

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	C166SV2
Core Size	16/32-Bit
Speed	66MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	76
Program Memory Size	448KB (448K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2265m56f66labhxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Table of Contents

1	Summary of Features	7
1.1	Basic Device Types	9
1.2	Special Device Types	10
1.3	Definition of Feature Variants	12
2 2.1 2.2	General Device Information Pin Configuration and Definition Identification Registers	14 15 42
3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 3.15 3.16 3.17 3.18 3.19 3.20	Functional Description Memory Subsystem and Organization External Bus Controller Central Processing Unit (CPU) Memory Protection Unit (MPU) Memory Checker Module (MCHK) Interrupt System On-Chip Debug Support (OCDS) Capture/Compare Unit (CAPCOM2) Capture/Compare Units CCU6x General Purpose Timer (GPT12E) Unit Real Time Clock A/D Converters Universal Serial Interface Channel Modules (USIC) MultiCAN Module System Timer Watchdog Timer Clock Generation Parallel Ports Power Management Instruction Set Summary	$\begin{array}{r} 43\\ 44\\ 47\\ 50\\ 51\\ 52\\ 53\\ 56\\ 62\\ 66\\ 67\\ 69\\ 69\\ 71\\ 72\\ \end{array}$
3.20 4	Instruction Set Summary Electrical Parameters	72 75
4.1	General Parameters	75
4.1.1	Absolut Maximum Rating Conditions	75
4.1.2	Operating Conditions	76
4.1.3	Pad Timing Definition	78
4.1.4	Parameter Interpretation	78
4.2	DC Parameters	79
4.2.1	DC Parameters	81
4.2.2	DC Parameters for Lower Voltage Area	83
4.2.3	Power Consumption	85
4.3	Analog/Digital Converter Parameters	90

Tabl	Fable 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
6	P7.0	O0 / I	St/B	Bit 0 of Port 7, General Purpose Input/Output				
	T3OUT	01	St/B	GPT12E Timer T3 Toggle Latch Output				
	T6OUT	02	St/B	GPT12E Timer T6 Toggle Latch Output				
	TDO_A	OH / IH	St/B	JTAG Test Data Output / DAP1 Input/Output If DAP pos. 0 or 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.				
	ESR2_1	I	St/B	ESR2 Trigger Input 1				
	RxDC4B	I	St/B	CAN Node 4 Receive Data Input				
7	P7.3	O0 / I	St/B	Bit 3 of Port 7, General Purpose Input/Output				
	EMUX1	01	St/B	External Analog MUX Control Output 1 (ADC1)				
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output				
	U0C0_DOUT	O3	St/B	USIC0 Channel 0 Shift Data Output				
	CCU62_CCP OS1A	I	St/B	CCU62 Position Input 1				
	TMS_C	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin low when nothing is driving it.				
	U0C1_DX0F	I	St/B	USIC0 Channel 1 Shift Data Input				
8	P7.1	O0 / I	St/B	Bit 1 of Port 7, General Purpose Input/Output				
	EXTCLK	01	St/B	Programmable Clock Signal Output				
	TXDC4	02	St/B	CAN Node 4 Transmit Data Output				
	CCU62_CTR APA	I	St/B	CCU62 Emergency Trap Input				
	BRKIN_C	I	St/B	OCDS Break Signal Input				

Table	Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
32	P5.10	I	In/A	Bit 10 of Port 5, General Purpose Input				
	ADC0_CH10	I	In/A	Analog Input Channel 10 for ADC0				
	ADC1_CH10	I	In/A	Analog Input Channel 10 for ADC1				
	BRKIN_A	I	In/A	OCDS Break Signal Input				
	U2C1_DX0F	I	In/A	USIC2 Channel 1 Shift Data Input				
	CCU61_T13 HRA	1	In/A	External Run Control Input for T13 of CCU61				
33	P5.11	I	In/A	Bit 11 of Port 5, General Purpose Input				
	ADC0_CH11	I	In/A	Analog Input Channel 11 for ADC0				
	ADC1_CH11	I	In/A	Analog Input Channel 11 for ADC1				
34	P5.13	I	In/A	Bit 13 of Port 5, General Purpose Input				
	ADC0_CH13	I	In/A	Analog Input Channel 13 for ADC0				
	CCU63_T13 HRF	1	In/A	External Run Control Input for T13 of CCU63				
35	P5.15	I	In/A	Bit 15 of Port 5, General Purpose Input				
	ADC0_CH15	I	In/A	Analog Input Channel 15 for ADC0				
	RxDC2F	I	In/A	CAN Node 2 Receive Data Input				
36	P2.12	O0 / I	St/B	Bit 12 of Port 2, General Purpose Input/Output				
	U0C0_SELO 4	01	St/B	USIC0 Channel 0 Select/Control 4 Output				
	U0C1_SELO 3	02	St/B	USIC0 Channel 1 Select/Control 3 Output				
	TXDC2	O3	St/B	CAN Node 2 Transmit Data Output				
	READY	IH	St/B	External Bus Interface READY Input				

XC2268M/67M, XC2265M/64M/63M XC2000 Family / Base Line

General Device Information

Table	Table 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
41	P2.2	O0 / I	St/B	Bit 2 of Port 2, General Purpose Input/Output				
	TxDC1	01	St/B	CAN Node 1 Transmit Data Output				
	CCU63_CC6 2	02	St/B	CCU63 Channel 2 Output				
	AD15	OH / IH	St/B	External Bus Interface Address/Data Line 15				
	CCU63_CC6 2INB	I	St/B	CCU63 Channel 2 Input				
	ESR2_5	1	St/B	ESR2 Trigger Input 5				
42	P4.0	O0 / I	St/B	Bit 0 of Port 4, General Purpose Input/Output				
	CC2_CC24	O3 / I	St/B	CAPCOM2 CC24IO Capture Inp./ Compare Out.				
	CS0	ОН	St/B	External Bus Interface Chip Select 0 Output				
43	P2.3	O0 / I	St/B	Bit 3 of Port 2, General Purpose Input/Output				
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output				
	CCU63_COU T63	O2	St/B	CCU63 Channel 3 Output				
	CC2_CC16	O3 / I	St/B	CAPCOM2 CC16IO Capture Inp./ Compare Out.				
	A16	ОН	St/B	External Bus Interface Address Line 16				
	ESR2_0	1	St/B	ESR2 Trigger Input 0				
	U0C0_DX0E	I	St/B	USIC0 Channel 0 Shift Data Input				
	U0C1_DX0D	I	St/B	USIC0 Channel 1 Shift Data Input				
	RxDC0A	I	St/B	CAN Node 0 Receive Data Input				

Table	able 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
59	P10.0	O0 / I	St/B	Bit 0 of Port 10, General Purpose Input/Output				
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output				
	CCU60_CC6 0	02	St/B	CCU60 Channel 0 Output				
	AD0	OH / IH	St/B	External Bus Interface Address/Data Line 0				
	CCU60_CC6 0INA	1	St/B	CCU60 Channel 0 Input				
	ESR1_2	I	St/B	ESR1 Trigger Input 2				
	U0C0_DX0A	I	St/B	USIC0 Channel 0 Shift Data Input				
	U0C1_DX0A	I	St/B	USIC0 Channel 1 Shift Data Input				
60	P10.1	O0 / I	St/B	Bit 1 of Port 10, General Purpose Input/Output				
	U0C0_DOUT	01	St/B	USIC0 Channel 0 Shift Data Output				
	CCU60_CC6 1	02	St/B	CCU60 Channel 1 Output				
	AD1	OH / IH	St/B	External Bus Interface Address/Data Line 1				
	CCU60_CC6 1INA	I	St/B	CCU60 Channel 1 Input				
	U0C0_DX1A	I	St/B	USIC0 Channel 0 Shift Clock Input				
	U0C0_DX0B	I	St/B	USIC0 Channel 0 Shift Data Input				
61	P0.3	O0 / I	St/B	Bit 3 of Port 0, General Purpose Input/Output				
	U1C0_SELO 0	01	St/B	USIC1 Channel 0 Select/Control 0 Output				
	U1C1_SELO 1	O2	St/B	USIC1 Channel 1 Select/Control 1 Output				
	CCU61_COU T60	O3	St/B	CCU61 Channel 0 Output				
	A3	ОН	St/B	External Bus Interface Address Line 3				
	U1C0_DX2A	I	St/B	USIC1 Channel 0 Shift Control Input				
	RxDC0B	I	St/B	CAN Node 0 Receive Data Input				

Tabl	fable 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
62	P10.2	O0 / I	St/B	Bit 2 of Port 10, General Purpose Input/Output				
	U0C0_SCLK OUT	01	St/B	USIC0 Channel 0 Shift Clock Output				
	CCU60_CC6 2	O2	St/B	CCU60 Channel 2 Output				
	U3C0_SELO 1	O3	St/B	USIC3 Channel 0 Select/Control 1 Output				
	AD2	OH / IH	St/B	External Bus Interface Address/Data Line 2				
	CCU60_CC6 2INA	I	St/B	CCU60 Channel 2 Input				
	U0C0_DX1B	I	St/B	USIC0 Channel 0 Shift Clock Input				
	U3C0_DX2B	I	St/B	USIC3 Channel 0 Shift Control Input				
63	P0.4	O0 / I	St/B	Bit 4 of Port 0, General Purpose Input/Output				
	U1C1_SELO 0	01	St/B	USIC1 Channel 1 Select/Control 0 Output				
	U1C0_SELO 1	O2	St/B	USIC1 Channel 0 Select/Control 1 Output				
	CCU61_COU T61	O3	St/B	CCU61 Channel 1 Output				
	A4	OH	St/B	External Bus Interface Address Line 4				
	U1C1_DX2A	I	St/B	USIC1 Channel 1 Shift Control Input				
	RxDC1B	I	St/B	CAN Node 1 Receive Data Input				
	ESR2_8	I	St/B	ESR2 Trigger Input 8				
65	P2.13	O0 / I	St/B	Bit 13 of Port 2, General Purpose Input/Output				
	U2C1_SELO 2	O1	St/B	USIC2 Channel 1 Select/Control 2 Output				
	RxDC2D	1	St/B	CAN Node 2 Receive Data Input				

Table	Fable 6 Pin Definitions and Functions (cont'd)							
Pin	Symbol	Ctrl.	Туре	Function				
80	P10.9	O0 / I	St/B	Bit 9 of Port 10, General Purpose Input/Output				
	U0C0_SELO 4	O1	St/B	USIC0 Channel 0 Select/Control 4 Output				
	U0C1_MCLK OUT	O2	St/B	USIC0 Channel 1 Master Clock Output				
	AD9	OH / IH	St/B	External Bus Interface Address/Data Line 9				
	CCU60_CCP OS2A	I	St/B	CCU60 Position Input 2				
	TCK_B	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.				
	T3INB	I	St/B	GPT12E Timer T3 Count/Gate Input				
81	P1.1	O0 / I	St/B	Bit 1 of Port 1, General Purpose Input/Output				
	CCU62_COU T62	O1	St/B	CCU62 Channel 2 Output				
	U1C0_SELO 5	O2	St/B	USIC1 Channel 0 Select/Control 5 Output				
	U2C1_DOUT	O3	St/B	USIC2 Channel 1 Shift Data Output				
	A9	ОН	St/B	External Bus Interface Address Line 9				
	ESR2_3	Ι	St/B	ESR2 Trigger Input 3				
	U2C1_DX0C	I	St/B	USIC2 Channel 1 Shift Data Input				

3 Functional Description

The architecture of the XC226xM combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, control, and communication.

The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data SRAM) and the generic peripherals are connected to the CPU by separate high-speed buses. Another bus, the LXBus, connects additional on-chip resources and external resources (see **Figure 4**). This bus structure enhances overall system performance by enabling the concurrent operation of several subsystems of the XC226xM.

The block diagram gives an overview of the on-chip components and the advanced internal bus structure of the XC226xM.

Figure 4 Block Diagram

3.8 Capture/Compare Unit (CAPCOM2)

The CAPCOM2 unit supports generation and control of timing sequences on up to 16 channels with a maximum resolution of one system clock cycle (eight cycles in staggered mode). The CAPCOM2 unit is typically used to handle high-speed I/O tasks such as pulse and waveform generation, pulse width modulation (PWM), digital to analog (D/A) conversion, software timing, or time recording with respect to external events.

Two 16-bit timers (T7/T8) with reload registers provide two independent time bases for the capture/compare register array.

The input clock for the timers is programmable to several prescaled values of the internal system clock, or may be derived from an overflow/underflow of timer T6 in module GPT2. This provides a wide range or variation for the timer period and resolution and allows precise adjustments to the application-specific requirements. In addition, an external count input allows event scheduling for the capture/compare registers relative to external events.

The capture/compare register array contains 16 dual purpose capture/compare registers, each of which may be individually allocated to either CAPCOM timer and programmed for capture or compare function.

All registers have each one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin to indicate the occurrence of a compare event.

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

Compare Modes	Function				
Mode 0	Interrupt-only compare mode; Several compare interrupts per timer period are possible				
Mode 1	Pin toggles on each compare match; Several compare events per timer period are possible				

Table 9 Compare Modes

Compare Modes	Function
Mode 2	Interrupt-only compare mode; Only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; Only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; Pin toggles on each compare match; Several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; Can be used with any compare mode

Table 9 Compare Modes (cont'd)

3.13 Universal Serial Interface Channel Modules (USIC)

The XC226xM features the USIC modules USIC0, USIC1, USIC2, USIC3. Each module provides two serial communication channels.

The Universal Serial Interface Channel (USIC) module is based on a generic data shift and data storage structure which is identical for all supported serial communication protocols. Each channel supports complete full-duplex operation with a basic data buffer structure (one transmit buffer and two receive buffer stages). In addition, the data handling software can use FIFOs.

The protocol part (generation of shift clock/data/control signals) is independent of the general part and is handled by protocol-specific preprocessors (PPPs).

The USIC's input/output lines are connected to pins by a pin routing unit. The inputs and outputs of each USIC channel can be assigned to different interface pins, providing great flexibility to the application software. All assignments can be made during runtime.

Figure 11 General Structure of a USIC Module

The regular structure of the USIC module brings the following advantages:

- Higher flexibility through configuration with same look-and-feel for data management
- Reduced complexity for low-level drivers serving different protocols
- Wide range of protocols with improved performances (baud rate, buffer handling)

3.16 Watchdog Timer

The Watchdog Timer is one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after an application reset of the chip. It can be disabled and enabled at any time by executing the instructions DISWDT and ENWDT respectively. The software has to service the Watchdog Timer before it overflows. If this is not the case because of a hardware or software failure, the Watchdog Timer overflows, generating a prewarning interrupt and then a reset request.

The Watchdog Timer is a 16-bit timer clocked with the system clock divided by 16,384 or 256. The Watchdog Timer register is set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the Watchdog Timer is reloaded and the prescaler is cleared.

Time intervals between 3.2 μ s and 13.42 s can be monitored (@ 80 MHz). The default Watchdog Timer interval after power-up is 6.5 ms (@ 10 MHz).

3.17 Clock Generation

The Clock Generation Unit can generate the system clock signal f_{SYS} for the XC226xM from a number of external or internal clock sources:

- External clock signals with pad voltage or core voltage levels
- External crystal or resonator using the on-chip oscillator
- On-chip clock source for operation without crystal/resonator
- Wake-up clock (ultra-low-power) to further reduce power consumption

The programmable on-chip PLL with multiple prescalers generates a clock signal for maximum system performance from standard crystals, a clock input signal, or from the on-chip clock source. See also **Section 4.6.2**.

The Oscillator Watchdog (OWD) generates an interrupt if the crystal oscillator frequency falls below a certain limit or stops completely. In this case, the system can be supplied with an emergency clock to enable operation even after an external clock failure.

All available clock signals can be output on one of two selectable pins.

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Absolute sum of overload currents	$\Sigma I_{OV} $ SR	-	-	50	mA	not subject to production test
Digital core supply voltage for domain M ⁸⁾	V _{DDIM} CC	-	1.5	-		
Digital core supply voltage for domain 1 ⁸⁾	V _{DDI1} CC	-	1.5	-		
Digital supply voltage for IO pads and voltage regulators	$V_{\rm DDP}{ m SR}$	4.5	-	5.5	V	
Digital ground voltage	$V_{\rm SS}{\rm SR}$	-	0	_	V	

Table 13 Operating Conditions (cont'd)

To ensure the stability of the voltage regulators the EVRs must be buffered with ceramic capacitors. Separate buffer capacitors with the recomended values shall be connected as close as possible to each V_{DDIM} and V_{DDI1} pin to keep the resistance of the board tracks below 2 Ohm. Connect all V_{DDI1} pins together. The minimum capacitance value is required for proper operation under all conditions (e.g. temperature). Higher values slightly increase the startup time.

2) Use one Capacitor for each pin.

- This is the reference load. For bigger capacitive loads, use the derating factors listed in the PAD properties section.
- 4) The timing is valid for pin drivers operating in default current mode (selected after reset). Reducing the output current may lead to increased delays or reduced driving capability (C_L).
- 5) The operating frequency range may be reduced for specific device types. This is indicated in the device designation (...FxxL). 80 MHz devices are marked ...F80L.
- 6) Overload conditions occur if the standard operating conditions are exceeded, i.e. the voltage on any pin exceeds the specified range: V_{OV} > V_{IHmax} (I_{OV} > 0) or V_{OV} < V_{ILmin} ((I_{OV} < 0). The absolute sum of input overload currents on all pins may not exceed 50 mA. The supply voltages must remain within the specified limits. Proper operation under overload conditions depends on the application. Overload conditions must not occur on pin XTAL1 (powered by V_{DDIM}).
- 7) An overload current (I_{OV}) through a pin injects a certain error current (I_{INJ}) into the adjacent pins. This error current adds to the respective pins leakage current (I_{OZ}) . The amount of error current depends on the overload current and is defined by the overload coupling factor K_{OV} . The polarity of the injected error current is inverse compared to the polarity of the overload current that produces it. The total current through a pin is $|I_{TOT}| = |I_{OZ}| + (|I_{OV}| K_{OV})$. The additional error current may distort the input voltage on analog inputs.
- 8) Value is controlled by on-chip regulator

4.2 DC Parameters

These parameters are static or average values that may be exceeded during switching transitions (e.g. output current).

Leakage current is strongly dependent on the operating temperature and the voltage level at the respective pin. The maximum values in the following tables apply under worst case conditions, i.e. maximum temperature and an input level equal to the supply voltage.

The value for the leakage current in an application can be determined by using the respective leakage derating formula (see tables) with values from that application.

The pads of the XC226xM are designed to operate in various driver modes. The DC parameter specifications refer to the pad current limits specified in **Section 4.6.4**.

Supply Voltage Restrictions

The XC226xM can operate within a wide supply voltage range from 3.0 V to 5.5 V. However, during operation this supply voltage must remain within 10 percent of the selected nominal supply voltage. It cannot vary across the full operating voltage range.

Because of the supply voltage restriction and because electrical behavior depends on the supply voltage, the parameters are specified separately for the upper and the lower voltage range.

During operation, the supply voltages may only change with a maximum speed of dV/dt < 1 V/ms.

During power-on sequences, the supply voltages may only change with a maximum speed of dV/dt < 5 V/ μ s, i.e. the target supply voltage may be reached earliest after approx. 1 μ s.

Note: To limit the speed of supply voltage changes, the employment of external buffer capacitors at pins V_{DDPA}/V_{DDPB} is recommended.

Table 16 Switching Power Consumption

Parameter	Symbol		Values		Unit	Note /
		Min. Typ.		Max.		Test Condition
Power supply current (active) with all peripherals active and EVVRs on	I _{SACT} CC	-	$10 + 0.6 x f_{SYS}^{1)}$	10 + 1.0 x $f_{SYS}^{1)}$	mA	2)3)
Power supply current in standby mode ⁴⁾	I _{SSB} CC	-	100	250	μA	Upper voltage range
		-	70	150	μA	Lower voltage range
Power supply current in stopover mode, EVVRs on	I _{SSO} CC	-	0.7	2.0	mA	

1) f_{SYS} in MHz.

2) The pad supply voltage pins (V_{DDPB}) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched.

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to 3 + 0.6 x f_{SYS} .

3) Please consider the additional conditions described in section "Active Mode Power Supply Current".

4) These values are valid if the voltage validation circuits for V_{DDPB} (SWD) and V_{DDIM} (PVC_M) are off. Leaving SWD and PVC_M active adds another 90 μA.

Active Mode Power Supply Current

The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XC226xM's subsystem.

Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers.

A small current is consumed because the drivers' input stages are switched.

The IO power domains can be supplied separately. Power domain A (V_{DDPA}) supplies the A/D converters and Port 6. Power domain B (V_{DDPB}) supplies the on-chip EVVRs and all other ports.

During operation domain A draws a maximum current of 1.5 mA for each active A/D converter module from V_{DDPA} .

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to $(3 + 0.6 \times f_{SYS})$ mA.

Coding of bit fields LEVxV in SWD and PVC Configuration Registers

Code	Default Voltage Level	Notes ¹⁾					
0000 _B	2.9 V						
0001 _B	3.0 V	LEV1V: reset request					
0010 _B	3.1 V						
0011 _B	3.2 V						
0100 _B	3.3 V						
0101 _B	3.4 V						
0110 _B	3.6 V						
0111 _B	4.0 V						
1000 _B	4.2 V						
1001 _B	4.5 V	LEV2V: no request					
1010 _B	4.6 V						
1011 _B	4.7 V						
1100 _B	4.8 V						
1101 _B	4.9 V						
1110 _B	5.0 V						
1111 _B	5.5 V						

Table 21 Coding of bit fields LEVxV in Register SWDCON0

1) The indicated default levels are selected automatically after a power reset.

Table 22 Coding of Bitfields LEVxV in Registers PVCyCONz

Code	Default Voltage Level	Notes ¹⁾
000 _B	0.95 V	
001 _B	1.05 V	
010 _B	1.15 V	
011 _B	1.25 V	
100 _B	1.35 V	LEV1V: reset request
101 _B	1.45 V	LEV2V: interrupt request ²⁾
110 _B	1.55 V	
111 _B	1.65 V	

1) The indicated default levels are selected automatically after a power reset.

 Table 27 is valid under the following conditions:

 $V_{\text{DDP}} \ge 3.0 \text{ V}; V_{\text{DDPtyp}} = 3.3 \text{ V}; V_{\text{DDP}} \le 4.5 \text{ V}; C_{\text{L}} \ge 20 \text{ pF}; C_{\text{L}} \le 100 \text{ pF};$

Table 27	Standard	Pad Parameters	for Lower	Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.	-	Test Condition
Maximum output driver	I _{Omax} CC	-	-	10	mA	Strong driver
current (absolute value) ¹⁾		-	-	2.5	mA	Medium driver
		-	-	0.5	mA	Weak driver
Nominal output driver	I _{Onom} CC	-	-	2.5	mA	Strong driver
current (absolute value)		-	-	1.0	mA	Medium driver
		-	-	0.1	mA	Weak driver
Rise and Fall times (10% - 90%)	- t _{RF} CC	-	-	6.2 + 0.24 x <i>C</i> L	ns	Strong driver; Sharp edge
		-	-	24 + 0.3 x <i>C</i> _L	ns	Strong driver; Medium edge
		-	-	34 + 0.3 x C _L	ns	Strong driver; Slow edge
		_	-	37 + 0.65 x C _L	ns	Medium driver
		-	-	500 + 2.5 x <i>C</i> L	ns	Weak driver

 The total output current that may be drawn at a given time must be limited to protect the supply rails from damage. For any group of 16 neighboring output pins, the total output current in each direction (ΣI_{OL} and Σ-I_{OH}) must remain below 50 mA.

4.6.6 Synchronous Serial Interface Timing

The following parameters are applicable for a USIC channel operated in SSC mode.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply; $C_L = 20 \text{ pF}$.

Unit Parameter Symbol Values Note / Test Condition Min. Typ. Max. Slave select output SELO t₁ CC ns t_{SYS} - 8 ¹⁾ active to first SCLKOUT transmit edge Slave select output SELO $t_2 CC$ t_{SYS} - 6 ¹⁾ _ _ ns inactive after last SCLKOUT receive edge Data output DOUT valid t_3 CC -6 _ 9 ns time t_4 SR Receive data input setup 31 _ _ ns time to SCLKOUT receive edge Data input DX0 hold time t_5 SR -4 ns _ _ from SCLKOUT receive edae

Table 32 USIC SSC Master Mode Timing for Upper Voltage Range

1) $t_{SYS} = 1 / f_{SYS}$

Table 33 USIC SSC Master Mode Timing for Lower Voltage Range

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
Slave select output SELO active to first SCLKOUT transmit edge	t ₁ CC	<i>t</i> _{SYS} - 10 ¹⁾	-	-	ns	
Slave select output SELO inactive after last SCLKOUT receive edge	t ₂ CC	t _{SYS} - 9 ¹⁾	-	-	ns	
Data output DOUT valid time	t ₃ CC	-7	-	11	ns	

Package and Reliability

Package Outlines

Figure 32 PG-LQFP-100-8 (Plastic Green Thin Quad Flat Package)

All dimensions in mm.

You can find complete information about Infineon packages, packing and marking in our Infineon Internet Page "Packages": http://www.infineon.com/packages

www.infineon.com

Published by Infineon Technologies AG