
Microchip Technology - ATSAM4CMP16CA-AU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ARM® Cortex®-M4/M4F

Core Size 32-Bit Dual-Core

Speed 120MHz

Connectivity EBI/EMI, I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT

Number of I/O 52

Program Memory Size 1MB (1M x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 6x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package 100-LQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4cmp16ca-au

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4cmp16ca-au-4437855
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Examples
SMLSD R0, R4, R5, R6 ; Multiplies bottom halfword of R4 with bottom

; halfword of R5, multiplies top halfword of R4
; with top halfword of R5, subtracts second from
; first, adds R6, writes to R0

SMLSDX R1, R3, R2, R0 ; Multiplies bottom halfword of R3 with top
; halfword of R2, multiplies top halfword of R3
; with bottom halfword of R2, subtracts second from
; first, adds R0, writes to R1

SMLSLD R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with bottom
; halfword of R2, multiplies top halfword of R6
; with top halfword of R2, subtracts second from
; first, adds R6:R3, writes to R6:R3

SMLSLDX R3, R6, R2, R7 ; Multiplies bottom halfword of R6 with top
; halfword of R2, multiplies top halfword of R6
; with bottom halfword of R2, subtracts second from
; first, adds R6:R3, writes to R6:R3.
153SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

12.6.7.7 UQADD and UQSUB

Saturating Add and Saturating Subtract Unsigned.

Syntax
op{cond} {Rd}, Rn, Rm
op{cond} {Rd}, Rn, Rm

where:

op is one of:

UQADD8 Saturating four unsigned 8-bit integer additions.

UQADD16 Saturating two unsigned 16-bit integer additions.

UDSUB8 Saturating four unsigned 8-bit integer subtractions.

UQSUB16 Saturating two unsigned 16-bit integer subtractions.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

These instructions add or subtract two or four values and then writes an unsigned saturated value in the
destination register.

The UQADD16 instruction:

 Adds the respective top and bottom halfwords of the first and second operands.

 Saturates the result of the additions for each halfword in the destination register to the unsigned range
0 ≤ x ≤ 216-1, where x is 16.

The UQADD8 instruction:

 Adds each respective byte of the first and second operands.

 Saturates the result of the addition for each byte in the destination register to the unsigned range 0 ≤ x ≤ 28-
1, where x is 8.

The UQSUB16 instruction:

 Subtracts both halfwords of the second operand from the respective halfwords of the first operand.

 Saturates the result of the differences in the destination register to the unsigned range 0 ≤ x ≤ 216-1, where x
is 16.

The UQSUB8 instructions:

 Subtracts the respective bytes of the second operand from the respective bytes of the first operand.

 Saturates the results of the differences for each byte in the destination register to the unsigned range
0 ≤ x ≤ 28-1, where x is 8.

Restrictions

Do not use SP and do not use PC.
169SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

12.9.1.7 Configuration and Control Register

Name: SCB_CCR

Access: Read/Write

The SCB_CCR controls the entry to the Thread mode and enables the handlers for NMI, hard fault and faults escalated by
FAULTMASK to ignore BusFaults. It also enables the division by zero and unaligned access trapping, and the access to
the NVIC_STIR by unprivileged software (see “Software Trigger Interrupt Register”).

• STKALIGN: Stack Alignment

Indicates the stack alignment on exception entry:

0: 4-byte aligned.

1: 8-byte aligned.

On exception entry, the processor uses bit [9] of the stacked PSR to indicate the stack alignment. On return from the
exception, it uses this stacked bit to restore the correct stack alignment.

• BFHFNMIGN: Bus Faults Ignored

Enables handlers with priority -1 or -2 to ignore data bus faults caused by load and store instructions. This applies to the
hard fault and FAULTMASK escalated handlers:

0: Data bus faults caused by load and store instructions cause a lock-up.

1: Handlers running at priority -1 and -2 ignore data bus faults caused by load and store instructions.

Set this bit to 1 only when the handler and its data are in absolutely safe memory. The normal use of this bit is to probe sys-
tem devices and bridges to detect control path problems and fix them.

• DIV_0_TRP: Division by Zero Trap

Enables faulting or halting when the processor executes an SDIV or UDIV instruction with a divisor of 0:

0: Do not trap divide by 0.

1: Trap divide by 0.

When this bit is set to 0, a divide by zero returns a quotient of 0.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – STKALIGN BFHFNMIGN

7 6 5 4 3 2 1 0

– – – DIV_0_TRP UNALIGN_TRP – USERSETMPEND
NONBASETHRDE

NA
249SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

• SIZE: Size of the MPU Protection Region

The minimum permitted value is 3 (b00010).

The SIZE field defines the size of the MPU memory region specified by the MPU_RNR. as follows:

(Region size in bytes) = 2(SIZE+1)

The smallest permitted region size is 32B, corresponding to a SIZE value of 4. The table below gives an example of SIZE
values, with the corresponding region size and value of N in the MPU_RBAR.

Note: 1. In the MPU_RBAR; see “MPU Region Base Address Register”

• ENABLE: Region Enable

Note: For information about access permission, see “MPU Access Permission Attributes”.

SIZE Value Region Size Value of N (1) Note

b00100 (4) 32 B 5 Minimum permitted size

b01001 (9) 1 KB 10 –

b10011 (19) 1 MB 20 –

b11101 (29) 1 GB 30 –

b11111 (31) 4 GB b01100 Maximum possible size
285SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

12.13 Glossary

This glossary describes some of the terms used in technical documents from ARM.

Abort A mechanism that indicates to a processor that the value associated with a memory access is invalid.
An abort can be caused by the external or internal memory system as a result of attempting to access
invalid instruction or data memory.

Aligned A data item stored at an address that is divisible by the number of bytes that defines the data size is
said to be aligned. Aligned words and halfwords have addresses that are divisible by four and two
respectively. The terms word-aligned and halfword-aligned therefore stipulate addresses that are
divisible by four and two respectively.

Banked register A register that has multiple physical copies, where the state of the processor determines which copy is
used. The Stack Pointer, SP (R13) is a banked register.

Base register In instruction descriptions, a register specified by a load or store instruction that is used to hold the
base value for the instruction’s address calculation. Depending on the instruction and its addressing
mode, an offset can be added to or subtracted from the base register value to form the address that is
sent to memory.

See also “Index register”.

Big-endian (BE) Byte ordering scheme in which bytes of decreasing significance in a data word are stored at
increasing addresses in memory.

See also “Byte-invariant”, “Endianness”, “Little-endian (LE)”.

Big-endian memory Memory in which:
a byte or halfword at a word-aligned address is the most significant byte or halfword within the word at
that address,
a byte at a halfword-aligned address is the most significant byte within the halfword at that address.

See also “Little-endian memory”.

Breakpoint A breakpoint is a mechanism provided by debuggers to identify an instruction at which program
execution is to be halted. Breakpoints are inserted by the programmer to enable inspection of register
contents, memory locations, variable values at fixed points in the program execution to test that the
program is operating correctly. Breakpoints are removed after the program is successfully tested.

Byte-invariant In a byte-invariant system, the address of each byte of memory remains unchanged when switching
between little-endian and big-endian operation. When a data item larger than a byte is loaded from or
stored to memory, the bytes making up that data item are arranged into the correct order depending
on the endianness of the memory access.
An ARM byte-invariant implementation also supports unaligned halfword and word memory accesses.
It expects multi-word accesses to be word-aligned.

Condition field A four-bit field in an instruction that specifies a condition under which the instruction can execute.
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

304

13.7.8 ID Code Register

Access: Read-only

• VERSION[31:28]: Product Version Number

Set to 0x0.

• PART NUMBER[27:12]: Product Part Number

• MANUFACTURER IDENTITY[11:1]

Set to 0x01F.

• Bit[0] Required by IEEE Std. 1149.1

Set to 0x1.

31 30 29 28 27 26 25 24

VERSION PART NUMBER

23 22 21 20 19 18 17 16

PART NUMBER

15 14 13 12 11 10 9 8

PART NUMBER MANUFACTURER IDENTITY

7 6 5 4 3 2 1 0

MANUFACTURER IDENTITY 1

Chip Name Chip ID

SAM4CM 0x05B34

Chip Name JTAG ID Code

SAM4CM 0x05B3_403F
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

316

Figure 17-3. Gregorian and Persian Modes Update Sequence

Prepare Time or Calendar Fields

Set UPDTIM and/or UPDCAL
bit(s) in RTC_CR

Read RTC_SR

ACKUPD
= 1?

Clear ACKUPD bit in RTC_SCCR

Update Time and/or Calendar values in
RTC_TIMR/RTC_CALR

Clear UPDTIM and/or UPDCAL bit
in RTC_CR

No

Yes

Begin

End

Polling or
IRQ (if enabled)

Wait for second periodic event
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

346

To ease the comparison of the inherent crystal accuracy with the reference clock/signal during manufacturing, an
internal prescaled 32.768 kHz clock derivative signal can be assigned to drive RTC output. To accommodate the
measure, several clock frequencies can be selected among 1 Hz, 32 Hz, 64 Hz, 512 Hz.

The clock calibration correction drives the internal RTC counters but can also be observed in the RTC output when
one of the following three frequencies 1 Hz, 32 Hz or 64 Hz is configured. The correction is not visible in the RTC
output if 512 Hz frequency is configured.

In any event, this adjustment does not take into account the temperature variation.

The frequency drift (up to -200 ppm) due to temperature variation can be compensated using a reference time if
the application can access such a reference. If a reference time cannot be used, a temperature sensor can be
placed close to the crystal oscillator in order to get the operating temperature of the crystal oscillator. Once
obtained, the temperature may be converted using a lookup table (describing the accuracy/temperature curve of
the crystal oscillator used) and RTC_MR configured accordingly. The calibration can be performed on-the-fly. This
adjustment method is not based on a measurement of the crystal frequency/drift and therefore can be improved by
means of the networking capability of the target application.

If no crystal frequency adjustment has been done during manufacturing, it is still possible to do it. In the case
where a reference time of the day can be obtained through LAN/WAN network, it is possible to calculate the drift of
the application crystal oscillator by comparing the values read on RTC Time Register (RTC_TIMR) and
programming the HIGHPPM and CORRECTION fields on RTC_MR according to the difference measured
between the reference time and those of RTC_TIMR.

17.5.8 Waveform Generation

Waveforms can be generated by the RTC in order to take advantage of the RTC inherent prescalers while the RTC
is the only powered circuitry (Low-power mode of operation, Backup mode) or in any active mode. Going into
Backup or Low-power operating modes does not affect the waveform generation outputs.

The RTC output (RTCOUT0) has a source driver selected among seven possibilities.

The first selection choice sticks the associated output at 0 (This is the reset value and it can be used at any time to
disable the waveform generation).

Selection choices 1 to 4 respectively select 1 Hz, 32 Hz, 64 Hz and 512 Hz.

32 Hz or 64 Hz can drive, for example, a TN LCD backplane signal while 1 Hz can be used to drive a blinking
character like “:” for basic time display (hour, minute) on TN LCDs.

Selection choice 5 provides a toggling signal when the RTC alarm is reached.

Selection choice 6 provides a copy of the alarm flag, so the associated output is set high (logical 1) when an alarm
occurs and immediately cleared when software clears the alarm interrupt source.

Selection choice 7 provides a 1 Hz periodic high pulse of 15 µs duration that can be used to drive external devices
for power consumption reduction or any other purpose.

PIO line associated to RTC output is automatically selecting these waveforms as soon as RTC_MR corresponding
fields OUT0 differ from 0.
349SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

22.5.2 EEFC Flash Command Register

Name: EEFC_FCR

Address: 0x400E0A04 (0), 0x400E0C04 (1)

Access: Write-only

• FCMD: Flash Command

31 30 29 28 27 26 25 24

FKEY

23 22 21 20 19 18 17 16

FARG

15 14 13 12 11 10 9 8

FARG

7 6 5 4 3 2 1 0

FCMD

Value Name Description

0x00 GETD Get Flash descriptor

0x01 WP Write page

0x02 WPL Write page and lock

0x03 EWP Erase page and write page

0x04 EWPL Erase page and write page then lock

0x05 EA Erase all

0x06 EPL Erase plane

0x07 EPA Erase pages

0x08 SLB Set lock bit

0x09 CLB Clear lock bit

0x0A GLB Get lock bit

0x0B SGPB Set GPNVM bit

0x0C CGPB Clear GPNVM bit

0x0D GGPB Get GPNVM bit

0x0E STUI Start read unique identifier

0x0F SPUI Stop read unique identifier

0x10 GCALB Get CALIB bit

0x11 ES Erase sector

0x12 WUS Write user signature

0x13 EUS Erase user signature

0x14 STUS Start read user signature

0x15 SPUS Stop read user signature
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

440

28.5.2 Receive Counter Register

Name: PERIPH_RCR

Access: Read/Write

• RXCTR: Receive Counter Register

RXCTR must be set to receive buffer size.

When a half-duplex peripheral is connected to the PDC, RXCTR = TXCTR.

0: Stops peripheral data transfer to the receiver.

1–65535: Starts peripheral data transfer if the corresponding channel is active.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
RXCTR

7 6 5 4 3 2 1 0

RXCTR
547SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

29.4 Slow Clock

The Supply Controller embeds a slow clock generator that is supplied with the VDDBU power supply. As soon as
VDDBU is supplied, both the 32.768 kHz crystal oscillator and the embedded 32 kHz (typical) RC oscillator are
powered up, but only the RC oscillator is enabled. This allows the slow clock to be valid in a short time (about 100
µs).

The slow clock is generated either by the 32.768 kHz crystal oscillator or by the embedded 32 kHz (typical) RC
oscillator.

The selection of the slow clock source is made via the XTALSEL bit in the Supply Controller Control Register
(SUPC_CR).

The OSCSEL bit of the Supply Controller Status Register (SUPC_SR) and the OSCSEL bit of the PMC Status
Register (PMC_SR) report which oscillator is selected as the slow clock source. PMC_SR.OSCSEL informs when
the switch sequence initiated by a new value written in SUPC_CR.XTALSEL is done.

29.4.1 Embedded 32 kHz (typical) RC Oscillator

By default, the embedded 32 kHz (typical) RC oscillator is enabled and selected. The user has to take into account
the possible drifts of this oscillator. More details are given in the section “DC Characteristics”.

This oscillator is disabled by clearing the SUPC_CR.XTALSEL.

29.4.2 32.768 kHz Crystal Oscillator

The Clock Generator integrates a low-power 32.768 kHz crystal oscillator. To use this oscillator, the XIN32 and
XOUT32 pins must be connected to a 32.768 kHz crystal. Two external capacitors must be wired as shown in
Figure 29-2. More details are given in the section “DC Characteristics”.

Note that the user is not obliged to use the 32.768 kHz crystal oscillator and can use the 32 kHz (typical) RC
oscillator instead.

Figure 29-2. Typical 32768 Crystal Oscillator Connection

The 32.768 kHz crystal oscillator provides a more accurate frequency than the 32 kHz (typical) RC oscillator.

To select the 32.768 kHz crystal oscillator as the source of the slow clock, the bit SUPC_CR.XTALSEL must be
set. This results in a sequence which enables the 32.768 kHz crystal oscillator and then disables the 32 kHz
(typical) RC oscillator to save power. The switch of the slow clock source is glitch-free.

Reverting to the 32 kHz (typical) RC oscillator is only possible by shutting down the VDDBU power supply. If the
user does not need the 32.768 kHz crystal oscillator, the XIN32 and XOUT32 pins can be left unconnected.

The user can also set the 32.768 kHz crystal oscillator in Bypass mode instead of connecting a crystal. In this
case, the user must provide the external clock signal on XIN32. The input characteristics of the XIN32 pin are
given in the section “Electrical Characteristics”. To enter Bypass mode, the OSCBYPASS bit of the Supply
Controller Mode Register (SUPC_MR) must be set prior to setting SUPC_CR.XTALSEL.

XIN32 XOUT32 GND
32.768 kHz

Crystal
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

558

5. Check the main clock frequency:

This main clock frequency can be measured via CKGR_MCFR.

Read CKGR_MCFR until the MAINFRDY field is set, after which the user can read the MAINF field in
CKGR_MCFR by performing an additional read. This provides the number of main clock cycles that have
been counted during a period of 16 slow clock cycles.

If MAINF = 0, switch the MAINCK to the 4/8/12 MHz RC Oscillator by clearing MOSCSEL in CKGR_MOR. If
MAINF ≠ 0, proceed to Step 6.

6. Set PLLx and Divider (if not required, proceed to Step 7.):

In the names PLLx, DIVx, MULx, LOCKx, PLLxCOUNT, and CKGR_PLLxR, ‘x’ represents A or B.

All parameters needed to configure PLLx and the divider are located in CKGR_PLLxR.

The DIVx field is used to control the divider itself. This parameter can be programmed between 0 and 127.
Divider output is divider input divided by DIVx parameter. By default, DIVx field is cleared which means that
the divider and PLLx are turned off.

The MULx field is the PLLx multiplier factor. This parameter can be programmed between 0 and 254. If
MULx is cleared, PLLx will be turned off, otherwise the PLLx output frequency is PLLx input frequency
multiplied by (MULx + 1).

The PLLxCOUNT field specifies the number of slow clock cycles before the LOCKx bit is set in the PMC_SR
after CKGR_PLLxR has been written.

Once CKGR_PLLxR has been written, the user must wait for the LOCKx bit to be set in the PMC_SR. This
can be done either by polling LOCKx in PMC_SR or by waiting for the interrupt line to be raised if the
associated interrupt source (LOCKx) has been enabled in PMC_IER. All fields in CKGR_PLLxR can be
programmed in a single write operation. If at some stage one of the following parameters, MULx or DIVx is
modified, the LOCKx bit goes low to indicate that PLLx is not yet ready. When PLLx is locked, LOCKx is set
again. The user must wait for the LOCKx bit to be set before using the PLLx output clock.

7. Select the master clock and processor clock

The master clock and the processor clock are configurable via PMC_MCKR.

The CSS field is used to select the clock source of the master clock and processor clock dividers. By default,
the selected clock source is the main clock.

The PRES field is used to define the processor clock and master clock prescaler. The user can choose
between different values (1, 2, 3, 4, 8, 16, 32, 64). Prescaler output is the selected clock source frequency
divided by the PRES value.

Once the PMC_MCKR has been written, the user must wait for the MCKRDY bit to be set in the PMC_SR.
This can be done either by polling MCKRDY in PMC_SR or by waiting for the interrupt line to be raised if the
associated interrupt source (MCKRDY) has been enabled in PMC_IER. PMC_MCKR must not be
programmed in a single write operation. The programming sequence for PMC_MCKR is as follows:

 If a new value for CSS field corresponds to PLL clock,

̶ Program the PRES field in PMC_MCKR.

̶ Wait for the MCKRDY bit to be set in PMC_SR.

̶ Program the CSS field in PMC_MCKR.

̶ Wait for the MCKRDY bit to be set in PMC_SR.

 If a new value for CSS field corresponds to main clock or slow clock,

̶ Program the CSS field in PMC_MCKR.

̶ Wait for the MCKRDY bit to be set in the PMC_SR.

̶ Program the PRES field in PMC_MCKR.
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

572

30.18.8 PMC Clock Generator Main Clock Frequency Register

Name: CKGR_MCFR

Address: 0x400E0424

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

• MAINF: Main Clock Frequency

Gives the number of main clock cycleswithin 16 slow clock periods. To calculate the frequency of the measured clock:
fMAINCK = (MAINF × fSLCK) / 16

where frequency is in MHz.

• MAINFRDY: Main Clock Frequency Measure Ready

0: MAINF value is not valid or the measured oscillator is disabled or a measure has just been started by means of
RCMEAS.

1: The measured oscillator has been enabled previously and MAINF value is available.

Note: To ensure that a correct value is read on the MAINF field, the MAINFRDY flag must be read at 1 then another read access must
be performed on the register to get a stable value on the MAINF field.

• RCMEAS: Restart Main Clock Source Frequency Measure (write-only)

0: No effect.

1: Restarts measuring of the frequency of the main clock source. MAINF will carry the new frequency as soon as a low to
high transition occurs on the MAINFRDY flag.

The measure is performed on the main frequency (i.e. not limited to RC oscillator only), but if the main clock frequency
source is the 3 to 20 MHz crystal oscillator, the restart of measuring is not needed because of the well known stability of
crystal oscillators.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – RCMEAS – – – MAINFRDY

15 14 13 12 11 10 9 8

MAINF

7 6 5 4 3 2 1 0

MAINF
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

588

Figure 34-5. Master Write with One Data Byte

Figure 34-6. Master Write with Multiple Data Bytes

TXCOMP

TXRDY

Write THR (DATA)

STOP Command sent (write in TWI_CR)

TWD A DATA AS DADR W P

A DATA n AS DADR W DATA n+1 A PDATA n+2 A

TXCOMP

TXRDY

Write THR (Data n)

Write THR (Data n+1) Write THR (Data n+2)
Last data sent

STOP command performed
(by writing in the TWI_CR)

TWD

TWCK
715SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

General Call

The general call is performed in order to change the address of the slave.

If a GENERAL CALL is detected, GACC is set.

After the detection of GENERAL CALL, it is up to the programmer to decode the commands which come
afterwards.

In case of a WRITE command, the programmer has to decode the programming sequence and program a new
SADR if the programming sequence matches.

Figure 34-27 describes the GENERAL CALL access.

Figure 34-27. Master Performs a General Call

Note: This method allows the user to create a personal programming sequence by choosing the programming bytes and the
number of them. The programming sequence has to be provided to the master.

0000000 + W

GENERAL CALL PS AGENERAL CALL Reset or write DADD A New SADRDATA1 A DATA2 AA

New SADR
Programming sequence

TXD

GACC

SVACC

RESET command = 00000110X
WRITE command = 00000100X

Reset after read
733SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

36. Universal Synchronous Asynchronous Receiver Transceiver (USART)

36.1 Description

The Universal Synchronous Asynchronous Receiver Transceiver (USART) provides one full duplex universal
synchronous asynchronous serial link. Data frame format is widely programmable (data length, parity, number of
stop bits) to support a maximum of standards. The receiver implements parity error, framing error and overrun
error detection. The receiver time-out enables handling variable-length frames and the transmitter timeguard
facilitates communications with slow remote devices. Multidrop communications are also supported through
address bit handling in reception and transmission.

The USART features three test modes: Remote loopback, Local loopback and Automatic echo.

The USART supports specific operating modes providing interfaces on RS485, and SPI buses, with ISO7816 T =
0 or T = 1 smart card slots and infrared transceivers. The hardware handshaking feature enables an out-of-band
flow control by automatic management of the pins RTS and CTS.

The USART supports the connection to the Peripheral DMA Controller, which enables data transfers to the
transmitter and from the receiver. The PDC provides chained buffer management without any intervention of the
processor.

36.2 Embedded Characteristics
 Programmable Baud Rate Generator

 5- to 9-bit Full-duplex Synchronous or Asynchronous Serial Communications

̶ 1, 1.5 or 2 Stop Bits in Asynchronous Mode or 1 or 2 Stop Bits in Synchronous Mode

̶ Parity Generation and Error Detection

̶ Framing Error Detection, Overrun Error Detection

̶ Digital Filter on Receive Line

̶ MSB- or LSB-first

̶ Optional Break Generation and Detection

̶ By 8 or by 16 Over-sampling Receiver Frequency

̶ Optional Hardware Handshaking RTS-CTS

̶ Receiver Time-out and Transmitter Timeguard

̶ Optional Multidrop Mode with Address Generation and Detection

 RS485 with Driver Control Signal

 ISO7816, T = 0 or T = 1 Protocols for Interfacing with Smart Cards

̶ NACK Handling, Error Counter with Repetition and Iteration Limit

 IrDA Modulation and Demodulation

̶ Communication at up to 115.2 kbit/s

 SPI Mode

̶ Master or Slave

̶ Serial Clock Programmable Phase and Polarity

̶ SPI Serial Clock (SCK) Frequency up to fperipheral clock/6

 Test Modes

̶ Remote Loopback, Local Loopback, Automatic Echo

 Supports Connection of:

̶ Two Peripheral DMA Controller Channels (PDC)
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

778

38.7.12 PWM Channel Counter Register

Name: PWM_CCNT[0..3]

Address: 0x4800820C [0], 0x4800822C [1], 0x4800824C [2], 0x4800826C [3]

Access: Read-only

• CNT: Channel Counter Register

Internal counter value. This register is reset when:

 the channel is enabled (writing CHIDx in the PWM_ENA register).

 the counter reaches CPRD value defined in the PWM_CPRDx register if the waveform is left aligned.

31 30 29 28 27 26 25 24

CNT

23 22 21 20 19 18 17 16

CNT

15 14 13 12 11 10 9 8

CNT

7 6 5 4 3 2 1 0

CNT
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

920

Figure 39-3. Driving an LCD with One Common Terminal

39.6.2.2 1/2 Duty and 1/2 Bias

For an LCD with two common terminals (1/2 duty) a more complex waveform must be used to control segments
individually. Although 1/3 bias can be selected, 1/2 bias is most common for these displays. In the waveform
shown in Figure 39-4, SEG0 - COM0 is the voltage across a segment that is on, and SEG0 - COM1 is the voltage
across a segment that is off.

Figure 39-4. Driving an LCD with Two Common Terminals

39.6.2.3 1/3 Duty and 1/3 Bias

1/3 bias is usually recommended for an LCD with three common terminals (1/3 duty). In the waveform shown in
Figure 39-5, SEG0 - COM0 is the voltage across a segment that is on and SEG0 - COM1 is the voltage across a
segment that is off.

VDDLCD

GND

VDDLCD

GND

VDDLCD

GND

-VDDLCD
Frame Frame

VDDLCD

GND

VDDLCD

GND

GND

SEG1

COM0

SEG1 - COM0

Frame Frame

SEG0

COM0

SEG0 - COM0

VDDLCD

GND

VDDLCD
1/2VDDLCD

GND

VDDLCD
1/2VDDLCD

GND
-1/2VDDLCD

-VDDLCD

SEG0

COM0

SEG0 - COM0

VDDLCD

GND

VDDLCD
1/2VDDLCD

GND

 VDDLCD
1/2VDDLCD

GND
-1/2VDDLCD

-VDDLCD

SEG0

COM1

SEG0 - COM1

FrameFrame Frame Frame
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

928

43. Integrity Check Monitor (ICM)

43.1 Description

The Integrity Check Monitor (ICM) is a DMA controller that performs hash calculation over multiple memory
regions through the use of transfer descriptors located in memory (ICM Descriptor Area). The Hash function is
based on the Secure Hash Algorithm (SHA). The ICM controller integrates two modes of operation. The first one is
used to hash a list of memory regions and save the digests to memory (ICM Hash Area). The second operation
mode is an active monitoring of the memory. In that mode, the hash function is evaluated and compared to the
digest located at a predefined memory address (ICM Hash Area). If a mismatch occurs, an interrupt is raised. See
Figure 43-1 for an example of four-region monitoring. Hash and Descriptor areas are located in Memory instance
i2, and the four regions are split in memory instances i0 and i1.

Figure 43-1. Four-region Monitoring Example

The ICM SHA engine is compliant with the American FIPS (Federal Information Processing Standard) Publication
180-2 specification.

The following terms are concise definitions of the ICM concepts used throughout this document:

 Region—a partition of instruction or data memory space

 Region Descriptor—a data structure stored in memory, defining region attributes

 Region Attributes—region start address, region size, region SHA engine processing mode, Write Back or
Compare function mode

 Context Registers—a set of ICM non-memory-mapped, internal registers which are automatically loaded,
containing the attributes of the region being processed

 Main List—a list of region descriptors. Each element associates the start address of a region with a set of
attributes.

 Secondary List—a linked list defined on a per region basis that describes the memory layout of the region
(when the region is non-contiguous)

 Hash Area—predefined memory space where the region hash results (digest) are stored

Memory
Region 0

Memory
Region 1

Memory
Region 2

Memory
Region 3

ICMProcessor Interrupt
Controller

ICM
Descriptor

Area

ICM
Hash
Area

Memory i0 Memory i1 Memory i2

System Interconnect
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

1034

Figure 46-28. Typical Current Consumption in Active Mode (Test Setup 2)

46.7.4.3 Test Setup 3: CoreMark

 CoreMark on Core 0 (CM4P0) running out of Flash in 128-bit or 64-bit Access mode with and without Cache
Enabled. Cache is enabled above 0 WS.

 CoreMark on Core 1 (CM4P1) running out of SRAM1 (Code) / SRAM2 (Data)

SAM4Cx4/8/16 SAM4Cx32

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100 110 120

ID
D

 (m
A)

Master Clock Frequency (MHz)

IDDIN (AMP1)

IDDIO (AMP2)

IDDCORE (AMP3)

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100 110 120

ID
D

 (m
A)

Master Clock Frequency (MHz)

IDDIN (AMP1)

IDDIO (AMP2)

IDDCORE (AMP3)

Table 46-66. SAM4CM4/8/16 Test Setup 3 Current Consumption

Clock
(MHz)

128-bit Flash Access 64-bit Flash Access

Unit

Cache Enabled Cache Disabled Cache Enabled Cache Disabled

IDD_IN

(AMP1)

IDD_I0

(AMP2)

IDD_CORE

(AMP3)

IDD_IN

(AMP1)

IDD_I0

(AMP2)

IDD_CORE

(AMP3)

IDD_IN

(AMP1)

IDD_I0

(AMP2)

IDD_CORE

(AMP3)

IDD_IN

(AMP1)

IDD_I0

(AMP2)

IDD_CORE

(AMP3)

120 31.3 0.28 28.0 34.2 1.9 30.9 31.3 0.28 28.0 30.7 1.8 27.4

mA

100 26.4 0.28 23.6 29.8 1.8 27.1 26.4 0.28 23.6 27.0 1.8 24.3

84 22.4 0.28 20.1 26.3 1.7 24.0 22.4 0.28 20.1 24.1 1.7 21.8

64 17.2 0.28 15.6 21.0 1.5 19.3 17.2 0.28 15.6 19.6 1.6 18.0

48 13.1 0.28 11.8 16.6 1.4 15.3 13.1 0.28 11.8 16.0 1.6 14.7

32 9.8 0.28 8.1 12.6 1.2 10.9 9.8 0.28 8.1 12.3 1.4 10.6

24 7.4 0.28 6.2 9.5 1.1 8.3 7.4 0.28 6.2 9.4 1.3 8.1

12 3.1 0.11 3.1 4.2 0.88 4.2 3.1 0.11 3.1 4.2 1.2 4.2

8 2.1 0.11 2.1 2.8 0.78 2.8 2.1 0.11 2.1 2.8 1.0 2.8

4 1.1 0.11 1.1 1.5 0.58 1.5 1.1 0.11 1.1 1.5 0.9 1.5

2 0.63 0.11 0.61 0.82 0.40 0.81 0.63 0.11 0.61 0.82 0.66 0.81

1 0.38 0.11 0.37 0.47 0.26 0.46 0.38 0.11 0.37 0.47 0.38 0.46

0.5 0.25 0.11 0.24 0.30 0.18 0.29 0.25 0.11 0.24 0.30 0.23 0.29

0.25 0.14 0.11 0.13 0.16 0.12 0.15 0.14 0.11 0.13 0.16 0.14 0.15
1123SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

