
Microchip Technology - ATSAM4CMP8CB-AUR Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor ARM® Cortex®-M4/M4F

Core Size 32-Bit Dual-Core

Speed 120MHz

Connectivity EBI/EMI, I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT

Number of I/O 52

Program Memory Size 512KB (512K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 6x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package 100-LQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4cmp8cb-aur

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4cmp8cb-aur-4438651
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Universal Synchronous Asynchronous Receiver Transmitter - USARTx

SCKx USARTx Serial Clock
Digital

I/O
–

VDDIO

–

TXDx USARTx Transmit Data
Digital
Output

– –

RXDx USARTx Receive Data
Digital
Input

– –

RTSx USARTx Request To Send
Digital
Output

– –

CTSx USARTx Clear To Send
Digital
Input

– –

Timer/Counter - TC

TCLKx TC Channel x External Clock Input
Digital
Input

–

VDDIO

–

TIOAx TC Channel x I/O Line A Digital
I/O

– –

TIOBx TC Channel x I/O Line B – –

Pulse Width Modulation Controller - PWMC

PWMx PWM Waveform Output for channel x
Digital
Output

– VDDIO –

Serial Peripheral Interface - SPI

SPI0_MISO Master In Slave Out
Digital
Input

–

VDDIO

–

SPI0_MOSI Master Out Slave In

Digital
Output

– –

SPCK0 SPI Serial Clock – –

SPI0_NPCS0 SPI Peripheral Chip Select 0 Low
NPCS0 is also NSS for
Slave mode

SPI0_NPCS1–
SPI0_NPCS3

SPI Peripheral Chip Select Output Low –

Segmented LCD Controller - SLCDC

COM0–COM5 Common Terminals
Output

–
VDDIO

–

SEG0–SEG39 Segment Terminals – –

Two-wire Interface - TWI

TWDx TWIx Two-wire Serial Data
Digital

I/O
–

VDDIO

–

TWCKx TWIx Two-wire Serial Clock
Digital
Output

– –

Analog

ADVREF External Voltage Reference for ADC
Analog
Input

– VDDIN –

Table 3-1. Signal Description List (Continued)

Signal Name Function Type
Active
Level

Voltage
Reference Comments
9SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

12.4.1.13 Priority Mask Register

Name: PRIMASK

Access: Read/Write

Reset: 0x000000000

The PRIMASK register prevents the activation of all exceptions with a configurable priority.

• PRIMASK

0: No effect

1: Prevents the activation of all exceptions with a configurable priority.

31 30 29 28 27 26 25 24

–

23 22 21 20 19 18 17 16

–

15 14 13 12 11 10 9 8

–

7 6 5 4 3 2 1 0

– PRIMASK
65SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

The Cortex-M4 includes an exclusive access monitor, that tags the fact that the processor has executed a Load-
Exclusive instruction. If the processor is part of a multiprocessor system, the system also globally tags the memory
locations addressed by exclusive accesses by each processor.

The processor removes its exclusive access tag if:

 It executes a CLREX instruction

 It executes a Store-Exclusive instruction, regardless of whether the write succeeds.

 An exception occurs. This means that the processor can resolve semaphore conflicts between different
threads.

In a multiprocessor implementation:

 Executing a CLREX instruction removes only the local exclusive access tag for the processor

 Executing a Store-Exclusive instruction, or an exception, removes the local exclusive access tags, and all
global exclusive access tags for the processor.

For more information about the synchronization primitive instructions, see “LDREX and STREX” and “CLREX”.

12.4.2.8 Programming Hints for the Synchronization Primitives

ISO/IEC C cannot directly generate the exclusive access instructions. CMSIS provides intrinsic functions for
generation of these instructions:

The actual exclusive access instruction generated depends on the data type of the pointer passed to the intrinsic
function. For example, the following C code generates the required LDREXB operation:

__ldrex((volatile char *) 0xFF);

12.4.3 Exception Model

This section describes the exception model.

12.4.3.1 Exception States

Each exception is in one of the following states:

Inactive

The exception is not active and not pending.

Pending

The exception is waiting to be serviced by the processor.

An interrupt request from a peripheral or from software can change the state of the corresponding interrupt to
pending.

Table 12-8. CMSIS Functions for Exclusive Access Instructions

Instruction CMSIS Function

LDREX uint32_t __LDREXW (uint32_t *addr)

LDREXH uint16_t __LDREXH (uint16_t *addr)

LDREXB uint8_t __LDREXB (uint8_t *addr)

STREX uint32_t __STREXW (uint32_t value, uint32_t *addr)

STREXH uint32_t __STREXH (uint16_t value, uint16_t *addr)

STREXB uint32_t __STREXB (uint8_t value, uint8_t *addr)

CLREX void __CLREX (void)
77SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

Return

This occurs when the exception handler is completed, and:

 There is no pending exception with sufficient priority to be serviced

 The completed exception handler was not handling a late-arriving exception.

The processor pops the stack and restores the processor state to the state it had before the interrupt occurred.
See “Exception Return” for more information.

Tail-chaining

This mechanism speeds up exception servicing. On completion of an exception handler, if there is a pending
exception that meets the requirements for exception entry, the stack pop is skipped and control transfers to the
new exception handler.

Late-arriving

This mechanism speeds up preemption. If a higher priority exception occurs during state saving for a previous
exception, the processor switches to handle the higher priority exception and initiates the vector fetch for that
exception. State saving is not affected by late arrival because the state saved is the same for both exceptions.
Therefore the state saving continues uninterrupted. The processor can accept a late arriving exception until the
first instruction of the exception handler of the original exception enters the execute stage of the processor. On
return from the exception handler of the late-arriving exception, the normal tail-chaining rules apply.

Exception Entry

An Exception entry occurs when there is a pending exception with sufficient priority and either the processor is in
Thread mode, or the new exception is of a higher priority than the exception being handled, in which case the new
exception preempts the original exception.

When one exception preempts another, the exceptions are nested.

Sufficient priority means that the exception has more priority than any limits set by the mask registers, see
“Exception Mask Registers”. An exception with less priority than this is pending but is not handled by the
processor.

When the processor takes an exception, unless the exception is a tail-chained or a late-arriving exception, the
processor pushes information onto the current stack. This operation is referred as stacking and the structure of
eight data words is referred to as stack frame.

When using floating-point routines, the Cortex-M4 processor automatically stacks the architected floating-point
state on exception entry. Figure 12-7 shows the Cortex-M4 stack frame layout when floating-point state is
preserved on the stack as the result of an interrupt or an exception.

Note: Where stack space for floating-point state is not allocated, the stack frame is the same as that of ARMv7-M
implementations without an FPU. Figure 12-7 shows this stack frame also.
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

82

12.5.2.2 Wakeup from WFE

The processor wakes up if:

 It detects an exception with sufficient priority to cause an exception entry

 It detects an external event signal. See “External Event Input”

 In a multiprocessor system, another processor in the system executes an SEV instruction.

In addition, if the SEVONPEND bit in the SCR is set to 1, any new pending interrupt triggers an event and wakes
up the processor, even if the interrupt is disabled or has insufficient priority to cause an exception entry. For more
information about the SCR, see “System Control Register”.

12.5.2.3 External Event Input

The processor provides an external event input signal. Peripherals can drive this signal, either to wake the
processor from WFE, or to set the internal WFE event register to 1 to indicate that the processor must not enter
sleep mode on a later WFE instruction. See “Wait for Event” for more information.

12.5.3 Power Management Programming Hints

ISO/IEC C cannot directly generate the WFI and WFE instructions. The CMSIS provides the following functions for
these instructions:

void __WFE(void) // Wait for Event
void __WFI(void) // Wait for Interrupt
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

88

12.6.5.19 UHASX and UHSAX

Unsigned Halving Add and Subtract with Exchange and Unsigned Halving Subtract and Add with Exchange.

Syntax
op{cond} {Rd}, Rn, Rm

where:

op is one of:

UHASX Add and Subtract with Exchange and Halving.

UHSAX Subtract and Add with Exchange and Halving.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The UHASX instruction:

1. Adds the top halfword of the first operand with the bottom halfword of the second operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.

3. Writes the halfword result of the addition to the top halfword of the destination register.

4. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

5. Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the division in the bottom halfword of the destination register.

The UHSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Shifts the result by one bit to the right causing a divide by two, or halving.

3. Writes the halfword result of the subtraction in the top halfword of the destination register.

4. Adds the bottom halfword of the first operand with the top halfword of the second operand.

5. Shifts the result by one bit to the right causing a divide by two, or halving.

6. Writes the halfword result of the addition to the bottom halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.

Examples
UHASX R7, R4, R2 ; Adds top halfword of R4 with bottom halfword of R2

; and writes halved result to top halfword of R7
; Subtracts top halfword of R2 from bottom halfword of
; R7 and writes halved result to bottom halfword of R7

UHSAX R0, R3, R5 ; Subtracts bottom halfword of R5 from top halfword of
 ; R3 and writes halved result to top halfword of R0
 ; Adds top halfword of R5 to bottom halfword of R3 and
; writes halved result to bottom halfword of R0.
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

138

12.6.11.5 VCVT between Floating-point and Fixed-point

Converts a value in a register from floating-point to and from fixed-point.

Syntax
VCVT{cond}.Td.F32 Sd, Sd, #fbits
VCVT{cond}.F32.Td Sd, Sd, #fbits

where:

cond is an optional condition code, see “Conditional Execution”.

Td is the data type for the fixed-point number. It must be one of:

S16 signed 16-bit value.
U16 unsigned 16-bit value.

S32 signed 32-bit value.
U32 unsigned 32-bit value.

Sd is the destination register and the operand register.

fbits is the number of fraction bits in the fixed-point number:

If Td is S16 or U16, fbits must be in the range 0–16.
If Td is S32 or U32, fbits must be in the range 1–32.

Operation

These instructions:

1. Either

̶ Converts a value in a register from floating-point to fixed-point.

̶ Converts a value in a register from fixed-point to floating-point.

2. Places the result in a second register.

The floating-point values are single-precision.

The fixed-point value can be 16-bit or 32-bit. Conversions from fixed-point values take their operand from the low-
order bits of the source register and ignore any remaining bits.

Signed conversions to fixed-point values sign-extend the result value to the destination register width.

Unsigned conversions to fixed-point values zero-extend the result value to the destination register width.

The floating-point to fixed-point operation uses the Round towards Zero rounding mode. The fixed-point to floating-
point operation uses the Round to Nearest rounding mode.

Restrictions

There are no restrictions.

Condition Flags

These instructions do not change the flags.
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

194

17.4 Product Dependencies

17.4.1 Power Management

The Real-time Clock is continuously clocked at 32.768 kHz. The Power Management Controller has no effect on
RTC behavior.

17.4.2 Interrupt

RTC interrupt line is connected on one of the internal sources of the interrupt controller. RTC interrupt requires the
interrupt controller to be programmed first.

17.5 Functional Description

The RTC provides a full binary-coded decimal (BCD) clock that includes century (19/20), year (with leap years),
month, date, day, hours, minutes and seconds reported in RTC Time Register (RTC_TIMR) and RTC Calendar
Register (RTC_CALR).

The valid year range is up to 2099 in Gregorian mode (or 1300 to 1499 in Persian mode).

The RTC can operate in 24-hour mode or in 12-hour mode with an AM/PM indicator.

Corrections for leap years are included (all years divisible by 4 being leap years except 1900). This is correct up to
the year 2099.

The RTC can generate configurable waveforms on RTCOUT0 output.

17.5.1 Reference Clock

The reference clock is the Slow Clock (SLCK). It can be driven internally or by an external 32.768 kHz crystal.

During low power modes of the processor, the oscillator runs and power consumption is critical. The crystal
selection has to take into account the current consumption for power saving and the frequency drift due to
temperature effect on the circuit for time accuracy.

17.5.2 Timing

The RTC is updated in real time at one-second intervals in Normal mode for the counters of seconds, at one-
minute intervals for the counter of minutes and so on.

Due to the asynchronous operation of the RTC with respect to the rest of the chip, to be certain that the value read
in the RTC registers (century, year, month, date, day, hours, minutes, seconds) are valid and stable, it is
necessary to read these registers twice. If the data is the same both times, then it is valid. Therefore, a minimum of
two and a maximum of three accesses are required.

17.5.3 Alarm

The RTC has five programmable fields: month, date, hours, minutes and seconds.

Each of these fields can be enabled or disabled to match the alarm condition:

 If all the fields are enabled, an alarm flag is generated (the corresponding flag is asserted and an interrupt
generated if enabled) at a given month, date, hour/minute/second.

 If only the “seconds” field is enabled, then an alarm is generated every minute.

Table 17-1. Peripheral IDs

Instance ID

RTC 2
343SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

25.5.5 IPC Interrupt Disable Command Register

Name: IPC_IDCR

Address: 0x4004C010 (0), 0x48014010 (1)

Access: Write-only

• IRQ0-IRQ31: Interrupt Disable

0: No effect.

1: Disables the corresponding interrupt.

31 30 29 28 27 26 25 24

IRQ31 IRQ30 IRQ29 IRQ28 IRQ27 IRQ26 IRQ25 IRQ24

23 22 21 20 19 18 17 16

IRQ23 IRQ22 IRQ21 IRQ20 IRQ19 IRQ18 IRQ17 IRQ16

15 14 13 12 11 10 9 8

IRQ15 IRQ14 IRQ13 IRQ12 IRQ11 IRQ10 IRQ9 IRQ8

7 6 5 4 3 2 1 0

IRQ7 IRQ6 IRQ5 IRQ4 IRQ3 IRQ2 IRQ1 IRQ0
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

474

Figure 27-26. Read Access with NWAIT Assertion in Frozen Mode (EXNW_MODE = 10)

EXNW_MODE = 10 (Frozen)
READ_MODE = 0 (NCS_controlled)

NRD_PULSE = 2, NRD_HOLD = 6
NCS_RD_PULSE =5, NCS_RD_HOLD =3

A[23:0]

MCK

NCS

NRD 1 0

4 3

4 3

2

5 5 5

2 2 0
2 1 0

2 1 0

1

Read cycle

Assertion is ignored

NWAIT

internally synchronized
NWAIT signal

FROZEN STATE
521SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

28.5.10 Transfer Status Register

Name: PERIPH_PTSR

Access: Read-only

• RXTEN: Receiver Transfer Enable

0: PDC receiver channel requests are disabled.

1: PDC receiver channel requests are enabled.

• TXTEN: Transmitter Transfer Enable

0: PDC transmitter channel requests are disabled.

1: PDC transmitter channel requests are enabled.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8
– – – – – – – TXTEN

7 6 5 4 3 2 1 0

– – – – – – – RXTEN
555SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

Figure 34-16. TWI Write Operation with Single Data Byte and Internal Address

BEGIN

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address (DADR)

- Internal address size (IADRSZ)
- Transfer direction bit

Write ==> bit MREAD = 0

Load transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Read Status register

TXCOMP = 1?

Transfer finished

Set the internal address
TWI_IADR = address

Yes

Yes

No

No

Write STOP command
TWI_CR = STOP
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

722

• LDBDIS: Counter Clock Disable with RB Loading

0: Counter clock is not disabled when RB loading occurs.

1: Counter clock is disabled when RB loading occurs.

• ETRGEDG: External Trigger Edge Selection

• ABETRG: TIOA or TIOB External Trigger Selection

0: TIOB is used as an external trigger.

1: TIOA is used as an external trigger.

• CPCTRG: RC Compare Trigger Enable

0: RC Compare has no effect on the counter and its clock.

1: RC Compare resets the counter and starts the counter clock.

• WAVE: Waveform Mode

0: Capture mode is enabled.

1: Capture mode is disabled (Waveform mode is enabled).

• LDRA: RA Loading Edge Selection

• LDRB: RB Loading Edge Selection

Value Name Description

0 NONE The clock is not gated by an external signal.

1 RISING Rising edge

2 FALLING Falling edge

3 EDGE Each edge

Value Name Description

0 NONE None

1 RISING Rising edge of TIOA

2 FALLING Falling edge of TIOA

3 EDGE Each edge of TIOA

Value Name Description

0 NONE None

1 RISING Rising edge of TIOA

2 FALLING Falling edge of TIOA

3 EDGE Each edge of TIOA
871SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

37.7.13 TC Block Control Register

Name: TC_BCR

Address: 0x400100C0 (0), 0x400140C0 (1)

Access: Write-only

• SYNC: Synchro Command

0: No effect.

1: Asserts the SYNC signal which generates a software trigger simultaneously for each of the channels.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – SYNC
889SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

40.7.4 ADC Channel Enable Register

Name: ADC_CHER

Address: 0x40038010

Access: Write-only

This register can only be written if the WPEN bit is cleared in “ADC Write Protection Mode Register”.

• CHx: Channel x Enable

0: No effect.

1: Enables the corresponding channel.

Note: If USEQ = 1 in ADC_MR, CHx corresponds to the xth channel of the sequence described in ADC_SEQR1.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – -

15 14 13 12 11 10 9 8

- - - - - - - -

7 6 5 4 3 2 1 0

CH7 CH6 – – CH3 CH2 CH1 CH0
975SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

42.4.6.3 GCM Processing

GCM processing comprises three phases:

1. Processing the Additional Authenticated Data (AAD), hash computation only.

2. Processing the Ciphertext (C), hash computation + ciphering/deciphering.

3. Generating the Tag using length of AAD, length of C and J0 (see NIST documentation for details).

The Tag generation can be done either automatically, after the end of AAD/C processing if TAG_EN bit is set in
the AES_MR or done manually, using the GHASH field in AES_GHASHRx (see below “Processing a Complete
Message with Tag Generation” and “Manual GCM Tag Generation” for details).

Processing a Complete Message with Tag Generation

Use this procedure only if J0 four LSB bytes ≠ 0xFFFFFFFF.

NOTE: In the case where J0 four LSB bytes = 0xFFFFFFFF or if the value is unknown, use the procedure
described in “Processing a Complete Message without Tag Generation” followed by the procedure in “Manual
GCM Tag Generation”.

Figure 42-6. Full Message Alignment

To process a complete message with Tag generation, the sequence is as follows:

1. In AES_MR set OPMOD to GCM and GTAGEN to ‘1’ (configuration as usual for the rest).

2. Set KEYW in AES_KEYWRx and wait until DATRDY bit of AES_ISR is set (GCM hash subkey generation
complete); use interrupt if needed. See Section 42.4.6.2 “Key Writing and Automatic Hash Subkey
Calculation” for details.

3. Calculate the J0 value as described in NIST documentation J0 = IV || 031 || 1 when len(IV) = 96 and
J0 = GHASHH(IV || 0s+64 || [len(IV)]64) if len(IV) ≠ 96. See “Processing a Message with only AAD (GHASHH)”
for J0 generation.

4. Set IV in AES_IVRx with inc32(J0) (J0 + 1 on 32 bits).

5. Set AADLEN field in AES_AADLENR and CLEN field in AES_CLENR.

6. Fill the IDATA field of AES_IDATARx with the message to process according to the SMOD configuration
used. If Manual Mode or Auto Mode is used, the DATRDY bit indicates when the data have been processed
(however, no output data are generated when processing AAD).

7. Wait for TAGRDY to be set (use interrupt if needed), then read the TAG field of AES_TAGRx to obtain the
authentication tag of the message.

Processing a Complete Message without Tag Generation

Processing a message without generating the Tag can be used to customize the Tag generation, or to process a
fragmented message. To manually generate the GCM Tag, refer to “Manual GCM Tag Generation”.

To process a complete message without Tag generation, the sequence is as follows:

1. In AES_MR set OPMOD to GCM and GTAGEN to ‘0’ (configuration as usual for the rest).

2. Set KEYW in AES_KEYWRx and wait until DATRDY bit of AES_ISR is set (GCM hash subkey generation
complete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM hash

AAD C (Text)

16-byte Boundaries

Padding Padding

AADLEN CLEN
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

1008

0x90 GCM Authentication Tag Word Register 2 AES_TAGR2 Read-only –

0x94 GCM Authentication Tag Word Register 3 AES_TAGR3 Read-only –

0x98 GCM Encryption Counter Value Register AES_CTRR Read-only –

0x9C GCM H Word Register 0 AES_GCMHR0 Read/Write –

0xA0 GCM H Word Register 1 AES_GCMHR1 Read/Write –

0xA4 GCM H Word Register 2 AES_GCMHR2 Read/Write –

0xA8 GCM H Word Register 3 AES_GCMHR3 Read/Write –

0xAC Reserved – – –

0xB0–0xFC Reserved – – –

0x100–0x124 Reserved for the PDC – – –

Table 42-5. Register Mapping (Continued)

Offset Register Name Access Reset
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

1014

Figure 46-17. 3- to 20-MHz Crystal Oscillator Schematic

CLEXT = 2 x (CCRYSTAL – CLINT – CPCB / 2).

where CPCB is the ground referenced parasitic capacitance of the printed circuit board (PCB) on XIN and XOUT
tracks. As an example, if the crystal is specified for an 18-pF load, with CPCB = 1 pF (on XIN and on XOUT),
CLEXT = 2 x (18 - 9.5 - 0.5) = 16 pF.

Table 46-32 summarizes recommendations to be followed when choosing a crystal.

46.5.13 Crystal Oscillator Design Considerations

When choosing a crystal for the 32768-Hz slow clock oscillator or for the 3- to 20-MHz oscillator, several
parameters must be taken into account. Important parameters are as follows:

 Crystal Load Capacitance.
The total capacitance loading the crystal, including the oscillator’s internal parasitics and the PCB parasitics,
must match the load capacitance for which the crystal’s frequency is specified. Any mismatch in the load
capacitance with respect to the crystal’s specification will lead to inaccurate oscillation frequency.

 Crystal Drive Level.
Use only crystals with the specified drive levels greater than the specified MCU oscillator drive level.
Applications that do not respect this criterion may damage the crystal.

 Crystal Equivalent Series Resistor (ESR).
Use only crystals with the specified ESR lower than the specified MCU oscillator ESR. In applications where
this criterion is not respected, the crystal oscillator may not start.

 Crystal Shunt Capacitance.
Use only crystal with the specified shunt capacitance lower than the specified MCU oscillator shunt
capacitance. In applications where this criterion is not respected, the crystal oscillator may not start.

 PCB Layout Considerations.
To minimize inductive and capacitive parasitics associated with XIN, XOUT, XIN32, XOUT32 nets, it is
recommended to route them as short as possible. It is also of prime importance to keep those nets away

XIN XOUT

CLEXT

CLINT

CLEXT

SAM4

R = 1K if Crystal Frequency
is lower than 8 MHz

CPCBCPCB

Table 46-32. Recommended Crystal Characteristics

Symbol Parameter Conditions Min Typ Max Unit

ESR Equivalent Series Resistor (RS)

Fundamental @ 3 MHz

Fundamental @ 8 MHz

Fundamental @ 12 MHz

Fundamental @ 16 MHz

Fundamental @ 20 MHz

– –

200

100

80

80

50

Ω

CM Motional capacitance – – – 8 fF

CSHUNT Shunt capacitance – – – 7 pF
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

1100

from noisy switching signals (clock, data, PWM, etc.). A good practice is to shield them with a quiet ground
net to avoid coupling to neighboring signals.

46.5.14 PLLA, PLLB Characteristics

Table 46-33. PLLA Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VDDPLL Supply voltage range (VDDPLL) – 1.08 1.2 1.32 V

fIN Input frequency range – 30 32.768 34 kHz

fOUT Output frequency range – 7.5 8.192 8.5 MHz

NRATIO Frequency multiplying ratio (MULA +1) – – 250 – –

JP Period jitter Peak value – 4 – ns

tON Start-up time
From OFF to output oscillations
(Output frequency within 10% of target
frequency)

– – 250 µs

tLOCK Lock time From OFF to PLL locked – – 2.5 ms

IPLLON
Active mode current consumption
(VDDPLL)

fOUT = 8.192 MHz – 50 – µA

IPLLOFF
OFF mode current consumption
(VDDPLL)

@25°C

Over the temperature range
–

0.05

0.05

0.30

5
µA

Table 46-34. PLLB Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VVDDPLL Supply voltage range (VDDPLL) – 1.08 1.2 1.32 V

fIN Input frequency range – 3 – 32 MHz

fOUT Output frequency range – 80 – 240 MHz

NRATIO Frequency multiplying ratio (MULB +1) – 3 – 62 –

QRATIO

Frequency dividing ratio

(DIVB)
– 2 – 24 –

tON Start-up time – – 60 150 µs

IDDPLL Current consumption on VDDPLL

Active mode @ 80 MHz @1.2V

Active mode @ 96 MHz @1.2V

Active mode @ 160 MHz @1.2V

Active mode @ 240 MHz @1.2V

–

0.94

1.2

2.1

3.34

1.2

1.5

2.5

4

mA
1101SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

Figure 46-25. Typical Current Consumption in Sleep Mode

46.7.4 Active Mode Power Consumption

The current consumption configuration for Active mode, i.e., Core executing codes, is as follows:

 VDDIO = VDDIN = 3.3V

 VDDCORE = 1.2V (internal voltage regulator used)

 TA = 25°C
 Sub-system 0 Master Clock (MCK), Sub-system 1 Master Clock (CPBMCK) running at various frequencies

(PLLB used for frequencies above 12 MHz, fast RC oscillator at 12 MHz for the 12 MHz point, and fast RC
oscillator at 8 MHz divided by 1/2/4/8/16/32 for lower frequencies)

 All peripheral clocks deactivated

 No activity on IO lines

 Flash Wait State (FWS) in EEFC_FMR adjusted versus core frequency

 Current measurement as per Figure 46-26

Figure 46-26. Measurement Setup for Active Mode

SAM4Cx4/8/16 SAM4Cx32

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100 110 120

ID
D

 (m
A)

Master Clock Frequency (MHz)

IDDIO (AMP2) IDDIN (AMP1) IDDCORE (AMP3)

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90 100 110 120

ID
D

 (m
A)

Master Clock Frequency (MHz)

IDDIO (AMP2) IDDIN (AMP1) IDDCORE (AMP3)

AMP1

VDDIN

VDDOUT

VDDCORE

3.3V

AMP2

VDDBU
SAM4

VDDPLL

VDDLCD

VDDIO

AMP3
1119SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

