 2

Bit	7	6	5	4	3	2	1	0
Name							ECSGRT	ECSCPT
Туре	R	R	R	R	R	R	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xE7

Bit	Name	Function
7:2	Unused	Read = 000000b; Write = don't care.
1	ECSGRT	Enable Capacitive Sense Greater Than Comparator Interrupt. 0: Disable Capacitive Sense Greater Than Comparator interrupt. 1: Enable interrupt requests generated by CS0CMPF.
0	ECSCPT	Enable Capacitive Sense Conversion Complete Interrupt. 0: Disable Capacitive Sense Conversion Complete interrupt. 1: Enable interrupt requests generated by CS0INT.

C8051F80x-83x

20.2. Stop Mode

Setting the Stop Mode Select bit (PCON.1) causes the controller core to enter Stop mode as soon as the instruction that sets the bit completes execution. In Stop mode the internal oscillator, CPU, and all digital peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral (including the external oscillator circuit) may be shut down individually prior to entering Stop Mode. Stop mode can only be terminated by an internal or external reset. On reset, the device performs the normal reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the Stop mode. The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the MCD timeout of 100 μ s.

20.3. Suspend Mode

Suspend mode allows a system running from the internal oscillator to go to a very low power state similar to Stop mode, but the processor can be awakened by certain events without requiring a reset of the device. Setting the SUSPEND bit (OSCICN.5) causes the hardware to halt the CPU and the high-frequency internal oscillator, and go into Suspend mode as soon as the instruction that sets the bit completes execution. All internal registers and memory maintain their original data. Most digital peripherals are not active in Suspend mode. The exception to this is the Port Match feature and Timer 3, when it is run from an external oscillator source.

The clock divider bits CLKDIV[2:0] in register CLKSEL must be set to "divide by 1" when entering suspend mode.

Suspend mode can be terminated by five types of events, a port match (described in Section "23.5. Port Match" on page 150), a Timer 2 overflow (described in Section "28.2. Timer 2" on page 219), a comparator low output (if enabled), a capacitive sense greater-than comparator event, or a device reset event. In order to run Timer 3 in suspend mode, the timer must be configured to clock from the external clock source. When suspend mode is terminated, the device will continue execution on the instruction following the one that set the SUSPEND bit. If the wake event (port match or Timer 2 overflow) was configured to generate an interrupt, the interrupt will be serviced upon waking the device. If suspend mode is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins program execution at address 0x0000.

Note: The device will still enter suspend mode if a wake source is "pending", and the device will not wake on such pending sources. It is important to ensure that the intended wake source will trigger after the device enters suspend mode. For example, if a CS0 conversion completes and the interrupt fires before the device is in suspend mode, that interrupt cannot trigger the wake event. Because port match events are level-sensitive, pre-existing port match events will trigger a wake, as long as the match condition is still present when the device enters suspend.

SFR Definition 21.1. VDM0CN: V_{DD} Monitor Control

Bit	7	6	5	4	3	2	1	0
Name	VDMEN	VDDSTAT						
Туре	R/W	R	R	R	R	R	R	R
Reset	Varies	Varies	Varies	Varies	Varies	Varies	Varies	Varies

SFR Address = 0xFF

Bit	Name	Function
7	VDMEN	V _{DD} Monitor Enable.
		This bit turns the V _{DD} monitor circuit on/off. The V _{DD} Monitor cannot generate system resets until it is also selected as a reset source in register RSTSRC (SFR Definition 21.2). Selecting the V _{DD} monitor as a reset source before it has stabilized may generate a system reset. In systems where this reset would be undesirable, a delay should be introduced between enabling the V _{DD} Monitor and selecting it as a reset source. After a power-on reset, the VDD monitor is enabled, and this bit will read 1. The state of this bit is sticky through any other reset source. 0: V _{DD} Monitor Disabled. 1: V _{DD} Monitor Enabled.
6	VDDSTAT	V _{DD} Status.
		This bit indicates the current power supply status (V_{DD} Monitor output). 0: V_{DD} is at or below the V_{DD} monitor threshold. 1: V_{DD} is above the V_{DD} monitor threshold.
5:0	Unused	Read = Varies; Write = Don't care.

21.3. External Reset

The external RST pin provides a means for external circuitry to force the device into a reset state. Asserting an active-low signal on the RST pin generates a reset; an external pullup and/or decoupling of the RST pin may be necessary to avoid erroneous noise-induced resets. See Section "7. Electrical Characteristics" on page 39 for complete RST pin specifications. The PINRSF flag (RSTSRC.0) is set on exit from an external reset.

21.4. Missing Clock Detector Reset

The Missing Clock Detector (MCD) is a one-shot circuit that is triggered by the system clock. If the system clock remains high or low for more than the MCD timeout, the one-shot will time out and generate a reset. After a MCD reset, the MCDRSF flag (RSTSRC.2) will read 1, signifying the MCD as the reset source; otherwise, this bit reads 0. Writing a 1 to the MCDRSF bit enables the Missing Clock Detector; writing a 0 disables it. The state of the RST pin is unaffected by this reset.

22.3.3. External Capacitor Example

If a capacitor is used as an external oscillator for the MCU, the circuit should be configured as shown in Figure 22.1, Option 3. The capacitor should be no greater than 100 pF; however for very small capacitors, the total capacitance may be dominated by parasitic capacitance in the PCB layout. To determine the required External Oscillator Frequency Control value (XFCN) in the OSCXCN Register, select the capacitor to be used and find the frequency of oscillation according to Equation 22.2, where f = the frequency of oscillation in MHz, C = the capacitor value in pF, and V_{DD} = the MCU power supply in volts.

Equation 22.2. C Mode Oscillator Frequency

 $f = (KF)/(R \times V_{DD})$

For example: Assume $V_{DD} = 3.0$ V and f = 150 kHz:

f = KF / (C x VDD) 0.150 MHz = KF / (C x 3.0)

Since the frequency of roughly 150 kHz is desired, select the K Factor from the table in SFR Definition 22.4 (OSCXCN) as KF = 22:

0.150 MHz = 22 / (C x 3.0) C x 3.0 = 22 / 0.150 MHz C = 146.6 / 3.0 pF = 48.8 pF

Therefore, the XFCN value to use in this example is 011b and C = 50 pF.

* SCK is shown for CKPOL = 0. SCK is the opposite polarity for CKPOL = 1.

Figure 25.9. SPI Master Timing (CKPHA = 1)

All transactions are initiated by a master, with one or more addressed slave devices as the target. The master generates the START condition and then transmits the slave address and direction bit. If the transaction is a WRITE operation from the master to the slave, the master transmits the data a byte at a time waiting for an ACK from the slave at the end of each byte. For READ operations, the slave transmits the data waiting for an ACK from the master at the end of each byte. At the end of the data transfer, the master generates a STOP condition to terminate the transaction and free the bus. Figure 26.3 illustrates a typical SMBus transaction.

Figure 26.3. SMBus Transaction

26.3.1. Transmitter Vs. Receiver

On the SMBus communications interface, a device is the "transmitter" when it is sending an address or data byte to another device on the bus. A device is a "receiver" when an address or data byte is being sent to it from another device on the bus. The transmitter controls the SDA line during the address or data byte. After each byte of address or data information is sent by the transmitter, the receiver sends an ACK or NACK bit during the ACK phase of the transfer, during which time the receiver controls the SDA line.

26.3.2. Arbitration

A master may start a transfer only if the bus is free. The bus is free after a STOP condition or after the SCL and SDA lines remain high for a specified time (see Section "26.3.5. SCL High (SMBus Free) Timeout" on page 183). In the event that two or more devices attempt to begin a transfer at the same time, an arbitration scheme is employed to force one master to give up the bus. The master devices continue transmitting until one attempts a HIGH while the other transmits a LOW. Since the bus is open-drain, the bus will be pulled LOW. The master attempting the HIGH will detect a LOW SDA and lose the arbitration. The winning master continues its transmission without interruption; the losing master becomes a slave and receives the rest of the transfer if addressed. This arbitration scheme is non-destructive: one device always wins, and no data is lost.

26.3.3. Clock Low Extension

SMBus provides a clock synchronization mechanism, similar to I2C, which allows devices with different speed capabilities to coexist on the bus. A clock-low extension is used during a transfer in order to allow slower slave devices to communicate with faster masters. The slave may temporarily hold the SCL line LOW to extend the clock low period, effectively decreasing the serial clock frequency.

26.3.4. SCL Low Timeout

If the SCL line is held low by a slave device on the bus, no further communication is possible. Furthermore, the master cannot force the SCL line high to correct the error condition. To solve this problem, the SMBus protocol specifies that devices participating in a transfer must detect any clock cycle held low longer than 25 ms as a "timeout" condition. Devices that have detected the timeout condition must reset the communication no later than 10 ms after detecting the timeout condition.

When the SMBTOE bit in SMB0CF is set, Timer 3 is used to detect SCL low timeouts. Timer 3 is forced to reload when SCL is high, and allowed to count when SCL is low. With Timer 3 enabled and configured to

26.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will be a receiver during the address byte, and a transmitter during all data bytes. When slave events are enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the next START is detected. If the received slave address is acknowledged, zero or more data bytes are transmitted. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmitted. The interface enters slave transmitter mode, and transmits one or more bytes of data. After each byte is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to before SI is cleared (an error condition may be generated if SMB0DAT is written following a received NACK while in slave transmitter mode). The interface exits slave transmitter mode after receiving a STOP. Note that the interface will switch to slave receiver mode if SMB0DAT is not written following a Slave Transmitter interrupt. Figure 26.8 shows a typical slave read sequence. Two transmitted data bytes are shown, though any number of bytes may be transmitted. Notice that all of the "data byte transferred" interrupts occur **after** the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

26.6. SMBus Status Decoding

The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to take in response to an SMBus event depend on whether hardware slave address recognition and ACK generation is enabled or disabled. Table 26.5 describes the typical actions when hardware slave address recognition and ACK generation is disabled. Table 26.6 describes the typical actions when hardware slave address recognition and ACK generation is enabled. In the tables, STATUS VECTOR refers to the four upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typical responses; application-specific procedures are allowed as long as they conform to the SMBus specification. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

28.2. Timer 2

Timer 2 is a 16-bit timer formed by two 8-bit SFRs: TMR2L (low byte) and TMR2H (high byte). Timer 2 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T2SPLIT bit (TMR2CN.3) defines the Timer 2 operation mode. Timer 2 can also be used in capture mode to capture rising edges of the Comparator 0 output.

Timer 2 may be clocked by the system clock, the system clock divided by 12, or the external oscillator source divided by 8. The external clock mode is ideal for real-time clock (RTC) functionality, where the internal oscillator drives the system clock while Timer 2 (and/or the PCA) is clocked by an external oscillator source. The external oscillator source divided by 8 is synchronized with the system clock when in all operating modes except suspend. When the internal oscillator is placed in suspend mode, The external clock/8 signal can directly drive the timer. This allows the use of an external clock to wake up the device from suspend mode. The timer will continue to run in suspend mode and count up. When the timer overflow occurs, the device will wake from suspend mode, and begin executing code again. The timer value may be set prior to entering suspend, to overflow in the desired amount of time (number of clocks) to wake the device. If a wake-up source other than the timer wakes the device from suspend mode, it may take up to three timer clocks before the timer registers can be read or written. During this time, the STSYNC bit in register OSCICN will be set to 1, to indicate that it is not safe to read or write the timer registers.

28.2.1. 16-bit Timer with Auto-Reload

When T2SPLIT (TMR2CN.3) is zero, Timer 2 operates as a 16-bit timer with auto-reload. Timer 2 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 2 reload registers (TMR2RLH and TMR2RLL) is loaded into the Timer 2 register as shown in Figure 28.4, and the Timer 2 High Byte Overflow Flag (TMR2CN.7) is set. If Timer 2 interrupts are enabled (if IE.5 is set), an interrupt will be generated on each Timer 2 overflow. Additionally, if Timer 2 interrupts are enabled and the TF2LEN bit is set (TMR2CN.5), an interrupt will be generated each time the lower 8 bits (TMR2L) overflow from 0xFF to 0x00.

Figure 28.4. Timer 2 16-Bit Mode Block Diagram

29.4. Watchdog Timer Mode

A programmable watchdog timer (WDT) function is available through the PCA Module 2. The WDT is used to generate a reset if the time between writes to the WDT update register (PCA0CPH2) exceed a specified limit. The WDT can be configured and enabled/disabled as needed by software.

With the WDTE bit set in the PCA0MD register, Module 2 operates as a watchdog timer (WDT). The Module 2 high byte is compared to the PCA counter high byte; the Module 2 low byte holds the offset to be used when WDT updates are performed. The Watchdog Timer is enabled on reset. Writes to some PCA registers are restricted while the Watchdog Timer is enabled. The WDT will generate a reset shortly after code begins execution. To avoid this reset, the WDT should be explicitly disabled (and optionally re-configured and re-enabled if it is used in the system).

29.4.1. Watchdog Timer Operation

While the WDT is enabled:

- PCA counter is forced on.
- Writes to PCA0L and PCA0H are not allowed.
- PCA clock source bits (CPS2–CPS0) are frozen.
- PCA Idle control bit (CIDL) is frozen.
- Module 2 is forced into software timer mode.
- Writes to the Module 2 mode register (PCA0CPM2) are disabled.

While the WDT is enabled, writes to the CR bit will not change the PCA counter state; the counter will run until the WDT is disabled. The PCA counter run control bit (CR) will read zero if the WDT is enabled but user software has not enabled the PCA counter. If a match occurs between PCA0CPH2 and PCA0H while the WDT is enabled, a reset will be generated. To prevent a WDT reset, the WDT may be updated with a write of any value to PCA0CPH2. Upon a PCA0CPH2 write, PCA0H plus the offset held in PCA0CPL2 is loaded into PCA0CPH2 (See Figure 29.11).

Figure 29.11. PCA Module 2 with Watchdog Timer Enabled

The 8-bit offset held in PCA0CPH2 is compared to the upper byte of the 16-bit PCA counter. This offset value is the number of PCA0L overflows before a reset. Up to 256 PCA clocks may pass before the first PCA0L overflow occurs, depending on the value of the PCA0L when the update is performed. The total off-

SFR Definition 29.2. PCA0MD: PCA0 Mode

Bit	7	6	5	4	3	2	1	0	
Nam	e CIDL	WDTE	WDLCK		CPS2	CPS1	CPS0	ECF	
Тур	e R/W	R/W	R/W	R	R/W	R/W	R/W	R/W	
Rese	et O	1	0	0	0	0	0	0	
SFR Address = 0xD9									
Bit	Name	Function							
7	CIDL	PCA Counter/Timer Idle Control.							
		Specifies PCA behavior when CPU is in idle mode.							
		0: PCA continues to function normally while the system controller is in Idle mode.							
		1: PCA operation is suspended while the system controller is in idle mode.							
6	WDTE	Watchdog Timer Enable.							
		If this bit is set, PCA Module 2 is used as the watchdog timer.							
		0: Watchdog Timer disabled.							
		1: PCA Module 2 enabled as Watchdog Timer.							
5	WDLCK	Watchdog Timer Lock.							
		This bit locks/unlocks the Watchdog Timer Enable. When WDLCK is set, the Watchdog							

Timer may not be disabled until the next system reset.

		0: Watchdog Timer Enable locked. 1: Watchdog Timer Enable locked.				
4	Unused	Read = 0b, Write = Don't care.				
3:1	CPS[2:0]	PCA Counter/Timer Pulse Select.				
		These bits select the timebase source for the PCA counter				
		000: System clock divided by 12				
		001: System clock divided by 4				
		010: Timer 0 overflow				
		011: High-to-low transitions on ECI (max rate = system clock divided by 4)				
		100: System clock				
		101: External clock divided by 8 (synchronized with the system clock)				
		11x: Reserved				
0	ECF	PCA Counter/Timer Overflow Interrupt Enable.				
		This bit sets the masking of the PCA Counter/Timer Overflow (CF) interrupt.				
		0: Disable the CF interrupt.				
		1: Enable a PCA Counter/Timer Overflow interrupt request when CF (PCA0CN.7) is				
		set.				
Note:	e: When the WDTE bit is set to 1, the other bits in the PCA0MD register cannot be modified. To change the contents of the PCA0MD register, the Watchdog Timer must first be disabled.					

SFR Definition 29.4. PCA0CPMn: PCA0 Capture/Compare Mode

Bit	7	6	5	4	3	2	1	0	
Nam	e PWM16	in ECOMn	CAPPn	CAPNn	MATn	TOGn	PWMn	ECCFn	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Rese	t 0	0	0	0	0	0	0	0	
SFR Addresses: PCA0CPM0 = 0xDA, PCA0CPM1 = 0xDB, PCA0CPM2 = 0xDC									
Bit	Name	Function							
7	PWM16n	16-bit Pulse Width Modulation Enable.							
		This bit enables 16-bit mode when Pulse Width Modulation mode is enabled.							
		0: 8 to 15-bit PWM selected.							
		1: 16-bit PWN	1: 16-bit PWM selected.						
6	ECOMn	Comparator I	Function En	able.					
		This bit enable	es the compa	arator function	on for PCA n	nodule n whe	en set to 1.		
5	CAPPn	Capture Positive Function Enable.							
		This bit enables the positive edge capture for PCA module n when set to 1.							
4	CAPNn	Capture Negative Function Enable.							
		This bit enables the negative edge capture for PCA module n when set to 1.							
3	MATn	Match Function Enable.							
		This bit enables the match function for PCA module n when set to 1. When enabled, matches of the PCA counter with a module's capture/compare register cause the CCFn bit in PCA0MD register to be set to logic 1.							
2	TOGn	Toggle Function Enable.							
		This bit enables the toggle function for PCA module n when set to 1. When enabled, matches of the PCA counter with a module's capture/compare register cause the logic level on the CEXn pin to toggle. If the PWMn bit is also set to logic 1, the module operates in Frequency Output Mode.							
1	PWMn	Pulse Width Modulation Mode Enable.							
		This bit enables the PWM function for PCA module n when set to 1. When enabled, a pulse width modulated signal is output on the CEXn pin. 8 to 15-bit PWM is used if PWM16n is cleared; 16-bit mode is used if PWM16n is set to logic 1. If the TOGn bit is also set, the module operates in Frequency Output Mode.							
0	ECCFn	Capture/Compare Flag Interrupt Enable.							
		This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt.							
		1: Enable a Capture/Compare Flag interrupt request when CCFn is set.							
Note:	 When the WDTE bit is set to 1, the PCA0CPM2 register cannot be modified, and module 2 acts as the watchdog timer. To change the contents of the PCA0CPM2 register or the function of module 2, the Watchdog Timer must be disabled. 								

