

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	66MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	76
Program Memory Size	448KB (448K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2263m56f66laahxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC2268M/67M, XC2265M/64M/63M XC2000 Family / Base Line

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
41	P2.2	O0 / I	St/B	Bit 2 of Port 2, General Purpose Input/Output		
	TxDC1	01	St/B	CAN Node 1 Transmit Data Output		
	CCU63_CC6 2	O2	St/B	CCU63 Channel 2 Output		
	AD15	OH / IH	St/B	External Bus Interface Address/Data Line 15		
	CCU63_CC6 2INB	1	St/B	CCU63 Channel 2 Input		
	ESR2_5	I	St/B	ESR2 Trigger Input 5		
42	P4.0	O0 / I	St/B	Bit 0 of Port 4, General Purpose Input/Output		
	CC2_CC24	O3 / I	St/B	CAPCOM2 CC24IO Capture Inp./ Compare Out.		
	CS0	ОН	St/B	External Bus Interface Chip Select 0 Output		
43	P2.3	O0 / I	St/B	Bit 3 of Port 2, General Purpose Input/Output		
	U0C0_DOUT	O1	St/B	USIC0 Channel 0 Shift Data Output		
	CCU63_COU T63	O2	St/B	CCU63 Channel 3 Output		
	CC2_CC16	O3 / I	St/B	CAPCOM2 CC16IO Capture Inp./ Compare Out.		
	A16	ОН	St/B	External Bus Interface Address Line 16		
	ESR2_0	I	St/B	ESR2 Trigger Input 0		
	U0C0_DX0E	I	St/B	USIC0 Channel 0 Shift Data Input		
	U0C1_DX0D	I	St/B	USIC0 Channel 1 Shift Data Input		
	RxDC0A	I	St/B	CAN Node 0 Receive Data Input		

Tabl	Table 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
59	P10.0	O0 / I	St/B	Bit 0 of Port 10, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	CCU60_CC6 0	O2	St/B	CCU60 Channel 0 Output		
	AD0	OH / IH	St/B	External Bus Interface Address/Data Line 0		
	CCU60_CC6 0INA	I	St/B	CCU60 Channel 0 Input		
	ESR1_2	I	St/B	ESR1 Trigger Input 2		
	U0C0_DX0A	I	St/B	USIC0 Channel 0 Shift Data Input		
	U0C1_DX0A	I	St/B	USIC0 Channel 1 Shift Data Input		
60	P10.1	O0 / I	St/B	Bit 1 of Port 10, General Purpose Input/Output		
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output		
	CCU60_CC6 1	O2	St/B	CCU60 Channel 1 Output		
	AD1	OH / IH	St/B	External Bus Interface Address/Data Line 1		
	CCU60_CC6 1INA	I	St/B	CCU60 Channel 1 Input		
	U0C0_DX1A	I	St/B	USIC0 Channel 0 Shift Clock Input		
	U0C0_DX0B	I	St/B	USIC0 Channel 0 Shift Data Input		
61	P0.3	O0 / I	St/B	Bit 3 of Port 0, General Purpose Input/Output		
	U1C0_SELO 0	01	St/B	USIC1 Channel 0 Select/Control 0 Output		
	U1C1_SELO 1	O2	St/B	USIC1 Channel 1 Select/Control 1 Output		
	CCU61_COU T60	O3	St/B	CCU61 Channel 0 Output		
	A3	OH	St/B	External Bus Interface Address Line 3		
	U1C0_DX2A	I	St/B	USIC1 Channel 0 Shift Control Input		
	RxDC0B	I	St/B	CAN Node 0 Receive Data Input		

Table	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
69	P10.4	O0 / I	St/B	Bit 4 of Port 10, General Purpose Input/Output			
	U0C0_SELO 3	01	St/B	USIC0 Channel 0 Select/Control 3 Output			
	CCU60_COU T61	O2	St/B	CCU60 Channel 1 Output			
	U3C0_DOUT	O3	St/B	USIC3 Channel 0 Shift Data Output			
	AD4	OH / IH	St/B	External Bus Interface Address/Data Line 4			
	U0C0_DX2B	I	St/B	USIC0 Channel 0 Shift Control Input			
	U0C1_DX2B	I	St/B	USIC0 Channel 1 Shift Control Input			
	ESR1_9	I	St/B	ESR1 Trigger Input 9			
70	P10.5	O0 / I	St/B	Bit 5 of Port 10, General Purpose Input/Output			
-	U0C1_SCLK OUT	O1	St/B	USIC0 Channel 1 Shift Clock Output			
	CCU60_COU T62	O2	St/B	CCU60 Channel 2 Output			
	U2C0_DOUT	O3	St/B	USIC2 Channel 0 Shift Data Output			
	AD5	OH / IH	St/B	External Bus Interface Address/Data Line 5			
	U0C1_DX1B	I	St/B	USIC0 Channel 1 Shift Clock Input			
71	P0.6	O0 / I	St/B	Bit 6 of Port 0, General Purpose Input/Output			
	U1C1_DOUT	01	St/B	USIC1 Channel 1 Shift Data Output			
	TxDC1	O2	St/B	CAN Node 1 Transmit Data Output			
	CCU61_COU T63	O3	St/B	CCU61 Channel 3 Output			
	A6	ОН	St/B	External Bus Interface Address Line 6			
	U1C1_DX0A	I	St/B	USIC1 Channel 1 Shift Data Input			
	CCU61_CTR APA	1	St/B	CCU61 Emergency Trap Input			
	U1C1_DX1B	I	St/B	USIC1 Channel 1 Shift Clock Input			

Tabl	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
84	P1.2	O0 / I	St/B	Bit 2 of Port 1, General Purpose Input/Output			
	CCU62_CC6 2	01	St/B	CCU62 Channel 2 Output			
	U1C0_SELO 6	O2	St/B	USIC1 Channel 0 Select/Control 6 Output			
	U2C1_SCLK OUT	O3	St/B	USIC2 Channel 1 Shift Clock Output			
	A10	ОН	St/B	External Bus Interface Address Line 10			
	ESR1_4	I	St/B	ESR1 Trigger Input 4			
	CCU61_T12 HRB	I	St/B	External Run Control Input for T12 of CCU61			
	CCU62_CC6 2INA	I	St/B	CCU62 Channel 2 Input			
	U2C1_DX0D	I	St/B	USIC2 Channel 1 Shift Data Input			
	U2C1_DX1C	I	St/B	USIC2 Channel 1 Shift Clock Input			
85	P10.12	O0 / I	St/B	Bit 12 of Port 10, General Purpose Input/Output			
	U1C0_DOUT	01	St/B	USIC1 Channel 0 Shift Data Output			
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output			
	TDO_B	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.			
	AD12	OH / IH	St/B	External Bus Interface Address/Data Line 12			
	U1C0_DX0C	I	St/B	USIC1 Channel 0 Shift Data Input			
	U1C0_DX1E	I	St/B	USIC1 Channel 0 Shift Clock Input			

Table 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function	
93	P1.6	O0 / I	St/B	Bit 6 of Port 1, General Purpose Input/Output	
	CCU62_CC6 1	01/1	St/B	CCU62 Channel 1 Output	
	U1C1_SELO 2	O2	St/B	USIC1 Channel 1 Select/Control 2 Output	
	U2C0_DOUT	O3	St/B	USIC2 Channel 0 Shift Data Output	
	A14	ОН	St/B	External Bus Interface Address Line 14	
	U2C0_DX0D	I	St/B	USIC2 Channel 0 Shift Data Input	
	CCU62_CC6 1INA	I	St/B	CCU62 Channel 1 Input	
94	P1.7	O0 / I	St/B	Bit 7 of Port 1, General Purpose Input/Output	
-	CCU62_CC6 0	O1	St/B	CCU62 Channel 0 Output	
	U1C1_MCLK OUT	O2	St/B	USIC1 Channel 1 Master Clock Output	
	U2C0_SCLK OUT	O3	St/B	USIC2 Channel 0 Shift Clock Output	
	A15	ОН	St/B	External Bus Interface Address Line 15	
	U2C0_DX1C	I	St/B	USIC2 Channel 0 Shift Clock Input	
	CCU62_CC6 0INA	I	St/B	CCU62 Channel 0 Input	
	RxDC4E	I	St/B	CAN Node 4 Receive Data Input	
95	XTAL2	0	Sp/M	Crystal Oscillator Amplifier Output	
96	XTAL1	I	Sp/M	Crystal Oscillator Amplifier Input To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Voltages on XTAL1 must comply to the core	
				supply voltage V_{DDIM} .	

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
97	PORST	1	In/B	Power On Reset Input A low level at this pin resets the XC226xM completely. A spike filter suppresses input pulses <10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 120 ns. An internal pull-up device will hold this pin high when nothing is driving it.		
98	ESR1	O0 / I	St/B	External Service Request 1 After power-up, an internal weak pull-up device holds this pin high when nothing is driving it.		
	RxDC0E	Ι	St/B	CAN Node 0 Receive Data Input		
	U1C0_DX0F	Ι	St/B	USIC1 Channel 0 Shift Data Input		
	U1C0_DX2C	Ι	St/B	USIC1 Channel 0 Shift Control Input		
	U1C1_DX0C	I	St/B	USIC1 Channel 1 Shift Data Input		
	U1C1_DX2B	Ι	St/B	USIC1 Channel 1 Shift Control Input		
	U2C1_DX2C	I	St/B	USIC2 Channel 1 Shift Control Input		
99	ESR0	O0 / I	St/B	External Service Request 0 After power-up, ESR0 operates as open-drain bidirectional reset with a weak pull-up.		
	U1C0_DX0E	I	St/B	USIC1 Channel 0 Shift Data Input		
	U1C0_DX2B	I	St/B	USIC1 Channel 0 Shift Control Input		
10	V _{DDIM}	-	PS/M	Digital Core Supply Voltage for Domain M Decouple with a ceramic capacitor, see Data Sheet for details.		
38, 64, 88	V _{DDI1}	-	PS/1	Digital Core Supply Voltage for Domain 1 Decouple with a ceramic capacitor, see Data Sheet for details. All V_{DDI1} pins must be connected to each other.		
14	V _{DDPA}	-	PS/A	Digital Pad Supply Voltage for Domain A Connect decoupling capacitors to adjacent V _{DDP} /V _{SS} pin pairs as close as possible to the pins. Note: The A/D_Converters and ports P5, P6 and P15 are fed from supply voltage V _{DDPA} .		

Table 6 Pin Definitions and Functions (cont'd)

Functional Description

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes					
Data SRAM	00'A000 _H	00'DFFF _H	16 Kbytes	-					
Reserved for DSRAM	00'8000 _H	00'9FFF _H	8 Kbytes	-					
External memory area	00'000 _H	00'7FFF _H	32 Kbytes	-					

Table 8XC226xM Memory Map (cont'd)1)

 Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate external bus accesses.

2) The areas marked with "<" are slightly smaller than indicated. See column "Notes".

3) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

 Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

This common memory space consists of 16 Mbytes organized as 256 segments of 64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (ESFR/SFR) additionally are directly bit addressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls access to the program memories such as Flash memory and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls access to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected to the high-speed system bus so that they can exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources. These include peripherals on the LXBus such as USIC or MultiCAN. The system bus allows concurrent two-way communication for maximum transfer performance.

Up to 32 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data. The PSRAM is accessed via the PMU and is optimized for code fetches. A section of the PSRAM with programmable size can be write-protected.

Up to 16 Kbytes of on-chip Data SRAM (DSRAM) are used for storage of general user data. The DSRAM is accessed via a separate interface and is optimized for data access.

2 Kbytes of on-chip Dual-Port RAM (DPRAM) provide storage for user-defined variables, for the system stack, and for general purpose register banks. A register bank can consist of up to 16 word-wide (R0 to R15) and/or byte-wide (RL0, RH0, ..., RL7, RH7) General Purpose Registers (GPRs).

The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR, any location in the DPRAM is bit addressable.

Functional Description

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 9 Compare Modes (cont'd)

Functional Description

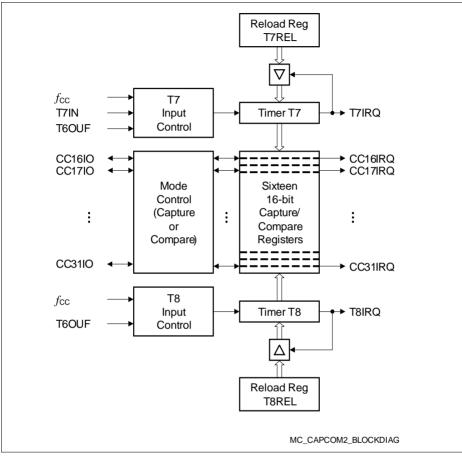
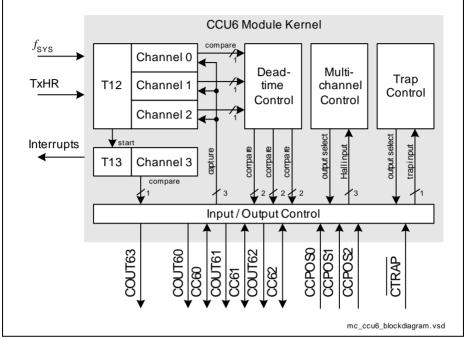



Figure 6 CAPCOM2 Unit Block Diagram

Functional Description

Figure 7 CCU6 Block Diagram

Timer T12 can work in capture and/or compare mode for its three channels. The modes can also be combined. Timer T13 can work in compare mode only. The multi-channel control unit generates output patterns that can be modulated by timer T12 and/or timer T13. The modulation sources can be selected and combined for signal modulation.

Functional Description

3.18 Parallel Ports

The XC226xM provides up to 76 I/O lines which are organized into 7 input/output ports and 2 input ports. All port lines are bit-addressable, and all input/output lines can be individually (bit-wise) configured via port control registers. This configuration selects the direction (input/output), push/pull or open-drain operation, activation of pull devices, and edge characteristics (shape) and driver characteristics (output current) of the port drivers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. During the internal reset, all port pins are configured as inputs without pull devices active.

All port lines have alternate input or output functions associated with them. These alternate functions can be programmed to be assigned to various port pins to support the best utilization for a given application. For this reason, certain functions appear several times in **Table 10**.

All port lines that are not used for alternate functions may be used as general purpose I/O lines.

Port	Width	I/O	Connected Modules			
P0	8	I/O	EBC (A7A0), CCU6, USIC, CAN			
P1	8	I/O	EBC (A15…A8), CCU6, USIC			
P2	14	I/O	EBC (READY, BHE, A23A16, AD15AD13, D15D13), CAN, CC2, GPT12E, USIC, DAP/JTAG			
P4	4	I/O	EBC (CS3CS0), CC2, CAN, GPT12E, USIC			
P5	11	I	Analog Inputs, CCU6, DAP/JTAG, GPT12E, CAN			
P6	3	I/O	ADC, CAN, GPT12E			
P7	5	I/O	CAN, GPT12E, SCU, DAP/JTAG, CCU6, ADC, USIC			
P10	16	I/O	EBC (ALE, RD, WR, AD12AD0, D12D0), CCU6, USIC, DAP/JTAG, CAN			
P15	5	Ι	Analog Inputs, GPT12E			

Table 10	Summary	of the	XC226xM's Ports
----------	---------	--------	-----------------

4.1.2 Operating Conditions

The following operating conditions must not be exceeded to ensure correct operation of the XC226xM. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Note: Typical parameter values refer to room temperature and nominal supply voltage, minimum/maximum parameter values also include conditions of minimum/maximum temperature and minimum/maximum supply voltage. Additional details are described where applicable.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Voltage Regulator Buffer Capacitance for DMP_M	$\begin{array}{c} C_{\rm EVRM} \\ {\rm SR} \end{array}$	1.0	-	4.7	μF	1)
Voltage Regulator Buffer Capacitance for DMP_1	$C_{\rm EVR1} \ { m SR}$	0.47	-	2.2	μF	1)2)
External Load Capacitance	$C_{L} \operatorname{SR}$	-	20 ³⁾	-	pF	pin out driver= default
System frequency	$f_{\rm SYS}{ m SR}$	-	-	100	MHz	5)
Overload current for analog inputs ⁶⁾	I _{OVA} SR	-2	-	5	mA	not subject to production test
Overload current for digital inputs ⁶⁾	$I_{\rm OVD}{\rm SR}$	-5	-	5	mA	not subject to production test
Overload current coupling factor for analog inputs ⁷⁾	K _{OVA} CC	-	2.5 x 10 ⁻⁴	1.5 x 10 ⁻³	-	<i>I</i> _{OV} < 0 mA; not subject to production test
		_	1.0 x 10 ⁻⁶	1.0 x 10 ⁻⁴	-	<i>I</i> _{OV} > 0 mA; not subject to production test
Overload current coupling factor for digital I/O pins	K _{OVD} CC	_	1.0 x 10 ⁻²	3.0 x 10 ⁻²		<i>I</i> _{OV} < 0 mA; not subject to production test
		-	1.0 x 10 ⁻⁴	5.0 x 10 ⁻³		<i>I</i> _{OV} > 0 mA; not subject to production test

Table 13 Operating Conditions

4.2.2 DC Parameters for Lower Voltage Area

Keeping signal levels within the limits specified in this table ensures operation without overload conditions. For signal levels outside these specifications, also refer to the specification of the overload current $I_{\rm OV}$.

Note: Operating Conditions apply.

 Table 15
 is valid under the following conditions:

 $V_{\text{DDP}} \ge 3.0 \text{ V}; V_{\text{DDPtvp}} = 3.3 \text{ V}; V_{\text{DDP}} \le 4.5 \text{ V}$

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Pin capacitance (digital inputs/outputs). To be doubled for double bond pins. ¹⁾	C _{IO} CC	-	-	10	pF	not subject to production test
Input Hysteresis ²⁾	HYS CC	$0.07 ext{ x}$ $V_{ ext{DDP}}$	_	-	V	$R_{\rm S}$ = 0 Ohm
Absolute input leakage current on pins of analog ports ³⁾	I _{OZ1} CC	-	10	200	nA	$V_{\rm IN} > V_{\rm SS}; \\ V_{\rm IN} < V_{\rm DDP}$
Absolute input leakage current for all other pins. To be doubled for double bond pins. ³⁾¹⁾⁴⁾	II _{OZ2} CC	-	0.2	2.5	μA	$T_{\rm J} \leq 110 ~^{\circ}{\rm C};$ $V_{\rm IN} < V_{\rm DDP};$ $V_{\rm IN} > V_{\rm SS}$
		-	0.2	8	μA	$T_{\rm J} \leq 150 ~^{\circ}{\rm C};$ $V_{\rm IN} < V_{\rm DDP};$ $V_{\rm IN} > V_{\rm SS}$
Pull Level Force Current ⁵⁾	$ I_{PLF} $ SR	150	-	-		6)
Pull Level Keep Current ⁷⁾	I _{PLK} SR	-	-	10	μA	6)
Input high voltage (all except XTAL1)	$V_{\rm IH}{ m SR}$	$0.7 ext{ x}$ $V_{ ext{DDP}}$	-	V _{DDP} + 0.3	V	
Input low voltage (all except XTAL1)	$V_{\rm IL}{\rm SR}$	-0.3	-	0.3 x V _{DDP}	V	
Output High voltage ⁸⁾	V _{OH} CC	V _{DDP} - 1.0	-	-	V	$I_{\rm OH} \ge I_{\rm OHmax}$
		V _{DDP} - 0.4	-	-	V	$I_{\rm OH} \ge I_{\rm OHnom}^{9)}$

Table 15 DC Characteristics for Lower Voltage Range

Direct Drive

When direct drive operation is selected (SYSCON0.CLKSEL = 11_B), the system clock is derived directly from the input clock signal CLKIN1:

 $f_{SYS} = f_{IN}$.

The frequency of f_{SYS} is the same as the frequency of f_{IN} . In this case the high and low times of f_{SYS} are determined by the duty cycle of the input clock f_{IN} .

Selecting Bypass Operation from the XTAL1¹⁾ input and using a divider factor of 1 results in a similar configuration.

Prescaler Operation

When prescaler operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 1_B), the system clock is derived either from the crystal oscillator (input clock signal XTAL1) or from the internal clock source through the output prescaler K1 (= K1DIV+1):

 $f_{\text{SYS}} = f_{\text{OSC}} / \text{K1}.$

If a divider factor of 1 is selected, the frequency of $f_{\rm SYS}$ equals the frequency of $f_{\rm OSC}$. In this case the high and low times of $f_{\rm SYS}$ are determined by the duty cycle of the input clock $f_{\rm OSC}$ (external or internal).

The lowest system clock frequency results from selecting the maximum value for the divider factor K1:

 $f_{\rm SYS} = f_{\rm OSC} / 1024.$

4.6.2.1 Phase Locked Loop (PLL)

When PLL operation is selected (SYSCON0.CLKSEL = 10_B , PLLCON0.VCOBY = 0_B), the on-chip phase locked loop is enabled and provides the system clock. The PLL multiplies the input frequency by the factor **F** ($f_{SYS} = f_{IN} \times F$).

F is calculated from the input divider P (= PDIV+1), the multiplication factor N (= NDIV+1), and the output divider K2 (= K2DIV+1):

 $(\mathbf{F} = \mathbf{N} / (\mathbf{P} \times \mathbf{K2})).$

The input clock can be derived either from an external source at XTAL1 or from the onchip clock source.

The PLL circuit synchronizes the system clock to the input clock. This synchronization is performed smoothly so that the system clock frequency does not change abruptly.

Adjustment to the input clock continuously changes the frequency of f_{SYS} so that it is locked to f_{IN} . The slight variation causes a jitter of f_{SYS} which in turn affects the duration of individual TCSs.

¹⁾ Voltages on XTAL1 must comply to the core supply voltage V_{DDIM} .

The timing in the AC Characteristics refers to TCSs. Timing must be calculated using the minimum TCS possible under the given circumstances.

The actual minimum value for TCS depends on the jitter of the PLL. Because the PLL is constantly adjusting its output frequency to correspond to the input frequency (from crystal or oscillator), the accumulated jitter is limited. This means that the relative deviation for periods of more than one TCS is lower than for a single TCS (see formulas and Figure 20).

This is especially important for bus cycles using waitstates and for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower baudrates, etc.) the deviation caused by the PLL jitter is negligible.

The value of the accumulated PLL jitter depends on the number of consecutive VCO output cycles within the respective timeframe. The VCO output clock is divided by the output prescaler K2 to generate the system clock signal f_{SYS} . The number of VCO cycles is K2 × **T**, where **T** is the number of consecutive f_{SYS} cycles (TCS).

The maximum accumulated jitter (long-term jitter) D_{Tmax} is defined by:

 D_{Tmax} [ns] = ±(220 / (K2 × f_{SYS}) + 4.3)

This maximum value is applicable, if either the number of clock cycles T > (f_{SYS} / 1.2) or the prescaler value K2 > 17.

In all other cases for a timeframe of $\mathbf{T} \times TCS$ the accumulated jitter D_T is determined by:

 D_{T} [ns] = $D_{Tmax} \times [(1 - 0.058 \times K2) \times (T - 1) / (0.83 \times f_{SYS} - 1) + 0.058 \times K2]$

 f_{SYS} in [MHz] in all formulas.

Example, for a period of 3 TCSs @ 33 MHz and K2 = 4:

 $D_{max} = \pm (220 / (4 \times 33) + 4.3) = 5.97$ ns (Not applicable directly in this case!)

 $D_3 = 5.97 \times [(1 - 0.058 \times 4) \times (3 - 1) / (0.83 \times 33 - 1) + 0.058 \times 4]$

= 5.97 × [0.768 × 2 / 26.39 + 0.232]

Example, for a period of 3 TCSs @ 33 MHz and K2 = 2:

 $D_{max} = \pm (220 / (2 \times 33) + 4.3) = 7.63$ ns (Not applicable directly in this case!)

 $\begin{array}{l} \mathsf{D}_3 = 7.63 \times [(1 - 0.058 \times 2) \times (3 - 1) \ / \ (0.83 \times 33 - 1) + 0.058 \times 2] \\ = 7.63 \times [0.884 \times 2 \ / \ 26.39 + 0.116] \end{array}$

4.6.3 External Clock Input Parameters

These parameters specify the external clock generation for the XC226xM. The clock can be generated in two ways:

- By connecting a crystal or ceramic resonator to pins XTAL1/XTAL2
- By supplying an external clock signal
 - This clock signal can be supplied either to pin XTAL1 (core voltage domain) or to pin CLKIN1 (IO voltage domain)

If connected to CLKIN1, the input signal must reach the defined input levels $V_{\rm IL}$ and $V_{\rm IH}$. If connected to XTAL1, a minimum amplitude $V_{\rm AX1}$ (peak-to-peak voltage) is sufficient for the operation of the on-chip oscillator.

Note: The given clock timing parameters $(t_1 \dots t_4)$ are only valid for an external clock input signal.

Note: Operating Conditions apply.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	1	Test Condition
Oscillator frequency	$f_{\rm OSC}{\rm SR}$	4	-	40	MHz	Input = clock signal
		4	-	16	MHz	Input = crystal or ceramic resonator
XTAL1 input current absolute value	I _{IL} CC	-	-	20	μA	
Input clock high time	t ₁ SR	6	-	-	ns	
Input clock low time	t_2 SR	6	-	-	ns	
Input clock rise time	t_3 SR	-	-	8	ns	
Input clock fall time	t_4 SR	-	-	8	ns	
Input voltage amplitude on XTAL1 ¹⁾	$V_{\rm AX1} {\rm SR}$	$0.3 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	4 to 16 MHz
		$0.4 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	16 to 25 MHz
		$0.5 ext{ x}$ $V_{ ext{DDIM}}$	-	-	V	25 to 40 MHz
Input voltage range limits for signal on XTAL1	$V_{\rm IX1}$ SR	-1.7 + V _{DDIM}	-	1.7	V	2)

Table 25 External Clock Input Characteristics

Note: The term CLKOUT refers to the reference clock output signal which is generated by selecting f_{SYS} as the source signal for the clock output signal EXTCLK on pin P2.8 and by enabling the high-speed clock driver on this pin.

Variable Memory Cycles

External bus cycles of the XC226xM are executed in five consecutive cycle phases (AB, C, D, E, F). The duration of each cycle phase is programmable (via the TCONCSx registers) to adapt the external bus cycles to the respective external module (memory, peripheral, etc.).

The duration of the access phase can optionally be controlled by the external module using the READY handshake input.

This table provides a summary of the phases and the ranges for their length.

Table 29	Programmable Bus C	vcle Phases	(see timino	diagrams)
	i legiannasie Bae e	, olo i maccoo		, alagianio,

Bus Cycle Phase	Parameter	Valid Values	Unit
Address setup phase, the standard duration of this phase (1 \dots 2 TCS) can be extended by 0 \dots 3 TCS if the address window is changed	tpAB	1 2 (5)	TCS
Command delay phase	tpC	03	TCS
Write Data setup/MUX Tristate phase	tpD	0 1	TCS
Access phase	tpE	1 32	TCS
Address/Write Data hold phase	tpF	0 3	TCS

Note: The bandwidth of a parameter (from minimum to maximum value) covers the whole operating range (temperature, voltage) as well as process variations. Within a given device, however, this bandwidth is smaller than the specified range. This is also due to interdependencies between certain parameters. Some of these interdependencies are described in additional notes (see standard timing).

Note: Operating Conditions apply; $C_L = 20 \text{ pF}$.

Table 30 EBC External Bus Timing for Upper Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
$\frac{\text{Output valid delay for } \overline{\text{RD}},}{\text{WR}(L/H)}$	<i>t</i> ₁₀ CC	-	7	13	ns	
Output valid delay for BHE, ALE	<i>t</i> ₁₁ CC	-	7	14	ns	
Address output valid delay for A23 A0	<i>t</i> ₁₂ CC	_	8	14	ns	
Address output valid delay for AD15 AD0 (MUX mode)	<i>t</i> ₁₃ CC	-	8	15	ns	
Output valid delay for CS	t ₁₄ CC	-	7	13	ns	
Data output valid delay for AD15 AD0 (write data, MUX mode)	<i>t</i> ₁₅ CC	_	8	15	ns	
Data output valid delay for D15 D0 (write data, DEMUX mode)	t ₁₆ CC	_	8	15	ns	
Output hold time for \overline{RD} , WR(L/H)	<i>t</i> ₂₀ CC	-2	6	8	ns	
Output hold time for \overline{BHE} , ALE	<i>t</i> ₂₁ CC	-2	6	10	ns	
Address output hold time for AD15 AD0	<i>t</i> ₂₃ CC	-3	6	8	ns	
Output hold time for CS	t ₂₄ CC	-3	6	11	ns	
Data output hold time for D15 D0 and AD15 AD0	<i>t</i> ₂₅ CC	-3	6	8	ns	
Input setup time for READY, D15 D0, AD15 AD0	<i>t</i> ₃₀ SR	25	15	-	ns	
Input hold time READY, D15 D0, AD15 AD0 ¹⁾	<i>t</i> ₃₁ SR	0	-7	-	ns	

 Read data are latched with the same internal clock edge that triggers the address change and the rising edge of RD. Address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can change after the rising edge of RD.

4.6.5.1 Bus Cycle Control with the READY Input

The duration of an external bus cycle can be controlled by the external circuit using the READY input signal. The polarity of this input signal can be selected.

Synchronous READY permits the shortest possible bus cycle but requires the input signal to be synchronous to the reference signal CLKOUT.

An asynchronous READY signal puts no timing constraints on the input signal but incurs a minimum of one waitstate due to the additional synchronization stage. The minimum duration of an asynchronous READY signal for safe synchronization is one CLKOUT period plus the input setup time.

An active READY signal can be deactivated in response to the trailing (rising) edge of the corresponding command (\overline{RD} or \overline{WR}).

If the next bus cycle is controlled by READY, an active READY signal must be disabled before the first valid sample point in the next bus cycle. This sample point depends on the programmed phases of the next cycle.

www.infineon.com

Published by Infineon Technologies AG