

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4/M4F
Core Size	32-Bit Dual-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4cmp16cb-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Return

This occurs when the exception handler is completed, and:

- There is no pending exception with sufficient priority to be serviced
- The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred. See "Exception Return" for more information.

Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the new exception handler.

Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that exception. State saving is not affected by late arrival because the state saved is the same for both exceptions. Therefore the state saving continues uninterrupted. The processor can accept a late arriving exception until the first instruction of the exception handler of the original exception enters the execute stage of the processor. On return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

Exception Entry

An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in Thread mode, or the new exception is of a higher priority than the exception being handled, in which case the new exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see "Exception Mask Registers". An exception with less priority than this is pending but is not handled by the processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the processor pushes information onto the current stack. This operation is referred as *stacking* and the structure of eight data words is referred to as *stack frame*.

When using floating-point routines, the Cortex-M4 processor automatically stacks the architected floating-point state on exception entry. Figure 12-7 shows the Cortex-M4 stack frame layout when floating-point state is preserved on the stack as the result of an interrupt or an exception.

Note: Where stack space for floating-point state is not allocated, the stack frame is the same as that of ARMv7-M implementations without an FPU. Figure 12-7 shows this stack frame also.

12.6.9.1 BFC and BFI

Bit Field Clear and Bit Field Insert.

Syntax

BFC{cond} Rd, #lsb, #width
BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see "Conditional Execution".

Rd is the destination register.

Rn is the source register.

lsb is the position of the least significant bit of the bitfield. *Isb* must be in the range 0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-*lsb*.

Operation

BFC clears a bitfield in a register. It clears *width* bits in *Rd*, starting at the low bit position *lsb*. Other bits in *Rd* are unchanged.

BFI copies a bitfield into one register from another register. It replaces *width* bits in *Rd* starting at the low bit position *lsb*, with *width* bits from *Rn* starting at bit[0]. Other bits in *Rd* are unchanged.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the flags.

Examples

BFC	R4, #8,	#12	;	Clear bit 8 to bit 19 (12 bits) of R4 to 0
BFI	R9, R2,	#8, #12	;	Replace bit 8 to bit 19 (12 bits) of R9 with
			;	bit 0 to bit 11 from R2.

12.11.2.5 MPU Region Attribute and Size Register

Name:	MPU_RASR	L_RASR							
Access:	Read/Write								
31	30	29	28	27	26	25	24		
—	—	—	XN	—		AP			
23	22	21	20	19	18	17	16		
_	—		TEX		S	С	В		
15	14	13	12	11	10	9	8		
			SI	RD					
7	6	5	4	3	2	1	0		
_	-			SIZE			ENABLE		

The MPU_RASR defines the region size and memory attributes of the MPU region specified by the MPU_RNR, and enables that region and any subregions.

MPU_RASR is accessible using word or halfword accesses:

- The most significant halfword holds the region attributes.
- The least significant halfword holds the region size, and the region and subregion enable bits.

• XN: Instruction Access Disable

- 0: Instruction fetches enabled.
- 1: Instruction fetches disabled.

• AP: Access Permission

See Table 12-39.

• TEX, C, B: Memory Access Attributes

See Table 12-37.

• S: Shareable

See Table 12-37.

• SRD: Subregion Disable

For each bit in this field:

- 0: Corresponding subregion is enabled.
- 1: Corresponding subregion is disabled.

See "Subregions" for more information.

Region sizes of 128 bytes and less do not support subregions. When writing the attributes for such a region, write the SRD field as 0x00.

18.5.2 Watchdog Timer Mode Register

Name: Address:	WDT_MR 0x400E1454						
Access:	Read/Write Onc	e					
31	30	29	28	27	26	25	24
_	-	WDIDLEHLT	WDDBGHLT		WI	DD	
23	22	21	20 WE	19 DD	18	17	16
15	14	13	12	11	10	9	8
WDDIS	WDRPROC	WDRSTEN	WDFIEN		W	DV	
7	6	5	4 WE	3	2	1	0
			VVL	Jv			

Note: The first write access prevents any further modification of the value of this register. Read accesses remain possible.

Note: The WDD and WDV values must not be modified within three slow clock periods following a restart of the watchdog performed by a write access in WDT_CR. Any modification will cause the watchdog to trigger an end of period earlier than expected.

• WDV: Watchdog Counter Value

Defines the value loaded in the 12-bit watchdog counter.

• WDFIEN: Watchdog Fault Interrupt Enable

- 0: A watchdog fault (underflow or error) has no effect on interrupt.
- 1: A watchdog fault (underflow or error) asserts interrupt.

• WDRSTEN: Watchdog Reset Enable

- 0: A watchdog fault (underflow or error) has no effect on the resets.
- 1: A watchdog fault (underflow or error) triggers a watchdog reset.

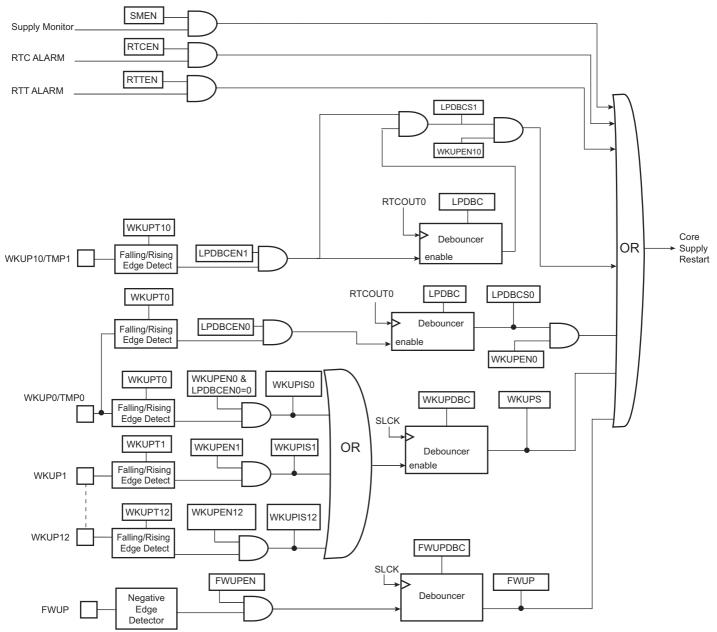
• WDRPROC: Watchdog Reset Processor

- 0: If WDRSTEN is 1, a watchdog fault (underflow or error) activates all resets.
- 1: If WDRSTEN is 1, a watchdog fault (underflow or error) activates the processor reset.

• WDDIS: Watchdog Disable

- 0: Enables the Watchdog Timer.
- 1: Disables the Watchdog Timer.


• WDD: Watchdog Delta Value


Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, setting bit WDT_CR.WDRSTT restarts the timer.

If the Watchdog Timer value is greater than WDD, setting bit WDT_CR.WDRSTT causes a watchdog error.

The following registers can be write-protected:

- "SMC Setup Register"
- "SMC Pulse Register"
- "SMC Cycle Register"
- "SMC MODE Register"

27.9.6 Coding Timing Parameters

All timing parameters are defined for one chip select and are grouped together in one SMC_REGISTER according to their type.

The SMC_SETUP register groups the definition of all setup parameters:

NRD_SETUP, NCS_RD_SETUP, NWE_SETUP, NCS_WR_SETUP

The SMC_PULSE register groups the definition of all pulse parameters:

• NRD_PULSE, NCS_RD_PULSE, NWE_PULSE, NCS_WR_PULSE

The SMC_CYCLE register groups the definition of all cycle parameters:

NRD_CYCLE, NWE_CYCLE

Table 27-4 shows how the timing parameters are coded and their permitted range.

			nge	
Coded Value	Number of Bits	Effective Value	Coded Value	Effective Value
setup [5:0]	6	128 x setup[5] + setup[4:0]	0 ≤ ≤ 31	0 ≤ ≤ 128+31
pulse [6:0]	7	256 x pulse[6] + pulse[5:0]	0 ≤ ≤ 63	0 ≤ ≤ 256+63
				0 ≤ ≤ 256+127
cycle [8:0]	9	256 x cycle[8:7] + cycle[6:0]	0 ≤ ≤ 127	0 ≤ ≤ 512+127
				0 ≤ ≤ 768+127

Table 27-4. **Coding and Range of Timing Parameters**

27.9.7 Reset Values of Timing Parameters

Table 27-5 gives the default value of timing parameters at reset.

		,
Register	Reset Value	Definition
SMC_SETUP	0x01010101	All setup timings are set to 1.
SMC_PULSE	0x01010101	All pulse timings are set to 1.
SMC_CYCLE	0x00030003	The read and write operations last 3 Master Clock cycles and provide one hold cycle.
WRITE_MODE	1	Write is controlled with NWE.
READ_MODE	1	Read is controlled with NRD.

Table 27-5. **Reset Values of Timing Parameters**

27.9.8 Usage Restriction

The SMC does not check the validity of the user-programmed parameters. If the sum of SETUP and PULSE parameters is larger than the corresponding CYCLE parameter, this leads to unpredictable behavior of the SMC.

30.18.17PMC Fast Startup Mode Register

Name: Address:	PMC_FSMR 0x400E0470						
Access:	Read/Write						
31	30	29	28	27	26	25	24
-	-	—	—	—	—	_	—
23	22	21	20	19	18	17	16
_	FL	PM	LPM	-	-	RTCAL	RTTAL
15	14	13	12	11	10	9	8
FSTT15	FSTT14	FSTT13	FSTT12	FSTT11	FSTT10	FSTT9	FSTT8
7	6	5	4	3	2	1	0
FSTT7	FSTT6	FSTT5	FSTT4	FSTT3	FSTT2	FSTT1	FSTT0

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

• FSTT0–FSTT15: Fast Startup Input Enable 0 to 15

0: The corresponding wake-up input has no effect on the PMC.

1: The corresponding wake-up input enables a fast restart signal to the PMC.

• RTTAL: RTT Alarm Enable

0: The RTT alarm has no effect on the PMC.

1: The RTT alarm enables a fast restart signal to the PMC.

• RTCAL: RTC Alarm Enable

0: The RTC alarm has no effect on the PMC.

1: The RTC alarm enables a fast restart signal to the PMC.

• LPM: Low-power Mode

0: The WaitForInterrupt (WFI) or the WaitForEvent (WFE) instruction of the processor makes the processor enter Sleep mode.

1: The WaitForEvent (WFE) instruction of the processor makes the system to enter Wait mode.

• FLPM: Flash Low-power Mode

Value	Name	Description
0	FLASH_STANDBY	Flash is in Standby Mode when system enters Wait Mode
1	FLASH_DEEP_POWERDOWN	Flash is in Deep-power-down mode when system enters Wait Mode
2	FLASH_IDLE	Idle mode

32.6.6 PIO Output Status Register

Address: 0x400E0E18 (PIOA), 0x400E1018 (PIOB), 0x4800C018 (PIOC)

Access: Read-only

31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0-P31: Output Status

0: The I/O line is a pure input.

1: The I/O line is enabled in output.

33.8.4 SPI Transmit Data Register

Name:	SPI_TDR									
Address:	0x4000800C (0), 0x4800000C (1)									
Access:	Write-only									
31	30	29	28	27	26	25	24			
_	_	—	_	_	_	_	LASTXFER			
23	22	21	20	19	18	17	16			
_	-	—	-		PC	S				
15	14	13	12	11	10	9	8			
			Т	D						
7	6	5	4	3	2	1	0			
			Т	D						

• TD: Transmit Data

Data to be transmitted by the SPI Interface is stored in this register. Information to be transmitted must be written to the transmit data register in a right-justified format.

• PCS: Peripheral Chip Select

This field is only used if variable peripheral select is active (PS = 1).

If SPI_MR.PCSDEC = 0:

 PCS = xxx0 NPCS[3:0] = 1110

 PCS = xx01 NPCS[3:0] = 1101

 PCS = x011 NPCS[3:0] = 1011

 PCS = 0111 NPCS[3:0] = 0111

 PCS = 1111 forbidden (no peripheral is selected)

 (x = don't care) If SPI

 If SPI
 MR.PCSDEC = 1:

NPCS[3:0] output signals = PCS.

• LASTXFER: Last Transfer

0: No effect

1: The current NPCS is de-asserted after the transfer of the character written in TD. When SPI_CSRx.CSAAT is set, the communication with the current serial peripheral can be closed by raising the corresponding NPCS line as soon as TD transfer is completed.

This field is only used if variable peripheral select is active (SPI_MR.PS = 1).

Figure 36-25. Break Transmission

Baud Rate Clock	Л	Л		IJ	\Box					Л		hunnun	huuuuuuu	
TXD		ĺ		Γ										-
		art Bit	D0 D1	D2	D3	D4	D5	D6	D7	Parity Bit	Stop Bit	Break Transmission	End of Break	
			STTBRK = 1									STPBRK = 1		
Write US_CR						Î						Î		_
_														
TXRDY		Ì]								_
						_								
TXEMPTY														

36.6.3.14 Receive Break


The receiver detects a break condition when all data, parity and stop bits are low. This corresponds to detecting a framing error with data to 0x00, but FRAME remains low.

When the low stop bit is detected, the receiver asserts the RXBRK bit in US_CSR. This bit may be cleared by writing a 1 to the RSTSTA bit in the US_CR.

An end of receive break is detected by a high level for at least 2/16 of a bit period in Asynchronous operating mode or one sample at high level in Synchronous operating mode. The end of break detection also asserts the RXBRK bit.

36.6.3.15 Hardware Handshaking

The USART features a hardware handshaking out-of-band flow control. The RTS and CTS pins are used to connect with the remote device, as shown in Figure 36-26.

USART		Remote Device
TXD		RXD
RXD	•	TXD
CTS	•	RTS
RTS		CTS

Setting the USART to operate with hardware handshaking is performed by writing the USART_MODE field in US_MR to the value 0x2.

The USART behavior when hardware handshaking is enabled is the same as the behavior in standard Synchronous or Asynchronous mode, except that the receiver drives the RTS pin as described below and the level on the CTS pin modifies the behavior of the transmitter as described below. Using this mode requires using the PDC channel for reception. The transmitter can handle hardware handshaking in any case.

Figure 36-27 shows how the receiver operates if hardware handshaking is enabled. The RTS pin is driven high if the receiver is disabled or if the status RXBUFF (Receive Buffer Full) coming from the PDC channel is high. Normally, the remote device does not start transmitting while its CTS pin (driven by RTS) is high. As soon as the receiver is enabled, the RTS falls, indicating to the remote device that it can start transmitting. Defining a new buffer in the PDC clears the status bit RXBUFF and, as a result, asserts the pin RTS low.

- Serial Clock (SCK): This control line is driven by the master and regulates the flow of the data bits. The master may transmit data at a variety of baud rates. The SCK line cycles once for each bit that is transmitted.
- Slave Select (NSS): This control line allows the master to select or deselect the slave.

36.6.7.1 Modes of Operation

The USART can operate in SPI Master mode or in SPI Slave mode.

Operation in SPI Master mode is programmed by writing 0xE to the USART_MODE field in US_MR. In this case the SPI lines must be connected as described below:

- The MOSI line is driven by the output pin TXD
- The MISO line drives the input pin RXD
- The SCK line is driven by the output pin SCK
- The NSS line is driven by the output pin RTS

Operation in SPI Slave mode is programmed by writing to 0xF the USART_MODE field in US_MR. In this case the SPI lines must be connected as described below:

- The MOSI line drives the input pin RXD
- The MISO line is driven by the output pin TXD
- The SCK line drives the input pin SCK
- The NSS line drives the input pin CTS

In order to avoid unpredictable behavior, any change of the SPI mode must be followed by a software reset of the transmitter and of the receiver (except the initial configuration after a hardware reset). (See Section 36.6.7.4 "Receiver and Transmitter Control").

36.6.7.2 Baud Rate

In SPI mode, the baud rate generator operates in the same way as in USART Synchronous mode. See Section 36.6.1.3 "Baud Rate in Synchronous Mode or SPI Mode". However, there are some restrictions:

In SPI Master mode:

- The external clock SCK must not be selected (USCLKS ≠ 0x3), and the bit CLKO must be set to 1 in the US_MR, in order to generate correctly the serial clock on the SCK pin.
- To obtain correct behavior of the receiver and the transmitter, the value programmed in CD must be superior or equal to 6.
- If the divided peripheral clock is selected, the value programmed in CD must be even to ensure a 50:50 mark/space ratio on the SCK pin, this value can be odd if the peripheral clock is selected.

In SPI Slave mode:

- The external clock (SCK) selection is forced regardless of the value of the USCLKS field in the US_MR. Likewise, the value written in US_BRGR has no effect, because the clock is provided directly by the signal on the USART SCK pin.
- To obtain correct behavior of the receiver and the transmitter, the external clock (SCK) frequency must be at least 6 times lower than the system clock.

36.6.7.3 Data Transfer

Up to nine data bits are successively shifted out on the TXD pin at each rising or falling edge (depending of CPOL and CPHA) of the programmed serial clock. There is no Start bit, no Parity bit and no Stop bit.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the US_MR. The nine bits are selected by setting the MODE 9 bit regardless of the CHRL field. The MSB data bit is always sent first in SPI mode (Master or Slave).

Table 37-4. I/O Lines (Continued)

TC1	TIOB3	PB25	۸
	ПОВЗ	FD20	A
TC1	TIOB4	PA16	В
TO	TIODE	B A00	D
TC1	TIOB5	PA20	В

37.5.2 Power Management

The TC is clocked through the Power Management Controller (PMC), thus the programmer must first configure the PMC to enable the Timer Counter clock of each channel.

37.5.3 Interrupt Sources

The TC has an interrupt line per channel connected to the interrupt controller. Handling the TC interrupt requires programming the interrupt controller before configuring the TC.

Table 37-5. Peripheral IDs

Instance	ID
TC0	23
TC1	24

37.6 Functional Description

37.6.1 Description

All channels of the Timer Counter are independent and identical in operation except when the QDEC is enabled. The registers for channel programming are listed in Table 37-6 "Register Mapping".

37.6.2 16-bit Counter

Each 16-bit channel is organized around a 16-bit counter. The value of the counter is incremented at each positive edge of the selected clock. When the counter has reached the value 2¹⁶-1 and passes to zero, an overflow occurs and the COVFS bit in the TC Status Register (TC_SR) is set.

The current value of the counter is accessible in real time by reading the TC Counter Value Register (TC_CV). The counter can be reset by a trigger. In this case, the counter value passes to zero on the next valid edge of the selected clock.

37.6.3 Clock Selection

At block level, input clock signals of each channel can either be connected to the external inputs TCLK0, TCLK1 or TCLK2, or be connected to the internal I/O signals TIOA0, TIOA1 or TIOA2 for chaining by programming the TC Block Mode Register (TC_BMR). See Figure 37-2.

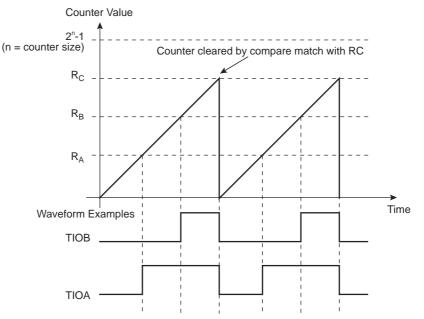
Each channel can independently select an internal or external clock source for its counter:

- External clock signals⁽¹⁾: XC0, XC1 or XC2
- Internal clock signals: MCK/2, MCK/8, MCK/32, MCK/128, SLCK

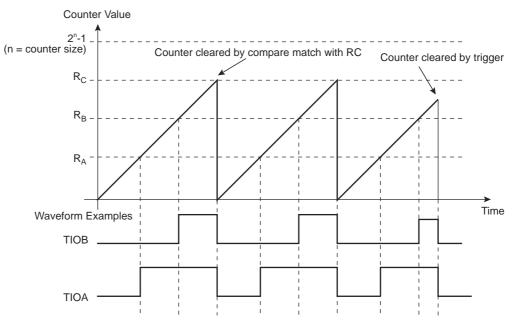
This selection is made by the TCCLKS bits in the TC Channel Mode Register (TC_CMR).

The selected clock can be inverted with the CLKI bit in the TC_CMR. This allows counting on the opposite edges of the clock.

The burst function allows the clock to be validated when an external signal is high. The BURST parameter in the TC_CMR defines this signal (none, XC0, XC1, XC2). See Figure 37-3.


37.6.11.2 WAVSEL = 10

When WAVSEL = 10, the value of TC_CV is incremented from 0 to the value of RC, then automatically reset on a RC Compare. Once the value of TC_CV has been reset, it is then incremented and so on. See Figure 37-9.


It is important to note that TC_CV can be reset at any time by an external event or a software trigger if both are programmed correctly. See Figure 37-10.

In addition, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the counter clock (CPCDIS = 1 in TC_CMR).

• BEEVT: External Event Effect on TIOB

Value	Name	Description
0	NONE	None
1	SET	Set
2	CLEAR	Clear
3	TOGGLE	Toggle

• BSWTRG: Software Trigger Effect on TIOB

Value	Name	Description
0	NONE	None
1	SET	Set
2	CLEAR	Clear
3	TOGGLE	Toggle

• ETRGS: External Trigger Status (cleared on read)

0: External trigger has not occurred since the last read of the Status Register.

1: External trigger has occurred since the last read of the Status Register.

• CLKSTA: Clock Enabling Status

0: Clock is disabled.

1: Clock is enabled.

• MTIOA: TIOA Mirror

0: TIOA is low. If TC_CMRx.WAVE = 0, this means that TIOA pin is low. If TC_CMRx.WAVE = 1, this means that TIOA is driven low.

1: TIOA is high. If TC_CMRx.WAVE = 0, this means that TIOA pin is high. If TC_CMRx.WAVE = 1, this means that TIOA is driven high.

• MTIOB: TIOB Mirror

0: TIOB is low. If TC_CMRx.WAVE = 0, this means that TIOB pin is low. If TC_CMRx.WAVE = 1, this means that TIOB is driven low.

1: TIOB is high. If TC_CMRx.WAVE = 0, this means that TIOB pin is high. If TC_CMRx.WAVE = 1, this means that TIOB is driven high.

37.7.13 TC Block Control Register

Name:	TC_BCR							
Address:	0x400100C0 (0)	0x400100C0 (0), 0x400140C0 (1)						
Access:	Write-only							
31	30	29	28	27	26	25	24	
_	-	-	-	_	-	_	-	
23	22	21	20	19	18	17	16	
-	-	-	-	-	-	-	-	
15	14	13	12	11	10	9	8	
-	-	-	-	-	-	-	-	
7	6	5	4	3	2	1	0	
_	-	_	_	_	-	_	SYNC	

• SYNC: Synchro Command

0: No effect.

1: Asserts the SYNC signal which generates a software trigger simultaneously for each of the channels.

38.7.9 PWM Channel Mode Register

Name: PWM_CMR[0..3]

Address: 0x48008200 [0], 0x48008220 [1], 0x48008240 [2], 0x48008260 [3]

Access: Read/Write

31	30	29	28	27	26	25	24
_	-	—	—	—	—	_	-
23	22	21	20	19	18	17	16
_	-	-	-	—	-	-	-
15	14	13	12	11	10	9	8
-	-	—	-	-	CPD	CPOL	CALG
7	6	5	4	3	2	1	0
_	-	—	-		CP	RE	

• CPRE: Channel Pre-scaler

Value	Name	Description
0000	MCK	Master Clock
0001	MCKDIV2	Master Clock divided by 2
0010	MCKDIV4	Master Clock divided by 4
0011	MCKDIV8	Master Clock divided by 8
0100	MCKDIV16	Master Clock divided by 16
0101	MCKDIV32	Master Clock divided by 32
0110	MCKDIV64	Master Clock divided by 64
0111	MCKDIV128	Master Clock divided by 128
1000	MCKDIV256	Master Clock divided by 256
1001	MCKDIV512	Master Clock divided by 512
1010	MCKDIV1024	Master Clock divided by 1024
1011	CLKA	Clock A
1100	CLKB	Clock B

Values which are not listed in the table must be considered as "reserved".

CALG: Channel Alignment

- 0 = The period is left aligned.
- 1 = The period is center aligned.

• CPOL: Channel Polarity

- 0 = The output waveform starts at a low level.
- 1 = The output waveform starts at a high level.

39.6 Functional Description

The use of the SLCDC comprises three phases of functionality: initialization sequence, display phase, and disable sequence.

- Initialization Sequence:
- 1. Select the LCD supply source in the shutdown controller
 - Internal: the On-chip LCD Power Supply is selected,
 - External: the external supply source has to be between 2.5 to 3.6V
- 2. Select the clock division (SLCDC_FRR) to use a proper frame rate
- 3. Enter the number of common and segments terminals (SLCDC_MR)
- 4. Select the bias in compliance with the LCD manufacturer datasheet (SLCDC_MR)
- 5. Enter buffer driving time (SLCDC_MR)
- 6. Define the segments remapping pattern if required (SLCDC_SMR0/1)
- During the Display Phase:
- 1. Data may be written at any time in the SLCDC memory, they are automatically latched and displayed at the next LCD frame
- 2. It is possible to:
 - Adjust contrast
 - Adjust the frame frequency
 - Adjust buffer driving time
 - Reduce the SLCDC consumption by entering in low-power waveform at any time
 - Use the large set of display features such as blinking, inverted blink, etc.
- Disable Sequence: See Section 39.6.7 "Disabling the SLCDC"

40.7.20 ADC Write Protection Status Register

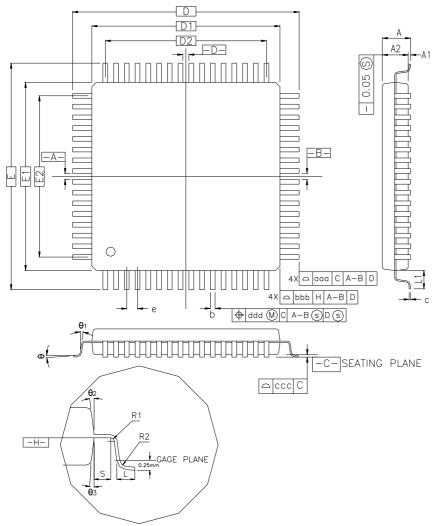
Name:	ADC_WPSR						
Address:	0x400380E8						
Access:	Read-only						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
			WPV	/SRC			
15	14	13	12	11	10	9	8
			WPV	/SRC			
7	6	5	4	3	2	1	0
-	-	-	-	_	-	_	WPVS

• WPVS: Write Protection Violation Status

0: No write protection violation has occurred since the last read of the ADC_WPSR register.

1: A write protection violation has occurred since the last read of the ADC_WPSR register. If this violation is an unauthorized attempt to write a protected register, the associated violation is reported into field WPVSRC.

• WPVSRC: Write Protection Violation Source


When WPVS = 1, WPVSRC indicates the register address offset at which a write access has been attempted.

47. Mechanical Characteristics

47.1 100-lead LQFP Package

Figure 47-1. 100-lead LQFP Package Drawing

COTROL	DIMENSIONS	ARF	IN	MILLIMETERS.
COINCE	DIVICINGIONS		11.4	WILLING ILKS.

SYMBOL	М	ILLIMETI	ER		INCH	
STMBUL	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.
A	_	—	1.60	—	_	0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053	0.055	0.057
D	1	6.00 B	SC.	0.	630 BS	SC.
D1	1	4.00 B	SC.	0.	551 BS	SC.
E	1	6.00 B	SC.	0.	630 BS	SC.
E1	1.	4.00 B	SC.	0.	551 BS	SC.
R2	0.08		0.20	0.003		0.008
R1	0.08	—	—	0.003		
θ	0°	3.5°	7*	0.	3.5°	7*
θ1	0*	—		0.	_	—
θ2	11*	12*	1 3*	11.	12*	13*
θ3	11°	12*	13*	11*	12°	13°
с	0.09	—	0.20	0.004		0.008
L	0.45	0.60	0.75	0.018	0.024	0.030
L 1	1	.00 RE	F	0.	039 RI	EF
S	0.20	—		0.008	—	—
b	0.17	0.20	0.27	0.007	0.008	0.011
е		0.50	BSC.	0.0	20 BS0	C.
D2		12.00)	0	.472	
E2		12.00)	0	.472	
	TOLER	ANCES	OF FO	RM AND	POSI	FION
aaa	0.20			0	.008	
bbb	0.20				.008	
ccc		0.08		(0.003	
ddd		0.08		(0.003	

Table 47-1.	Device and LQFP Package Maximum \	Neiaht

SAM4CM		800		mg
Table 47-2.	LQFP Package Reference			
JEDEC Drawing Reference		MS-026		

Table 47-3. LQFP Package Characteristics

Moisture Sensitivity Level

JESD97 Classification

3

e3

This package respects the recommendations of the NEMI User Group.