

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

EXFL

2 0 0 0 0 0	
Product Status	Obsolete
Core Processor	C1665V2
Core Size	16/32-Bit
Speed	66MHz
Connectivity	CANbus, EBI/EMI, I ² C, LINbus, SPI, SSC, UART/USART, USI
Peripherals	I ² S, POR, PWM, WDT
Number of I/O	76
Program Memory Size	576KB (576K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	50K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 4x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP Exposed Pad
Supplier Device Package	PG-LQFP-100-8
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/xc2268m72f66laafxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2011-07 Published by Infineon Technologies AG 81726 Munich, Germany © 2011 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

Table	able 6 Pin Definitions and Functions (cont'd)								
Pin	Symbol	Ctrl.	Туре	Function					
9	P7.4	O0 / I	St/B	Bit 4 of Port 7, General Purpose Input/Output					
	EMUX2	01	St/B	External Analog MUX Control Output 2 (ADC1)					
	U0C1_DOUT	02	St/B	USIC0 Channel 1 Shift Data Output					
	U0C1_SCLK OUT	O3	St/B	USIC0 Channel 1 Shift Clock Output					
	CCU62_CCP OS2A	1	St/B	CCU62 Position Input 2					
	ТСК_С	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. C is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 2 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.					
	U0C0_DX0D	I	St/B	USIC0 Channel 0 Shift Data Input					
	U0C1_DX1E	I	St/B	USIC0 Channel 1 Shift Clock Input					
11	P6.0	O0 / I	DA/A	Bit 0 of Port 6, General Purpose Input/Output					
	EMUX0	01	DA/A	External Analog MUX Control Output 0 (ADC0)					
	TxDC2	02	DA/A	CAN Node 2 Transmit Data Output					
	BRKOUT	O3	DA/A	OCDS Break Signal Output					
	ADCx_REQG TyG	1	DA/A	External Request Gate Input for ADC0/1					
	U1C1_DX0E	I	DA/A	USIC1 Channel 1 Shift Data Input					
12	P6.1	O0 / I	DA/A	Bit 1 of Port 6, General Purpose Input/Output					
	EMUX1	01	DA/A	External Analog MUX Control Output 1 (ADC0)					
	T3OUT	O2	DA/A	GPT12E Timer T3 Toggle Latch Output					
	U1C1_DOUT	O3	DA/A	USIC1 Channel 1 Shift Data Output					
	ADCx_REQT RyE	I	DA/A	External Request Trigger Input for ADC0/1					
	RxDC2E	I	DA/A	CAN Node 2 Receive Data Input					
	ESR1_6	I	DA/A	ESR1 Trigger Input 6					

Tabl	Table 6 Pin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
24	P5.3	1	In/A	Bit 3 of Port 5, General Purpose Input			
	ADC0_CH3	I	In/A	Analog Input Channel 3 for ADC0			
	T3INA	I	In/A	GPT12E Timer T3 Count/Gate Input			
28	P5.4	1	In/A	Bit 4 of Port 5, General Purpose Input			
	ADC0_CH4	I	In/A	Analog Input Channel 4 for ADC0			
	CCU63_T12 HRB	I	In/A	External Run Control Input for T12 of CCU63			
	T3EUDA	I	In/A	GPT12E Timer T3 External Up/Down Control Input			
	TMS_A	1	In/A	JTAG Test Mode Selection Input			
29	P5.5	I	In/A	Bit 5 of Port 5, General Purpose Input			
	ADC0_CH5	1	In/A	Analog Input Channel 5 for ADC0			
	CCU60_T12 HRB	I	In/A	External Run Control Input for T12 of CCU60			
30	P5.8	1	In/A	Bit 8 of Port 5, General Purpose Input			
	ADC0_CH8	1	In/A	Analog Input Channel 8 for ADC0			
	ADC1_CH8	I	In/A	Analog Input Channel 8 for ADC1			
	CCU6x_T12H RC	I	In/A	External Run Control Input for T12 of CCU60/1/2/3			
	CCU6x_T13H RC	I	In/A	External Run Control Input for T13 of CCU60/1/2/3			
	U2C0_DX0F	I	In/A	USIC2 Channel 0 Shift Data Input			
31	P5.9	I	In/A	Bit 9 of Port 5, General Purpose Input			
	ADC0_CH9	I	In/A	Analog Input Channel 9 for ADC0			
	ADC1_CH9	I	In/A	Analog Input Channel 9 for ADC1			
	CC2_T7IN	1	In/A	CAPCOM2 Timer T7 Count Input			

Table	Table 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
47	P4.2	O0 / I	St/B	Bit 2 of Port 4, General Purpose Input/Output		
	U3C0_SCLK OUT	O1	St/B	USIC3 Channel 0 Shift Clock Output		
	TxDC2	02	St/B	CAN Node 2 Transmit Data Output		
	CC2_CC26	O3 / I	St/B	CAPCOM2 CC26IO Capture Inp./ Compare Out.		
	CS2	ОН	St/B	External Bus Interface Chip Select 2 Output		
	T2INA	I	St/B	GPT12E Timer T2 Count/Gate Input		
	CCU62_CCP OS1B	1	St/B	CCU62 Position Input 1		
	U3C0_DX1B	I	St/B	USIC3 Channel 0 Shift Clock Input		
48	P2.6	O0 / I	St/B	Bit 6 of Port 2, General Purpose Input/Output		
	U0C0_SELO 0	O1	St/B	USIC0 Channel 0 Select/Control 0 Output		
	U0C1_SELO 1	O2	St/B	USIC0 Channel 1 Select/Control 1 Output		
	CC2_CC19	O3 / I	St/B	CAPCOM2 CC19IO Capture Inp./ Compare Out.		
	A19	ОН	St/B	External Bus Interface Address Line 19		
	U0C0_DX2D	I	St/B	USIC0 Channel 0 Shift Control Input		
	RxDC0D	I	St/B	CAN Node 0 Receive Data Input		
	ESR2_6	I	St/B	ESR2 Trigger Input 6		
49	P4.3	O0 / I	St/B	Bit 3 of Port 4, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	CC2_CC27	O3 / I	St/B	CAPCOM2 CC27IO Capture Inp./ Compare Out.		
	CS3	ОН	St/B	External Bus Interface Chip Select 3 Output		
	RxDC2A	I	St/B	CAN Node 2 Receive Data Input		
	T2EUDA	1	St/B	GPT12E Timer T2 External Up/Down Control Input		
	CCU62_CCP OS2B	I	St/B	CCU62 Position Input 2		

Tabl	Fin Definitions and Functions (cont'd)						
Pin	Symbol	Ctrl.	Туре	Function			
62	P10.2	O0 / I	St/B	Bit 2 of Port 10, General Purpose Input/Output			
	U0C0_SCLK OUT	01	St/B	USIC0 Channel 0 Shift Clock Output			
	CCU60_CC6 2	O2	St/B	CCU60 Channel 2 Output			
	U3C0_SELO 1	O3	St/B	USIC3 Channel 0 Select/Control 1 Output			
	AD2	OH / IH	St/B	External Bus Interface Address/Data Line 2			
	CCU60_CC6 2INA	I	St/B	CCU60 Channel 2 Input			
	U0C0_DX1B	I	St/B	USIC0 Channel 0 Shift Clock Input			
	U3C0_DX2B	I	St/B	USIC3 Channel 0 Shift Control Input			
63	P0.4	O0 / I	St/B	Bit 4 of Port 0, General Purpose Input/Output			
63	U1C1_SELO 0	01	St/B	USIC1 Channel 1 Select/Control 0 Output			
	U1C0_SELO 1	O2	St/B	USIC1 Channel 0 Select/Control 1 Output			
	CCU61_COU T61	O3	St/B	CCU61 Channel 1 Output			
	A4	OH	St/B	External Bus Interface Address Line 4			
	U1C1_DX2A	I	St/B	USIC1 Channel 1 Shift Control Input			
	RxDC1B	I	St/B	CAN Node 1 Receive Data Input			
	ESR2_8	I	St/B	ESR2 Trigger Input 8			
65	P2.13	O0 / I	St/B	Bit 13 of Port 2, General Purpose Input/Output			
	U2C1_SELO 2	O1	St/B	USIC2 Channel 1 Select/Control 2 Output			
	RxDC2D	1	St/B	CAN Node 2 Receive Data Input			

Tabl	Table 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function		
66	P2.10	O0 / I	St/B	Bit 10 of Port 2, General Purpose Input/Output		
	U0C1_DOUT	01	St/B	USIC0 Channel 1 Shift Data Output		
	U0C0_SELO 3	O2	St/B	USIC0 Channel 0 Select/Control 3 Output		
	CC2_CC23	O3 / I	St/B	CAPCOM2 CC23IO Capture Inp./ Compare Out.		
	A23	ОН	St/B	External Bus Interface Address Line 23		
	U0C1_DX0E	I	St/B	USIC0 Channel 1 Shift Data Input		
	CAPINA	I	St/B	GPT12E Register CAPREL Capture Input		
	U3C1_DX0A	I	St/B	USIC3 Channel 1 Shift Data Input		
67	P10.3	O0 / I	St/B	Bit 3 of Port 10, General Purpose Input/Output		
	CCU60_COU T60	O2	St/B	CCU60 Channel 0 Output		
	AD3	OH / IH	St/B	External Bus Interface Address/Data Line 3		
	U0C0_DX2A	I	St/B	USIC0 Channel 0 Shift Control Input		
	U0C1_DX2A	I	St/B	USIC0 Channel 1 Shift Control Input		
	U3C0_DX0A	I	St/B	USIC3 Channel 0 Shift Data Input		
68	P0.5	O0 / I	St/B	Bit 5 of Port 0, General Purpose Input/Output		
	U1C1_SCLK OUT	01	St/B	USIC1 Channel 1 Shift Clock Output		
	U1C0_SELO 2	O2	St/B	USIC1 Channel 0 Select/Control 2 Output		
	CCU61_COU T62	O3	St/B	CCU61 Channel 2 Output		
	A5	ОН	St/B	External Bus Interface Address Line 5		
	U1C1_DX1A	I	St/B	USIC1 Channel 1 Shift Clock Input		
	U1C0_DX1C	I	St/B	USIC1 Channel 0 Shift Clock Input		
	RXDC3E	I	St/B	CAN Node 3 Receive Data Input		

Table 6 Pin Definitions and Functions (cont'd)								
Pin	Symbol	Ctrl.	Туре	Function				
80	P10.9	O0 / I	St/B	Bit 9 of Port 10, General Purpose Input/Output				
	U0C0_SELO 4	O1	St/B	USIC0 Channel 0 Select/Control 4 Output				
	U0C1_MCLK OUT	O2	St/B	USIC0 Channel 1 Master Clock Output				
	AD9	OH / IH	St/B	External Bus Interface Address/Data Line 9				
	CCU60_CCP OS2A	I	St/B	CCU60 Position Input 2				
	TCK_B	IH	St/B	DAP0/JTAG Clock Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it. If DAP pos. 1 is selected during start-up, an internal pull-down device will hold this pin low when nothing is driving it.				
	T3INB	I	St/B	GPT12E Timer T3 Count/Gate Input				
81	P1.1	O0 / I	St/B	Bit 1 of Port 1, General Purpose Input/Output				
	CCU62_COU T62	O1	St/B	CCU62 Channel 2 Output				
	U1C0_SELO 5	O2	St/B	USIC1 Channel 0 Select/Control 5 Output				
	U2C1_DOUT	O3	St/B	USIC2 Channel 1 Shift Data Output				
	A9	ОН	St/B	External Bus Interface Address Line 9				
	ESR2_3	Ι	St/B	ESR2 Trigger Input 3				
	U2C1_DX0C	I	St/B	USIC2 Channel 1 Shift Data Input				

Table 6 Pin Definitions and Functions (cont'd)					
Pin	Symbol	Ctrl.	Туре	Function	
82	P10.10	O0 / I	St/B	Bit 10 of Port 10, General Purpose Input/Output	
	U0C0_SELO 0	O1	St/B	USIC0 Channel 0 Select/Control 0 Output	
	CCU60_COU T63	O2	St/B	CCU60 Channel 3 Output	
	AD10	OH / IH	St/B	External Bus Interface Address/Data Line 10	
	U0C0_DX2C	I	St/B	USIC0 Channel 0 Shift Control Input	
	U0C1_DX1A	I	St/B	USIC0 Channel 1 Shift Clock Input	
	TDI_B	IH	St/B	JTAG Test Data Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.	
83	P10.11	O0 / I	St/B	Bit 11 of Port 10, General Purpose Input/Output	
	U1C0_SCLK OUT	O1	St/B	USIC1 Channel 0 Shift Clock Output	
	BRKOUT	O2	St/B	OCDS Break Signal Output	
	U3C0_SELO 0	O3	St/B	USIC3 Channel 0 Select/Control 0 Output	
	AD11	OH / IH	St/B	External Bus Interface Address/Data Line 11	
	U1C0_DX1D	I	St/B	USIC1 Channel 0 Shift Clock Input	
	RxDC2B	I	St/B	CAN Node 2 Receive Data Input	
	TMS_B	IH	St/B	JTAG Test Mode Selection Input If JTAG pos. B is selected during start-up, an internal pull-up device will hold this pin high when nothing is driving it.	
	U3C0_DX2A	1	St/B	USIC3 Channel 0 Shift Control Input	

3 Functional Description

The architecture of the XC226xM combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a well-balanced design. On-chip memory blocks allow the design of compact systems-on-silicon with maximum performance suited for computing, control, and communication.

The on-chip memory blocks (program code memory and SRAM, dual-port RAM, data SRAM) and the generic peripherals are connected to the CPU by separate high-speed buses. Another bus, the LXBus, connects additional on-chip resources and external resources (see **Figure 4**). This bus structure enhances overall system performance by enabling the concurrent operation of several subsystems of the XC226xM.

The block diagram gives an overview of the on-chip components and the advanced internal bus structure of the XC226xM.

Figure 4 Block Diagram

Address Area	Start Loc.	End Loc.	Area Size ²⁾	Notes					
Data SRAM	00'A000 _H	00'DFFF _H	16 Kbytes	-					
Reserved for DSRAM	00'8000 _H	00'9FFF _H	8 Kbytes	-					
External memory area	00'0000 _H	00'7FFF _H	32 Kbytes	-					

Table 8XC226xM Memory Map (cont'd)1)

 Accesses to the shaded areas are reserved. In devices with external bus interface these accesses generate external bus accesses.

2) The areas marked with "<" are slightly smaller than indicated. See column "Notes".

3) The uppermost 4-Kbyte sector of the first Flash segment is reserved for internal use (C0'F000_H to C0'FFFF_H).

 Several pipeline optimizations are not active within the external IO area. This is necessary to control external peripherals properly.

This common memory space consists of 16 Mbytes organized as 256 segments of 64 Kbytes; each segment contains four data pages of 16 Kbytes. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (ESFR/SFR) additionally are directly bit addressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls access to the program memories such as Flash memory and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls access to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected to the high-speed system bus so that they can exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources. These include peripherals on the LXBus such as USIC or MultiCAN. The system bus allows concurrent two-way communication for maximum transfer performance.

Up to 32 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data. The PSRAM is accessed via the PMU and is optimized for code fetches. A section of the PSRAM with programmable size can be write-protected.

Up to 16 Kbytes of on-chip Data SRAM (DSRAM) are used for storage of general user data. The DSRAM is accessed via a separate interface and is optimized for data access.

2 Kbytes of on-chip Dual-Port RAM (DPRAM) provide storage for user-defined variables, for the system stack, and for general purpose register banks. A register bank can consist of up to 16 word-wide (R0 to R15) and/or byte-wide (RL0, RH0, ..., RL7, RH7) General Purpose Registers (GPRs).

The upper 256 bytes of the DPRAM are directly bit addressable. When used by a GPR, any location in the DPRAM is bit addressable.

3.3 Central Processing Unit (CPU)

The core of the CPU consists of a 5-stage execution pipeline with a 2-stage instructionfetch pipeline, a 16-bit arithmetic and logic unit (ALU), a 32-bit/40-bit multiply and accumulate unit (MAC), a register-file providing three register banks, and dedicated SFRs. The ALU features a multiply-and-divide unit, a bit-mask generator, and a barrel shifter.

3.4 Memory Protection Unit (MPU)

The XC226xM's Memory Protection Unit (MPU) protects user-specified memory areas from unauthorized read, write, or instruction fetch accesses. The MPU can protect the whole address space including the peripheral area. This completes establisched mechanisms such as the register security mechanism or stack overrun/underrun detection.

Four Protection Levels support flexible system programming where operating system, low level drivers, and applications run on separate levels. Each protection level permits different access restrictions for instructions and/or data.

Every access is checked (if the MPU is enabled) and an access violating the permission rules will be marked as invalid and leads to a protection trap.

A set of protection registers for each protection level specifies the address ranges and the access permissions. Applications requiring more than 4 protection levels can dynamically re-program the protection registers.

3.5 Memory Checker Module (MCHK)

The XC226xM's Memory Checker Module calculates a checksum (fractional polynomial division) on a block of data, often called Cyclic Redundancy Code (CRC). It is based on a 32-bit linear feedback shift register and may, therefore, also be used to generate pseudo-random numbers.

The Memory Checker Module is a 16-bit parallel input signature compression circuitry which enables error detection within a block of data stored in memory, registers, or communicated e.g. via serial communication lines. It reduces the probability of error masking due to repeated error patterns by calculating the signature of blocks of data.

The polynomial used for operation is configurable, so most of the commonly used polynomials may be used. Also, the block size for generating a CRC result is configurable via a local counter. An interrupt may be generated if testing the current data block reveals an error.

An autonomous CRC compare circuitry is included to enable redundant error detection, e.g. to enable higher safety integrity levels.

The Memory Checker Module provides enhanced fault detection (beyond parity or ECC) for data and instructions in volatile and non volatile memories. This is especially important for the safety and reliability of embedded systems.

With its maximum resolution of 2 system clock cycles, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock via a programmable prescaler or with external signals. The counting direction (up/down) for each timer can be programmed by software or altered dynamically with an external signal on a port pin (TxEUD¹). Concatenation of the timers is supported with the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5, and/or it may be output on pin T6OUT. The overflows/underflows of timer T6 can also be used to clock the CAPCOM2 timers and to initiate a reload from the CAPREL register.

The CAPREL register can capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN); timer T5 may optionally be cleared after the capture procedure. This allows the XC226xM to measure absolute time differences or to perform pulse multiplication without software overhead.

The capture trigger (timer T5 to CAPREL) can also be generated upon transitions of GPT1 timer T3 inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

¹⁾ Exception: T5EUD is not connected to a pin.

The RTC module can be used for different purposes:

- System clock to determine the current time and date
- Cyclic time-based interrupt, to provide a system time tick independent of CPU frequency and other resources
- 48-bit timer for long-term measurements
- Alarm interrupt at a defined time

4.2.3 Power Consumption

The power consumed by the XC226xM depends on several factors such as supply voltage, operating frequency, active circuits, and operating temperature. The power consumption specified here consists of two components:

- The switching current $I_{\rm S}$ depends on the device activity
- The leakage current I_{LK} depends on the device temperature

To determine the actual power consumption, always both components, switching current $I_{\rm S}$ and leakage current $I_{\rm LK}$ must be added:

 $I_{\text{DDP}} = I_{\text{S}} + I_{\text{LK}}.$

Note: The power consumption values are not subject to production test. They are verified by design/characterization.

To determine the total power consumption for dimensioning the external power supply, also the pad driver currents must be considered.

The given power consumption parameters and their values refer to specific operating conditions:

Active mode:

Regular operation, i.e. peripherals are active, code execution out of Flash.

Stopover mode:

Crystal oscillator and PLL stopped, Flash switched off, clock in domain DMP_1 stopped.

Standby mode:

Voltage domain DMP_1 switched off completely, power supply control switched off.

Note: The maximum values cover the complete specified operating range of all manufactured devices.

The typical values refer to average devices under typical conditions, such as nominal supply voltage, room temperature, application-oriented activity.

After a power reset, the decoupling capacitors for $V_{\rm DDIM}$ and $V_{\rm DDI1}$ are charged with the maximum possible current.

For additional information, please refer to Section 5.2, Thermal Considerations.

Note: Operating Conditions apply.

Table 16 Switching Power Consumption

Parameter	Symbol		Values		Unit	Note / Test Condition
		Min.	Тур.	Max.		
Power supply current (active) with all peripherals active and EVVRs on	I _{SACT} CC	-	$10 + 0.6 x f_{SYS}^{1)}$	10 + 1.0 x $f_{SYS}^{1)}$	mA	2)3)
Power supply current in standby mode ⁴⁾	I _{SSB} CC	-	100	250	μA	Upper voltage range
		-	70	150	μA	Lower voltage range
Power supply current in stopover mode, EVVRs on	I _{SSO} CC	-	0.7	2.0	mA	

1) f_{SYS} in MHz.

2) The pad supply voltage pins (V_{DDPB}) provide the input current for the on-chip EVVRs and the current consumed by the pin output drivers. A small current is consumed because the drivers input stages are switched.

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to 3 + 0.6 x f_{SYS} .

3) Please consider the additional conditions described in section "Active Mode Power Supply Current".

4) These values are valid if the voltage validation circuits for V_{DDPB} (SWD) and V_{DDIM} (PVC_M) are off. Leaving SWD and PVC_M active adds another 90 μA.

Active Mode Power Supply Current

The actual power supply current in active mode not only depends on the system frequency but also on the configuration of the XC226xM's subsystem.

Besides the power consumed by the device logic the power supply pins also provide the current that flows through the pin output drivers.

A small current is consumed because the drivers' input stages are switched.

The IO power domains can be supplied separately. Power domain A (V_{DDPA}) supplies the A/D converters and Port 6. Power domain B (V_{DDPB}) supplies the on-chip EVVRs and all other ports.

During operation domain A draws a maximum current of 1.5 mA for each active A/D converter module from V_{DDPA} .

In Fast Startup Mode (with the Flash modules deactivated), the typical current is reduced to $(3 + 0.6 \times f_{SYS})$ mA.

Table 18ADC Parameters (cont'd)

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Broken wire detection delay against VAGND ²⁾	t _{BWG} CC	_	_	50	3)	
Broken wire detection delay against VAREF ²⁾	t _{BWR} CC	-	-	50	4)	
Conversion time for 8-bit result ²⁾	t _{c8} CC	(11 + S ⁻ + 2 x t _S	(11 + STC) x t_{ADCI} + 2 x t_{SYS}			
Conversion time for 10-bit result ²⁾	<i>t</i> _{c10} CC	(13 + S ⁻ + 2 x t _S	TC) x t _{AD} YS	ICI		
Total Unadjusted Error	TUE CC	-	1	2	LSB	5)
Wakeup time from analog powerdown, fast mode ²⁾	t _{WAF} CC	-	-	4	μS	
Wakeup time from analog powerdown, slow mode ²⁾	t _{WAS} CC	-	-	15	μS	
Analog reference ground	$V_{ m AGND}$ SR	V _{SS} - 0.05	-	1.5	V	
Analog input voltage range	$V_{\rm AIN}{ m SR}$	$V_{\rm AGND}$	-	V_{AREF}	V	6)
Analog reference voltage	V_{AREF} SR	V _{AGND} + 1.0	-	V _{DDPA} + 0.05	V	5)

 These parameter values cover the complete operating range. Under relaxed operating conditions (room temperature, nominal supply voltage) the typical values can be used for calculation.

2) This parameter includes the sample time (also the additional sample time specified by STC), the time to determine the digital result and the time to load the result register with the conversion result. Values for the basic clock t_{ADCI} depend on programming.

- 3) The broken wire detection delay against V_{AGND} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 500 µs. Result below 10% (66_H).
- 4) The broken wire detection delay against V_{AREF} is measured in numbers of consecutive precharge cycles at a conversion rate of not more than 10 μs. This function is influenced by leakage current, in particular at high temperature. Result above 80% (332_H).
- 5) TUE is tested at V_{AREF} = V_{DDPA} = 5.0 V, V_{AGND} = 0 V. It is verified by design for all other voltages within the defined voltage range. The specified TUE is valid only if the absolute sum of input overload currents on analog port pins (see I_{OV} specification) does not exceed 10 mA, and if V_{AREF} and V_{AGND} remain stable during the measurement time.
- V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.

4.5 Flash Memory Parameters

The XC226xM is delivered with all Flash sectors erased and with no protection installed. The data retention time of the XC226xM's Flash memory (i.e. the time after which stored data can still be retrieved) depends on the number of times the Flash memory has been erased and programmed.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply.

Parameter	Symbol		Values		Unit	Note /
		Min.	Тур.	Max.		Test Condition
Parallel Flash module program/erase limit	$N_{\rm PP}{ m SR}$	-	-	4 ¹⁾		$N_{\text{FL}_{\text{RD}}} \le 1,$ $f_{\text{SYS}} \le 80 \text{ MHz}$
depending on Flash read activity		-	-	1 ²⁾		$N_{\rm FL_RD}$ > 1
Flash erase endurance for security pages	$N_{\rm SEC}{ m SR}$	10	-	-	cycle s	$t_{RET} \ge 20$ years
Flash wait states ³⁾	$N_{\rm WSFLAS}$	1	-	-		$f_{SYS} \le 8 \text{ MHz}$
	H SR	2	-	-		$f{SYS} \le 13 \text{ MHz}$
		3	-	-		$f_{SYS} \le 17 \text{ MHz}$
		4	-	-		$f_{\rm SYS}$ > 17 MHz
Erase time per sector/page	t _{ER} CC	-	7 ⁴⁾	8.0	ms	
Programming time per page	t _{PR} CC	-	34)	3.5	ms	
Data retention time	t _{RET} CC	20	-	-	year s	$N_{\rm Er} \le 1\ 000$ cycles
Drain disturb limit	$N_{\rm DD}~{ m SR}$	32	-	-	cycle s	

Table 23 Flash Parameters

4.6.7 Debug Interface Timing

The debugger can communicate with the XC226xM either via the 2-pin DAP interface or via the standard JTAG interface.

Debug via DAP

The following parameters are applicable for communication through the DAP debug interface.

Note: These parameters are not subject to production test but verified by design and/or characterization.

Note: Operating Conditions apply; C_L = 20 pF.

Parameter	Symbol	Values			Unit	Note /
		Min.	Тур.	Max.		Test Condition
DAP0 clock period	<i>t</i> ₁₁ SR	25 ¹⁾	-	-	ns	
DAP0 high time	t ₁₂ SR	8	-	-	ns	
DAP0 low time	t ₁₃ SR	8	-	-	ns	
DAP0 clock rise time	t ₁₄ SR	-	_	4	ns	
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns	
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	pad_type= stan dard
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	pad_type= stan dard
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	17	20	-	ns	pad_type= stan dard

 Table 36
 DAP Interface Timing for Upper Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_{11} \ge t_{SYS}$.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

Parameter	Symbol	Values			Unit	Note /			
		Min.	Тур.	Max.		Test Condition			
DAP0 clock period	<i>t</i> ₁₁ SR	25 ¹⁾	-	_	ns				
DAP0 high time	t ₁₂ SR	8	-	_	ns				
DAP0 low time	t ₁₃ SR	8	-	_	ns				
DAP0 clock rise time	t ₁₄ SR	-	-	4	ns				
DAP0 clock fall time	t ₁₅ SR	-	-	4	ns				
DAP1 setup to DAP0 rising edge	<i>t</i> ₁₆ SR	6	-	-	ns	pad_type= stan dard			
DAP1 hold after DAP0 rising edge	<i>t</i> ₁₇ SR	6	-	-	ns	pad_type= stan dard			
DAP1 valid per DAP0 clock period ²⁾	<i>t</i> ₁₉ CC	12	17	-	ns	pad_type= stan dard			

Table 37 DAP Interface Timing for Lower Voltage Range

1) The debug interface cannot operate faster than the overall system, therefore $t_{11} \ge t_{SYS}$.

2) The Host has to find a suitable sampling point by analyzing the sync telegram response.

Figure 27 Test Clock Timing (DAP0)