E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ARM® Cortex®-M4/M4F
Core Size	32-Bit Dual-Core
Speed	120MHz
Connectivity	EBI/EMI, I ² C, IrDA, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT
Number of I/O	52
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	256K x 8
Voltage - Supply (Vcc/Vdd)	1.62V ~ 3.6V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsam4cmp32ca-aur

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

12.9.1.16 MemManage Fault Address Register

Name:	SCB_MMFAR						
Access:	Read/Write						
31	30	29	28	27	26	25	24
			ADDF	RESS			
23	22	21	20	19	18	17	16
			ADDF	RESS			
15	14	13	12	11	10	9	8
			ADDF	RESS			
7	6	5	4	3	2	1	0
			ADDF	RESS			

The SCB_MMFAR contains the address of the location that generated a memory management fault.

• ADDRESS: Memory Management Fault Generation Location Address

When the MMARVALID bit of the MMFSR subregister is set to 1, this field holds the address of the location that generated the memory management fault.

Notes: 1. When an unaligned access faults, the address is the actual address that faulted. Because a single read or write instruction can be split into multiple aligned accesses, the fault address can be any address in the range of the requested access size.

2. Flags in the MMFSR subregister indicate the cause of the fault, and whether the value in the SCB_MMFAR is valid. See "MMFSR: Memory Management Fault Status Subregister".

In most microcontroller implementations, the shareability and cache policy attributes do not affect the system behavior. However, using these settings for the MPU regions can make the application code more portable. The values given are for typical situations. In special systems, such as multiprocessor designs or designs with a separate DMA engine, the shareability attribute might be important. In these cases, refer to the recommendations of the memory device manufacturer.

0b11: Round towards Zero (RZ) mode.

The specified rounding mode is used by almost all floating-point instructions.

• IDC: Input Denormal Cumulative Exception

IDC is a cumulative exception bit for floating-point exception; see also bits [4:0]. This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

• IXC: Inexact Cumulative Exception

IXC is a cumulative exception bit for floating-point exception; see also bit [7]. This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

UFC: Underflow Cumulative Exception

UFC is a cumulative exception bit for floating-point exception; see also bit [7]. This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

OFC: Overflow Cumulative Exception

OFC is a cumulative exception bit for floating-point exception; see also bit [7]. This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

• DZC: Division by Zero Cumulative Exception

DZC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

IOC: Invalid Operation Cumulative Exception

IOC is a cumulative exception bit for floating-point exception; see also bit [7].

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last written to it.

17.6.14 RTC TimeStamp Time Register 1

Name:	RTC_TSTR1						
Address:	0x400E151C						
Access:	Read-only						
31	30	29	28	27	26	25	24
BACKUP	-	_	_	_	_	_	_
23	22	21	20	19	18	17	16
_	AMPM			HO	UR		
15	14	13	12	11	10	9	8
_				MIN			
7	6	5	4	3	2	1	0
_				SEC			

RTC_TSTR1 reports the timestamp of the last tamper event.

This register is cleared by reading RTC_TSSR1.

- SEC: Seconds of the Tamper
- MIN: Minutes of the Tamper
- HOUR: Hours of the Tamper
- AMPM: AM/PM Indicator of the Tamper
- BACKUP: System Mode of the Tamper
- 0: The state of the system is different from Backup mode when the tamper event occurs.
- 1: The system is in Backup mode when the tamper event occurs.

Figure 27-3. Memory Connection for a 16-bit Data Bus

27.7.2 Byte Write or Byte Select Access

Each chip select with a 16-bit data bus can operate with one of two different types of write access: Byte Write or Byte Select. This is controlled by the BAT bit of the SMC_MODE register for the corresponding chip select.

27.7.2.1 Byte Write Access

Byte Write Access is used to connect 2 x 8-bit devices as a 16-bit memory, and supports one write signal per byte of the data bus and a single read signal.

Note that the SMC does not allow boot in Byte Write Access mode.

For 16-bit devices, the SMC provides NWR0 and NWR1 write signals for respectively Byte0 (lower byte) and Byte1 (upper byte) of a 16-bit bus. One single read signal (NRD) is provided.

27.7.2.2 Byte Select Access

Byte Select Access is used to connect one 16-bit device. In this mode, read/write operations can be enabled/disabled at Byte level. One Byte-select line per byte of the data bus is provided. One NRD and one NWE signal control read and write.

For 16-bit devices, the SMC provides NBS0 and NBS1 selection signals for respectively Byte0 (lower byte) and Byte1 (upper byte) of a 16-bit bus.

Figure 27-24. TDF Mode = 0: TDF wait states between read and write accesses on the same chip select

27.13 External Wait

Any access can be extended by an external device using the NWAIT input signal of the SMC. The EXNW_MODE field of the SMC_MODE register on the corresponding chip select must be set either to "10" (Frozen mode) or "11" (Ready mode). When the EXNW_MODE is set to "00" (disabled), the NWAIT signal is simply ignored on the corresponding chip select. The NWAIT signal delays the read or write operation in regards to the read or write controlling signal, depending on the Read and Write modes of the corresponding chip select.

27.13.1 Restriction

When one of the EXNW_MODE is enabled, it is mandatory to program at least one hold cycle for the read/write controlling signal. For that reason, the NWAIT signal cannot be used in Page mode (Section 27.15 "Asynchronous Page Mode"), or in Slow clock mode (Section 27.14 "Slow Clock Mode").

The NWAIT signal is assumed to be a response of the external device to the read/write request of the SMC. Then NWAIT is examined by the SMC only in the pulse state of the read or write controlling signal. The assertion of the NWAIT signal outside the expected period has no impact on SMC behavior.

30.18.8 PMC Clock Generator Main Clock Frequency Register

Name:	CKGR_MCFR						
Address:	0x400E0424						
Access:	Read/Write						
31	30	29	28	27	26	25	24
_	_	—	_	—	—	_	—
	-		-	-	-		-
23	22	21	20	19	18	17	16
—	-	_	RCMEAS	-	_	_	MAINFRDY
15	14	13	12	11	10	9	8
			MA	INF			
7	6	5	4	3	2	1	0
			MA	INF			

This register can only be written if the WPEN bit is cleared in the PMC Write Protection Mode Register.

• MAINF: Main Clock Frequency

Gives the number of main clock cycleswithin 16 slow clock periods. To calculate the frequency of the measured clock: $f_{MAINCK} = (MAINF \times f_{SLCK}) / 16$

where frequency is in MHz.

• MAINFRDY: Main Clock Frequency Measure Ready

0: MAINF value is not valid or the measured oscillator is disabled or a measure has just been started by means of RCMEAS.

1: The measured oscillator has been enabled previously and MAINF value is available.

Note: To ensure that a correct value is read on the MAINF field, the MAINFRDY flag must be read at 1 then another read access must be performed on the register to get a stable value on the MAINF field.

• RCMEAS: Restart Main Clock Source Frequency Measure (write-only)

0: No effect.

1: Restarts measuring of the frequency of the main clock source. MAINF will carry the new frequency as soon as a low to high transition occurs on the MAINFRDY flag.

The measure is performed on the main frequency (i.e. not limited to RC oscillator only), but if the main clock frequency source is the 3 to 20 MHz crystal oscillator, the restart of measuring is not needed because of the well known stability of crystal oscillators.

32.5.14 Register Write Protection

To prevent any single software error from corrupting PIO behavior, certain registers in the address space can be write-protected by setting the WPEN bit in the PIO Write Protection Mode Register (PIO_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the PIO Write Protection Status Register (PIO_WPSR) is set and the field WPVSRC indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading the PIO_WPSR.

The following registers can be write-protected:

- PIO Enable Register
- PIO Disable Register
- PIO Output Enable Register
- PIO Output Disable Register
- PIO Input Filter Enable Register
- PIO Input Filter Disable Register
- PIO Multi-driver Enable Register
- PIO Multi-driver Disable Register
- PIO Pull-Up Disable Register
- PIO Pull-Up Enable Register
- PIO Peripheral ABCD Select Register 1
- PIO Peripheral ABCD Select Register 2
- PIO Output Write Enable Register
- PIO Output Write Disable Register
- PIO Pad Pull-Down Disable Register
- PIO Pad Pull-Down Enable Register

32.6.16 PIO Interrupt Mask Register

Name:	PIO_IMR						
Address:	0x400E0E48 (PIOA), 0x400E1048 (PIOB), 0x4800C048 (PIOC)						
Access:	Read-only						
31	30	29	28	27	26	25	24
P31	P30	P29	P28	P27	P26	P25	P24
23	22	21	20	19	18	17	16
P23	P22	P21	P20	P19	P18	P17	P16
15	14	13	12	11	10	9	8
P15	P14	P13	P12	P11	P10	P9	P8
7	6	5	4	3	2	1	0
P7	P6	P5	P4	P3	P2	P1	P0

• P0–P31: Input Change Interrupt Mask

0: Input change interrupt is disabled on the I/O line.

1: Input change interrupt is enabled on the I/O line.

Figure 33-11. Chip Select Decoding Application Block Diagram: Single Master/Multiple Slave Implementation

External 1-of-n Decoder/Demultiplexer

33.7.3.8 Peripheral Deselection without PDC

During a transfer of more than one unit of data on a Chip Select without the PDC, the SPI_TDR is loaded by the processor, the TDRE flag rises as soon as the content of the SPI_TDR is transferred into the internal Shift register. When this flag is detected high, the SPI_TDR can be reloaded. If this reload by the processor occurs before the end of the current transfer and if the next transfer is performed on the same chip select as the current transfer, the Chip Select is not de-asserted between the two transfers. But depending on the application software handling the SPI status register flags (by interrupt or polling method) or servicing other interrupts or other tasks, the processor may not reload the SPI_TDR in time to keep the chip select active (low). A null DLYBCT value (delay between consecutive transfers) in the SPI_CSR, gives even less time for the processor to reload the SPI_TDR. With some SPI slave peripherals, if the chip select line must remain active (low) during a full set of transfers, communication errors can occur.

To facilitate interfacing with such devices, the Chip Select registers [CSR0...CSR3] can be programmed with the Chip Select Active After Transfer (CSAAT) bit to 1. This allows the chip select lines to remain in their current state (low = active) until a transfer to another chip select is required. Even if the SPI_TDR is not reloaded, the chip select remains active. To de-assert the chip select line at the end of the transfer, the Last Transfer (LASTXFER) bit in SPI_CR must be set after writing the last data to transmit into SPI_TDR.

33.7.3.9 Peripheral Deselection with PDC

PDC provides faster reloads of the SPI_TDR compared to software. However, depending on the system activity, it is not guaranteed that the SPI_TDR is written with the next data before the end of the current transfer. Consequently, data can be lost by the de-assertion of the NPCS line for SPI slave peripherals requiring the chip select line to remain active between two transfers. The only way to guarantee a safe transfer in this case is the use of the CSAAT and LASTXFER bits.

When the CSAAT bit is configured to 0, the NPCS does not rise in all cases between two transfers on the same peripheral. During a transfer on a Chip Select, the TDRE flag rises as soon as the content of the SPI_TDR is transferred into the internal shift register. When this flag is detected, the SPI_TDR can be reloaded. If this reload occurs before the end of the current transfer and if the next transfer is performed on the same chip select as the current transfer, the Chip Select is not de-asserted between the two transfers. This can lead to difficulties to interface with some serial peripherals requiring the chip select to be de-asserted after each transfer. To facilitate

• SVEN: TWI Slave Mode Enabled

0: No effect.

1: Enables the Slave mode (SVDIS must be written to 0)

Note: Switching from master to Slave mode is only permitted when TXCOMP = 1.

• SVDIS: TWI Slave Mode Disabled

0: No effect.

1: The Slave mode is disabled. The shifter and holding characters (if it contains data) are transmitted in case of read operation. In write operation, the character being transferred must be completely received before disabling.

• QUICK: SMBus Quick Command

0: No effect.

1: If Master mode is enabled, a SMBus Quick Command is sent.

• SWRST: Software Reset

0: No effect.

1: Equivalent to a system reset.

- Serial Clock (SCK): This control line is driven by the master and regulates the flow of the data bits. The master may transmit data at a variety of baud rates. The SCK line cycles once for each bit that is transmitted.
- Slave Select (NSS): This control line allows the master to select or deselect the slave.

36.6.7.1 Modes of Operation

The USART can operate in SPI Master mode or in SPI Slave mode.

Operation in SPI Master mode is programmed by writing 0xE to the USART_MODE field in US_MR. In this case the SPI lines must be connected as described below:

- The MOSI line is driven by the output pin TXD
- The MISO line drives the input pin RXD
- The SCK line is driven by the output pin SCK
- The NSS line is driven by the output pin RTS

Operation in SPI Slave mode is programmed by writing to 0xF the USART_MODE field in US_MR. In this case the SPI lines must be connected as described below:

- The MOSI line drives the input pin RXD
- The MISO line is driven by the output pin TXD
- The SCK line drives the input pin SCK
- The NSS line drives the input pin CTS

In order to avoid unpredictable behavior, any change of the SPI mode must be followed by a software reset of the transmitter and of the receiver (except the initial configuration after a hardware reset). (See Section 36.6.7.4 "Receiver and Transmitter Control").

36.6.7.2 Baud Rate

In SPI mode, the baud rate generator operates in the same way as in USART Synchronous mode. See Section 36.6.1.3 "Baud Rate in Synchronous Mode or SPI Mode". However, there are some restrictions:

In SPI Master mode:

- The external clock SCK must not be selected (USCLKS ≠ 0x3), and the bit CLKO must be set to 1 in the US_MR, in order to generate correctly the serial clock on the SCK pin.
- To obtain correct behavior of the receiver and the transmitter, the value programmed in CD must be superior or equal to 6.
- If the divided peripheral clock is selected, the value programmed in CD must be even to ensure a 50:50 mark/space ratio on the SCK pin, this value can be odd if the peripheral clock is selected.

In SPI Slave mode:

- The external clock (SCK) selection is forced regardless of the value of the USCLKS field in the US_MR. Likewise, the value written in US_BRGR has no effect, because the clock is provided directly by the signal on the USART SCK pin.
- To obtain correct behavior of the receiver and the transmitter, the external clock (SCK) frequency must be at least 6 times lower than the system clock.

36.6.7.3 Data Transfer

Up to nine data bits are successively shifted out on the TXD pin at each rising or falling edge (depending of CPOL and CPHA) of the programmed serial clock. There is no Start bit, no Parity bit and no Stop bit.

The number of data bits is selected by the CHRL field and the MODE 9 bit in the US_MR. The nine bits are selected by setting the MODE 9 bit regardless of the CHRL field. The MSB data bit is always sent first in SPI mode (Master or Slave).

36.7.16 USART Receiver Time-out Register

Name:	US_RTOR						
Address:	0x40024024 (0),	0x40028024 (1), 0x4002C024	l (2), 0x4003002	24 (3), 0x40034	024 (4)	
Access:	Read/Write						
31	30	29	28	27	26	25	24
-	-	-	-	-	-	_	-
23	22	21	20	19	18	17	16
-	-	_	-	-	-	_	-
15	14	13	12	11	10	9	8
			Т	0			
7	6	5	4	3	2	1	0
			Т	0			

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

• TO: Time-out Value

0: The receiver time-out is disabled.

1-65535: The receiver time-out is enabled and TO is Time-out Delay / Bit Period.

37.6.11.2 WAVSEL = 10

When WAVSEL = 10, the value of TC_CV is incremented from 0 to the value of RC, then automatically reset on a RC Compare. Once the value of TC_CV has been reset, it is then incremented and so on. See Figure 37-9.

It is important to note that TC_CV can be reset at any time by an external event or a software trigger if both are programmed correctly. See Figure 37-10.

In addition, RC Compare can stop the counter clock (CPCSTOP = 1 in TC_CMR) and/or disable the counter clock (CPCDIS = 1 in TC_CMR).

40.7.1 ADC Control Register

Name:	ADC_CR						
Address:	0x40038000						
Access:	Write-only						
31	30	29	28	27	26	25	24
_	-	-	-	-	-	-	-
23	22	21	20	19	18	17	16
_	-	-	—	—	-	—	-
15	14	13	12	11	10	9	8
_	-	-	—	—	-	—	-
7	6	5	4	3	2	1	0
—	_	—	—	—	—	START	SWRST

• SWRST: Software Reset

0: No effect.

1: Resets the ADC simulating a hardware reset.

• START: Start Conversion

0: No effect.

1: Begins analog-to-digital conversion.

• CKEY: Key

Value	Name	Description
0xE	PASSWD	This field must be written with 0xE the first time the AES_MR is programmed. For subsequent programming of the AES_MR, any value can be written, including that of 0xE. Always reads as 0.

Table 46-20. LCD Buffers Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
I _{DDIN}	Current consumption (VDDIN)	LDO enabled	-	25	35	μA
Z _{OUT}	Buffer output impedance	GPIO in LCD mode (SEG or COM)	200	500	1500	Ω
C _{LOAD}	Capacitive output load	_	10p	_	50n	F
. /.	Rising or falling time	C _{LOAD} = 10 pF			3	
ι _r / ι _f	95% convergence	C _{LOAD} = 50 nF	_	_	225	μs

46.5.4 VDDCORE Brownout Detector

Table 46-21. Core Power Supply Brownout Detector Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IT-}	Negative-going input threshold voltage (VDDCORE) ⁽¹⁾	_	0.98	1.0	1.04	V
V _{IT+}	Positive-going input threshold voltage (VDDCORE)	_	0.80	1.0	1.08	V
V _{HYST}	Hysteresis voltage	V _{IT+} - V _{IT-}	-	25	50	mV
t _{d-}	$V_{\text{IT-}}$ detection propagation time	VDDCORE = V_{IT+} to (V_{IT-} - 100mV)	-	200	300	ns
t _{START}	Start-up time	From disabled state to enabled state	-	-	300	μs
IDDCORE	Current consumption (VDDCORE)	Brownout detector enabled	-	-	15	μA
I _{DDIO}	Current consumption (VDDIO)	Brownout detector enabled	_	_	18	μA

Note: 1. The product is guaranteed to be functional at V_{IT-} .

Figure 46-13. Core Brownout Output Waveform

Figure 46-14. Core Brownout Transfer Characteristics

	IDD_BU - AMP1		IDD_IN/IO - AMP2		IDD_CORE - AMP3		
Conditions	@25°C	@85°C	@25°C	@85°C	@25°C	@85°C	Unit
Flash in Read-Idle mode	0.003	0.09	100	760	62	700	
Flash in Standby mode	0.003	0.09	100	760	62	700	μA
Flash in Deep Power-down mode	0.003	0.09	90	740	62	700	

Table 46-59. SAM4CM32 Typical Current Consumption in Wait Mode

46.7.3 Sleep Mode Current Consumption

Sleep mode configuration and measurements are defined in this section.

Reminder: The purpose of Sleep mode is to optimize power consumption of the device versus response time. In this mode, only the core clocks of CM4P0 and/or CM4P1 are stopped.

Figure 46-24. Measurement Setup for Sleep Mode

- VDDIO = VDDIN = 3.3V
- VDDCORE = 1.2V (Internal Voltage regulator used)
- $T_A = 25^{\circ}C$
- Core 0 clock (HCLK) and Core 1 (CPHCLK) clock stopped
- Sub-system 0 Master Clock (MCK), Sub-system 1 Master Clock (CPBMCK) running at various frequencies (PLLB used for frequencies above 12 MHz, fast RC oscillator at 12 MHz for the 12 MHz point, and fast RC oscillator at 8 MHz divided by 1/2/4/8/16/32 for lower frequencies)
- All peripheral clocks deactivated
- No activity on I/O lines
- VDDPLL not taken into account. Refer to Section 46.5.14 "PLLA, PLLB Characteristics" for further details
- Current measurement as per Figure 46-24

52. SAM4CM16/8/4 Errata Revision C (MRL C) Parts

52.1 Device Identification

The following errata apply to the devices listed in Table 51-1.

Table 52-1.	Device List
-------------	-------------

Device Marking	Chip ID
ATSAM4CMP16CC-AU	0xA64C_0CE2
ATSAM4CMP16CC-AUR	0xA64C_0CE2
ATSAM4CMP8CC-AU	0xA64C_0AE2
ATSAM4CMP8CC-AUR	0xA64C_0AE2
ATSAM4CMS16CC-AU	0xA64C_0CE2
ATSAM4CMS16CC-AUR	0xA64C_0CE2
ATSAM4CMS8CC-AU	0xA64C_0AE2
ATSAM4CMS8CC-AUR	0xA64C_0AE2
ATSAM4CMS4CC-AU	0xA64C_0CE6
ATSAM4CMS4CC-AUR	0xA64C_0CE6

52.2 Supply Controller (SUPC)

52.2.1 SUPC: Supply Monitor (SM) on VDDIO

The Supply Monitor (SM) Sampling mode reducing the average current consumption on VDDIO is not functional.

Problem Fix/Workaround

Use the Supply Monitor in Continuous mode only.

52.2.2 SUPC: Core Voltage Regulator Standby Mode Control

The Core Voltage Regulator Standby mode controlled by the ONREG bit in SUPC_MR is not functional. This does not prevent to power VDDCORE and VDDPL by using an external voltage regulator.

Problem Fix/Workaround

None. Do not use the ONREG Bit.

52.2.3 SUPC: Core Brownout Detector. Unpredictable Behavior if BOD is Disabled, VDDCORE is Lost and VDDIO is Powered

In Active mode or in Wait mode, if the Brownout Detector (BOD) is disabled (SUPC_MR: BODDIS=1) and power is lost on VDDCORE while VDDIO is powered, the device can be reset incorrectly and its behavior becomes then unpredictable.

Problem Fix/Workaround

When the Brownout Detector is disabled in Active or in Wait mode, VDDCORE must be always powered.

Table 55-3. SAM4CM Datasheet Rev. 11203C Revision History (Continued)

Doc. Rev. 11203C	Changes
	Section 40, "Analog-to-Digital Converter (ADC)"
	Replaced references to 'MCK' with 'peripheral clock' in text and figures
	Section 40.1 "Description": corrected name of register for ONREE and EORCEREE hits from ADC. SR to ADC. ISR
	Figure 40-1 "Analog-to-Digital Converter Block Diagram": added bus clock. Added ADC Clock output from Control Logic block.
	Added Table 40-2 "Peripheral IDs" and Table 40-3 "I/O Lines".
	Renamed Figure 40-4 from GOVRE and OVREx Flag Behavior to "EOCx, GOVRE and OVREx Flag Behavior".
	Corrected ADC_SR to ADC_ISR in Figure 40-3 "EOCx and DRDY Flag Behavior" and Figure 40-4 "EOCx, GOVRE and OVREx Flag Behavior".
	Modified warning below Figure 40-4 "EOCx, GOVRE and OVREx Flag Behavior".
	Section 40.6.6 "Sleep Mode and Conversion Sequencer": removed description of ADC channel use on an application board (3 paragraphs).
	In Figure 40-6 "Non-optimized Temperature Conversion" to Figure 40-11 "Digital Averaging Function Waveforms on Single Trigger Event, Non-interleaved": added note on ADC_SEL.
	Section 40.7.5 "ADC Channel Disable Register": modified warning below bit description.
06-Oct-14	Section 40.7.11 "ADC Interrupt Status Register": updated all bit descriptions with information on status. Corrected COMPE bit name and description; changed 'error' to 'event'. Modified ENDRX and RXBUFF bit descriptions.
	Added addresses for all registers.
	Section 42. "Advanced Encryption Standard (AES)"
	Updated Section 42.4.4.3 "If AES_MR.LOD = 1"
	Updated Figure 42-4 "PDC transfer with AES_MR.LOD = 1".
	Updated Section 42.4.5 "Galois/Counter Mode (GCM)".
	Section 42.5.2 "AES Mode Register": Updated PROCDLY bit description.
	Section 42.5.3 "AES Interrupt Enable Register", Section 42.5.4 "AES Interrupt Disable Register", Section 42.5.5 "AES Interrupt Mask Register", Section 42.5.6 "AES Interrupt Status Register": added TAGRDY bit.
	Section 43. "Integrity Check Monitor (ICM)"
	Updated Section 43.1 "Description".
	Renamed Figure 43-1 "Four-region Monitoring Example" (was "Integrity Check Monitor Integrated in the System").
	Inserted Table 43-1 "Peripheral IDs".
	Section 43.5.1.2 "ICM Region Configuration Structure Member": Corrected configuration value descriptions for bits RHIEN, DMIEN, BEIEN, WCIEN, ECIEN and SUIEN.

