
Microchip Technology - ATSAM4CMS4CC-AU Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor ARM® Cortex®-M4/M4F

Core Size 32-Bit Dual-Core

Speed 120MHz

Connectivity EBI/EMI, I²C, IrDA, SPI, UART/USART

Peripherals Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT

Number of I/O 57

Program Memory Size 256KB (256K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 128K x 8

Voltage - Supply (Vcc/Vdd) 1.62V ~ 3.6V

Data Converters A/D 6x10b

Oscillator Type Internal

Operating Temperature -40°C ~ 85°C (TA)

Mounting Type Surface Mount

Package / Case 100-LQFP

Supplier Device Package 100-LQFP (14x14)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/atsam4cms4cc-au

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/atsam4cms4cc-au-4413317
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

UHADD16 {Rd,} Rn, Rm Unsigned Halving Add 16 –

UHADD8 {Rd,} Rn, Rm Unsigned Halving Add 8 –

UHASX {Rd,} Rn, Rm Unsigned Halving Add and Subtract with Exchange –

UHSAX {Rd,} Rn, Rm Unsigned Halving Subtract and Add with Exchange –

UHSUB16 {Rd,} Rn, Rm Unsigned Halving Subtract 16 –

UHSUB8 {Rd,} Rn, Rm Unsigned Halving Subtract 8 –

UBFX Rd, Rn, #lsb, #width Unsigned Bit Field Extract –

UDIV {Rd,} Rn, Rm Unsigned Divide –

UMAAL RdLo, RdHi, Rn, Rm
Unsigned Multiply Accumulate Accumulate Long (32 × 32 + 32 + 32),
64-bit result

–

UMLAL RdLo, RdHi, Rn, Rm Unsigned Multiply with Accumulate (32 × 32 + 64), 64-bit result –

UMULL RdLo, RdHi, Rn, Rm Unsigned Multiply (32 × 32), 64-bit result –

UQADD16 {Rd,} Rn, Rm Unsigned Saturating Add 16 –

UQADD8 {Rd,} Rn, Rm Unsigned Saturating Add 8 –

UQASX {Rd,} Rn, Rm Unsigned Saturating Add and Subtract with Exchange –

UQSAX {Rd,} Rn, Rm Unsigned Saturating Subtract and Add with Exchange –

UQSUB16 {Rd,} Rn, Rm Unsigned Saturating Subtract 16 –

UQSUB8 {Rd,} Rn, Rm Unsigned Saturating Subtract 8 –

USAD8 {Rd,} Rn, Rm Unsigned Sum of Absolute Differences –

USADA8 {Rd,} Rn, Rm, Ra Unsigned Sum of Absolute Differences and Accumulate –

USAT Rd, #n, Rm {,shift #s} Unsigned Saturate Q

USAT16 Rd, #n, Rm Unsigned Saturate 16 Q

UASX {Rd,} Rn, Rm Unsigned Add and Subtract with Exchange GE

USUB16 {Rd,} Rn, Rm Unsigned Subtract 16 GE

USUB8 {Rd,} Rn, Rm Unsigned Subtract 8 GE

UXTAB {Rd,} Rn, Rm,{,ROR #} Rotate, extend 8 bits to 32 and Add –

UXTAB16 {Rd,} Rn, Rm,{,ROR #} Rotate, dual extend 8 bits to 16 and Add –

UXTAH {Rd,} Rn, Rm,{,ROR #} Rotate, unsigned extend and Add Halfword –

UXTB {Rd,} Rm {,ROR #n} Zero extend a byte –

UXTB16 {Rd,} Rm {,ROR #n} Unsigned Extend Byte 16 –

UXTH {Rd,} Rm {,ROR #n} Zero extend a halfword –

VABS.F32 Sd, Sm Floating-point Absolute –

VADD.F32 {Sd,} Sn, Sm Floating-point Add –

VCMP.F32 Sd, <Sm | #0.0>
Compare two floating-point registers, or one floating-point register
and zero

FPSCR

VCMPE.F32 Sd, <Sm | #0.0>
Compare two floating-point registers, or one floating-point register
and zero with Invalid Operation check

FPSCR

VCVT.S32.F32 Sd, Sm Convert between floating-point and integer –

Table 12-13. Cortex-M4 Instructions (Continued)

Mnemonic Operands Description Flags
93SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

12.6.5 General Data Processing Instructions

The table below shows the data processing instructions.

Table 12-20. Data Processing Instructions

Mnemonic Description

ADC Add with Carry

ADD Add

ADDW Add

AND Logical AND

ASR Arithmetic Shift Right

BIC Bit Clear

CLZ Count leading zeros

CMN Compare Negative

CMP Compare

EOR Exclusive OR

LSL Logical Shift Left

LSR Logical Shift Right

MOV Move

MOVT Move Top

MOVW Move 16-bit constant

MVN Move NOT

ORN Logical OR NOT

ORR Logical OR

RBIT Reverse Bits

REV Reverse byte order in a word

REV16 Reverse byte order in each halfword

REVSH Reverse byte order in bottom halfword and sign extend

ROR Rotate Right

RRX Rotate Right with Extend

RSB Reverse Subtract

SADD16 Signed Add 16

SADD8 Signed Add 8

SASX Signed Add and Subtract with Exchange

SSAX Signed Subtract and Add with Exchange

SBC Subtract with Carry

SHADD16 Signed Halving Add 16

SHADD8 Signed Halving Add 8

SHASX Signed Halving Add and Subtract with Exchange

SHSAX Signed Halving Subtract and Add with Exchange
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

116

12.6.5.16 UADD16 and UADD8

Unsigned Add 16 and Unsigned Add 8

Syntax
op{cond}{Rd,} Rn, Rm

where:

op is any of:

UADD16 Performs two 16-bit unsigned integer additions.

UADD8 Performs four 8-bit unsigned integer additions.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn is the first register holding the operand.

Rm is the second register holding the operand.

Operation

Use these instructions to add 16- and 8-bit unsigned data:

The UADD16 instruction:

1. Adds each halfword from the first operand to the corresponding halfword of the second operand.

2. Writes the unsigned result in the corresponding halfwords of the destination register.

The UADD16 instruction:

1. Adds each byte of the first operand to the corresponding byte of the second operand.

2. Writes the unsigned result in the corresponding byte of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not change the flags.

Examples
UADD16 R1, R0 ; Adds halfwords in R0 to corresponding halfword of R1,

; writes to corresponding halfword of R1
UADD8 R4, R0, R5 ; Adds bytes of R0 to corresponding byte in R5 and

; writes to corresponding byte in R4.
135SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

Examples
QADD16 R7, R4, R2 ; Adds halfwords of R4 with corresponding halfword of

; R2, saturates to 16 bits and writes to
; corresponding halfword of R7

QADD8 R3, R1, R6 ; Adds bytes of R1 to the corresponding bytes of R6,
 ; saturates to 8 bits and writes to corresponding
 ; byte of R3

QSUB16 R4, R2, R3 ; Subtracts halfwords of R3 from corresponding
 ; halfword of R2, saturates to 16 bits, writes to
 ; corresponding halfword of R4

QSUB8 R4, R2, R5 ; Subtracts bytes of R5 from the corresponding byte
 ; in R2, saturates to 8 bits, writes to corresponding
 ; byte of R4.

12.6.7.4 QASX and QSAX

Saturating Add and Subtract with Exchange and Saturating Subtract and Add with Exchange, signed.

Syntax
op{cond} {Rd}, Rm, Rn

where:

op is one of:

QASX Add and Subtract with Exchange and Saturate.

QSAX Subtract and Add with Exchange and Saturate.

cond is an optional condition code, see “Conditional Execution”.

Rd is the destination register.

Rn, Rm are registers holding the first and second operands.

Operation

The QASX instruction:

1. Adds the top halfword of the source operand with the bottom halfword of the second operand.

2. Subtracts the top halfword of the second operand from the bottom highword of the first operand.

3. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –215 ≤ x ≤ 215 – 1,
where x equals 16, to the bottom halfword of the destination register.

4. Saturates the results of the sum and writes a 16-bit signed integer in the range
–215 ≤ x ≤ 215 – 1, where x equals 16, to the top halfword of the destination register.

The QSAX instruction:

1. Subtracts the bottom halfword of the second operand from the top highword of the first operand.

2. Adds the bottom halfword of the source operand with the top halfword of the second operand.

3. Saturates the results of the sum and writes a 16-bit signed integer in the range
–215 ≤ x ≤ 215 – 1, where x equals 16, to the bottom halfword of the destination register.

4. Saturates the result of the subtraction and writes a 16-bit signed integer in the range –215 ≤ x ≤ 215 – 1,
where x equals 16, to the top halfword of the destination register.

Restrictions

Do not use SP and do not use PC.

Condition Flags

These instructions do not affect the condition code flags.
165SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

12.6.10.3 IT

If-Then condition instruction.

Syntax
IT{x{y{z}}} cond

where:

x specifies the condition switch for the second instruction in the IT block.

y specifies the condition switch for the third instruction in the IT block.

z specifies the condition switch for the fourth instruction in the IT block.

cond specifies the condition for the first instruction in the IT block.

The condition switch for the second, third and fourth instruction in the IT block can be either:

T Then. Applies the condition cond to the instruction.

E Else. Applies the inverse condition of cond to the instruction.

It is possible to use AL (the always condition) for cond in an IT instruction. If this is done, all of the instructions in
the IT block must be unconditional, and each of x, y, and z must be T or omitted but not E.

Operation

The IT instruction makes up to four following instructions conditional. The conditions can be all the same, or some
of them can be the logical inverse of the others. The conditional instructions following the IT instruction form the IT
block.

The instructions in the IT block, including any branches, must specify the condition in the {cond} part of their
syntax.

The assembler might be able to generate the required IT instructions for conditional instructions automatically, so
that the user does not have to write them. See the assembler documentation for details.

A BKPT instruction in an IT block is always executed, even if its condition fails.

Exceptions can be taken between an IT instruction and the corresponding IT block, or within an IT block. Such an
exception results in entry to the appropriate exception handler, with suitable return information in LR and stacked
PSR.

Instructions designed for use for exception returns can be used as normal to return from the exception, and
execution of the IT block resumes correctly. This is the only way that a PC-modifying instruction is permitted to
branch to an instruction in an IT block.

Restrictions

The following instructions are not permitted in an IT block:

 IT

 CBZ and CBNZ

 CPSID and CPSIE.

Other restrictions when using an IT block are:

 A branch or any instruction that modifies the PC must either be outside an IT block or must be the last
instruction inside the IT block. These are:

̶ ADD PC, PC, Rm

̶ MOV PC, Rm

̶ B, BL, BX, BLX

̶ Any LDM, LDR, or POP instruction that writes to the PC

̶ TBB and TBH

 Do not branch to any instruction inside an IT block, except when returning from an exception handler
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

184

• MLSPERR: MemManage During Lazy State Preservation

This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: No MemManage fault occurred during the floating-point lazy state preservation.

1: A MemManage fault occurred during the floating-point lazy state preservation.

• MMARVALID: Memory Management Fault Address Register (SCB_MMFAR) Valid Flag

This is part of “MMFSR: Memory Management Fault Status Subregister”.

0: The value in SCB_MMFAR is not a valid fault address.

1: SCB_MMFAR holds a valid fault address.

If a memory management fault occurs and is escalated to a hard fault because of priority, the hard fault handler must set
this bit to 0. This prevents problems on return to a stacked active memory management fault handler whose SCB_MMFAR
value has been overwritten.

• IBUSERR: Instruction Bus Error

This is part of “BFSR: Bus Fault Status Subregister”.

0: No instruction bus error.

1: Instruction bus error.

The processor detects the instruction bus error on prefetching an instruction, but it sets the IBUSERR flag to 1 only if it
attempts to issue the faulting instruction.

When the processor sets this bit to 1, it does not write a fault address to the BFAR.

• PRECISERR: Precise Data Bus Error

This is part of “BFSR: Bus Fault Status Subregister”.

0: No precise data bus error.

1: A data bus error has occurred, and the PC value stacked for the exception return points to the instruction that caused
the fault.

When the processor sets this bit to 1, it writes the faulting address to the SCB_BFAR.

• IMPRECISERR: Imprecise Data Bus Error

This is part of “BFSR: Bus Fault Status Subregister”.

0: No imprecise data bus error.

1: A data bus error has occurred, but the return address in the stack frame is not related to the instruction that caused the
error.

When the processor sets this bit to 1, it does not write a fault address to the SCB_BFAR.

This is an asynchronous fault. Therefore, if it is detected when the priority of the current process is higher than the bus fault
priority, the bus fault becomes pending and becomes active only when the processor returns from all higher priority pro-
cesses. If a precise fault occurs before the processor enters the handler for the imprecise bus fault, the handler detects
that both this bit and one of the precise fault status bits are set to 1.

• UNSTKERR: Bus Fault on Unstacking for a Return From Exception

This is part of “BFSR: Bus Fault Status Subregister”.

0: No unstacking fault.

1: Unstack for an exception return has caused one or more bus faults.
259SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

12.11 Memory Protection Unit (MPU)

The MPU divides the memory map into a number of regions, and defines the location, size, access permissions,
and memory attributes of each region. It supports:

 Independent attribute settings for each region

 Overlapping regions

 Export of memory attributes to the system.

The memory attributes affect the behavior of memory accesses to the region. The Cortex-M4 MPU defines:

 Eight separate memory regions, 0–7

 A background region.

When memory regions overlap, a memory access is affected by the attributes of the region with the highest
number. For example, the attributes for region 7 take precedence over the attributes of any region that overlaps
region 7.

The background region has the same memory access attributes as the default memory map, but is accessible
from privileged software only.

The Cortex-M4 MPU memory map is unified. This means that instruction accesses and data accesses have the
same region settings.

If a program accesses a memory location that is prohibited by the MPU, the processor generates a memory
management fault. This causes a fault exception, and might cause the termination of the process in an OS
environment.

In an OS environment, the kernel can update the MPU region setting dynamically based on the process to be
executed. Typically, an embedded OS uses the MPU for memory protection.

The configuration of MPU regions is based on memory types (see “Memory Regions, Types and Attributes”).

Table 12-36 shows the possible MPU region attributes. These include Share ability and cache behavior attributes
that are not relevant to most microcontroller implementations. See “MPU Configuration for a Microcontroller” for
guidelines for programming such an implementation.

Table 12-36. Memory Attributes Summary

Memory Type Shareability Other Attributes Description

Strongly-ordered – –
All accesses to Strongly-ordered memory occur in program order. All
Strongly-ordered regions are assumed to be shared.

Device
Shared – Memory-mapped peripherals that several processors share.

Non-shared – Memory-mapped peripherals that only a single processor uses.

Normal
Shared – Normal memory that is shared between several processors.

Non-shared – Normal memory that only a single processor uses.
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

272

18.5.2 Watchdog Timer Mode Register

Name: WDT_MR

Address: 0x400E1454

Access: Read/Write Once

Note: The first write access prevents any further modification of the value of this register. Read accesses remain possible.

Note: The WDD and WDV values must not be modified within three slow clock periods following a restart of the watchdog performed by
a write access in WDT_CR. Any modification will cause the watchdog to trigger an end of period earlier than expected.

• WDV: Watchdog Counter Value

Defines the value loaded in the 12-bit watchdog counter.

• WDFIEN: Watchdog Fault Interrupt Enable

0: A watchdog fault (underflow or error) has no effect on interrupt.

1: A watchdog fault (underflow or error) asserts interrupt.

• WDRSTEN: Watchdog Reset Enable

0: A watchdog fault (underflow or error) has no effect on the resets.

1: A watchdog fault (underflow or error) triggers a watchdog reset.

• WDRPROC: Watchdog Reset Processor

0: If WDRSTEN is 1, a watchdog fault (underflow or error) activates all resets.

1: If WDRSTEN is 1, a watchdog fault (underflow or error) activates the processor reset.

• WDDIS: Watchdog Disable

0: Enables the Watchdog Timer.

1: Disables the Watchdog Timer.

• WDD: Watchdog Delta Value

Defines the permitted range for reloading the Watchdog Timer.

If the Watchdog Timer value is less than or equal to WDD, setting bit WDT_CR.WDRSTT restarts the timer.

If the Watchdog Timer value is greater than WDD, setting bit WDT_CR.WDRSTT causes a watchdog error.

31 30 29 28 27 26 25 24

– – WDIDLEHLT WDDBGHLT WDD

23 22 21 20 19 18 17 16

WDD

15 14 13 12 11 10 9 8
WDDIS WDRPROC WDRSTEN WDFIEN WDV

7 6 5 4 3 2 1 0
WDV
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

380

• CLSIZE: Cache Line Size

Value Name Description

0 CLSIZE_1KB Cache line size is 4 bytes

1 CLSIZE_2KB Cache line size is 8 bytes

2 CLSIZE_4KB Cache line size is 16 bytes

3 CLSIZE_8KB Cache line size is 32 bytes
457SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

28.5.1 Receive Pointer Register

Name: PERIPH_RPR

Access: Read/Write

• RXPTR: Receive Pointer Register

RXPTR must be set to receive buffer address.

When a half-duplex peripheral is connected to the PDC, RXPTR = TXPTR.

31 30 29 28 27 26 25 24

RXPTR

23 22 21 20 19 18 17 16

RXPTR

15 14 13 12 11 10 9 8
RXPTR

7 6 5 4 3 2 1 0

RXPTR
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

546

32.3 Block Diagram

Figure 32-1. Block Diagram

32.4 Product Dependencies

32.4.1 Pin Multiplexing

Each pin is configurable, depending on the product, as either a general-purpose I/O line only, or as an I/O line
multiplexed with one or two peripheral I/Os. As the multiplexing is hardware defined and thus product-dependent,
the hardware designer and programmer must carefully determine the configuration of the PIO Controllers required
by their application. When an I/O line is general-purpose only, i.e., not multiplexed with any peripheral I/O,
programming of the PIO Controller regarding the assignment to a peripheral has no effect and only the PIO
Controller can control how the pin is driven by the product.

32.4.2 Power Management

The Power Management Controller controls the peripheral clock in order to save power. Writing any of the
registers of the user interface does not require the peripheral clock to be enabled. This means that the
configuration of the I/O lines does not require the peripheral clock to be enabled.

Embedded
Peripheral

Embedded
Peripheral

PIO Interrupt

PIO Controller

PMC

Up to x
peripheral IOs

Up to x
peripheral IOs

Peripheral Clock

APB

Interrupt Controller

Data, Enable

PIN x-1

PIN 1

PIN 0

Data, Enable

x is an integer representing the maximum number
of IOs managed by one PIO controller.
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

616

33.8.2 SPI Mode Register

Name: SPI_MR

Address: 0x40008004 (0), 0x48000004 (1)

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the SPI Write Protection Mode Register.

• MSTR: Master/Slave Mode

0: SPI is in Slave mode

1: SPI is in Master mode

• PS: Peripheral Select

0: Fixed Peripheral Select

1: Variable Peripheral Select

• PCSDEC: Chip Select Decode

0: The chip selects are directly connected to a peripheral device.

1: The four NPCS chip select lines are connected to a 4-bit to 16-bit decoder.

When PCSDEC = 1, up to 15 Chip Select signals can be generated with the four NPCS lines using an external 4-bit to 16-
bit decoder. The Chip Select registers define the characteristics of the 15 chip selects, with the following rules:

SPI_CSR0 defines peripheral chip select signals 0 to 3.

SPI_CSR1 defines peripheral chip select signals 4 to 7.

SPI_CSR2 defines peripheral chip select signals 8 to 11.

SPI_CSR3 defines peripheral chip select signals 12 to 14.

• MODFDIS: Mode Fault Detection

0: Mode fault detection enabled

1: Mode fault detection disabled

• WDRBT: Wait Data Read Before Transfer

0: No Effect. In Master mode, a transfer can be initiated regardless of the SPI_RDR state.

1: In Master mode, a transfer can start only if the SPI_RDR is empty, i.e., does not contain any unread data. This mode
prevents overrun error in reception.

31 30 29 28 27 26 25 24

DLYBCS

23 22 21 20 19 18 17 16

– – – – PCS

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

LLB – WDRBT MODFDIS – PCSDEC PS MSTR
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

696

10-bit Slave Addressing

For a slave address higher than seven bits, the user must configure the address size (IADRSZ) and set the other
slave address bits in the Internal Address register (TWI_IADR). The two remaining internal address bytes,
IADR[15:8] and IADR[23:16] can be used the same way as in 7-bit slave addressing.

Example: Address a 10-bit device (10-bit device address is b1 b2 b3 b4 b5 b6 b7 b8 b9 b10)

1. Program IADRSZ = 1,

2. Program DADR with 1 1 1 1 0 b1 b2 (b1 is the MSB of the 10-bit address, b2, etc.)

3. Program TWI_IADR with b3 b4 b5 b6 b7 b8 b9 b10 (b10 is the LSB of the 10-bit address)

Figure 34-13 below shows a byte write to an Atmel AT24LC512 EEPROM. This demonstrates the use of internal
addresses to access the device.

Figure 34-13. Internal Address Usage

34.7.3.7 Using the Peripheral DMA Controller (PDC)

The use of the PDC significantly reduces the CPU load.

To ensure correct implementation, proceed as follows.

Data Transmit with the PDC

1. Initialize the transmit PDC (memory pointers, transfer size - 1).

2. Configure the master (DADR, CKDIV, MREAD = 0, etc.)

3. Start the transfer by setting the PDC TXTEN bit.

4. Wait for the PDC ENDTX Flag either by using the polling method or ENDTX interrupt.

5. Disable the PDC by setting the PDC TXTDIS bit.

6. Wait for the TXRDY flag in TWI_SR.

7. Set the STOP bit in TWI_CR.

8. Write the last character in TWI_THR.

9. (Only if peripheral clock must be disabled) Wait for the TXCOMP flag to be raised in TWI_SR.

Data Receive with the PDC

The PDC transfer size must be defined with the buffer size minus 2. The two remaining characters must be
managed without PDC to ensure that the exact number of bytes are received regardless of system bus latency
conditions encountered during the end of buffer transfer period.

In Slave mode, the number of characters to receive must be known in order to configure the PDC.

1. Initialize the receive PDC (memory pointers, transfer size - 2).

2. Configure the master (DADR, CKDIV, MREAD = 1, etc.)

3. Set the PDC RXTEN bit.

4. (Master Only) Write the START bit in the TWI_CR to start the transfer.

5. Wait for the PDC ENDRX Flag either by using polling method or ENDRX interrupt.

6. Disable the PDC by setting the PDC RXTDIS bit.

7. Wait for the RXRDY flag in TWI_SR.

S
T
A
R
T

M
S
B

Device
Address

0

L
S
B

R
/

W

A
C
K

M
S
B

W
R
I
T
E

A
C
K

A
C
K

L
S
B

A
C
K

FIRST
WORD ADDRESS

SECOND
WORD ADDRESS DATA

S
T
O
P

719SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

Figure 34-15. TWI Write Operation with Single Data Byte without Internal Address

Set TWI clock
(CLDIV, CHDIV, CKDIV) in TWI_CWGR

(Needed only once)

Set the Control register:
- Master enable

TWI_CR = MSEN + SVDIS

Set the Master Mode register:
- Device slave address (DADR)

- Transfer direction bit
Write ==> bit MREAD = 0

Load Transmit register
TWI_THR = Data to send

Read Status register

TXRDY = 1?

Read Status register

TXCOMP = 1?

Transfer finished

Yes

Yes

BEGIN

No

No

Write STOP Command
TWI_CR = STOP
721SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

When OPT_EN = 1, the URXD pad is automatically configured in Analog mode and the analog comparator is
enabled (see Figure 35-11).

To match the characteristics of the off-chip optical receiver circuitry, the voltage reference threshold of the
embedded comparator can be adjusted from VDDIO/10 up to VDD/2 by programming the OPT_CMPTH field in
UART_MR.

The NRZ output of the UART transmitter sub-module is modulated with the 30 up to 60 kHz modulation clock prior
to driving the PIO controller.

A logical 0 on the UART transmitter sub-module output generates the said modulated signal (see Figure 35-12)
having a frequency programmable from 30 kHz up to 60 kHz (38 kHz is the default value assuming the PLLA clock
frequency is 8192 kHz). A logical 1 on the UART transmitter sub-module output generates a stuck-at 1 output
signal (no modulation). The idle polarity of the modulated signal is 1 (OPT_MDINV = 0 in UART_MR).

The idle polarity of the modulated signal can be inverted by writing a 1 to the OPT_MDINV bit in UART_MR.

The duty cycle of the modulated signal can be adjusted from 6.25% up to 50% (default value) by steps of 6.25% by
programming the OPT_DUTY field in UART_MR.

Figure 35-11. Optical Interface Block Diagram

OPT_EN OPT_CLKDIV OPT_DUTY OPT_MDINV

OPT_CMPTH

OPT_EN

Baud Rate
Generator

Transmit

Receive

Interrupt
Control

Power
Management

Controller

peripheral
clock

uart_irq

UART

PLLACK

0

pio_irq

1

on

Optical Clock
Divider

Optical Duty Cycle
Generator

/8

1

Optical Modulation

Parallel
Input/
Output

UTXD

URXD

Analog
Comparator

0

vth

OPT_EN

OPT_RXINV

Optical Receive Logic
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

762

36.7.4 USART Mode Register (SPI_MODE)

Name: US_MR (SPI_MODE)

Address: 0x40024004 (0), 0x40028004 (1), 0x4002C004 (2), 0x40030004 (3), 0x40034004 (4)

Access: Read/Write

This configuration is relevant only if USART_MODE = 0xE or 0xF in the USART Mode Register.

• USART_MODE: USART Mode of Operation

• USCLKS: Clock Selection

• CHRL: Character Length

• CPHA: SPI Clock Phase

– Applicable if USART operates in SPI mode (USART_MODE = 0xE or 0xF):

0: Data is changed on the leading edge of SPCK and captured on the following edge of SPCK.

1: Data is captured on the leading edge of SPCK and changed on the following edge of SPCK.

CPHA determines which edge of SPCK causes data to change and which edge causes data to be captured. CPHA is used
with CPOL to produce the required clock/data relationship between master and slave devices.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – WRDBT – CLKO – CPOL

15 14 13 12 11 10 9 8

– – – – – – – CPHA

7 6 5 4 3 2 1 0

CHRL USCLKS USART_MODE

This register can only be written if the WPEN bit is cleared in the USART Write Protection Mode Register.

Value Name Description

0xE SPI_MASTER SPI master

0xF SPI_SLAVE SPI Slave

Value Name Description

0 MCK Peripheral clock is selected

1 DIV Peripheral clock divided (DIV=8) is selected

3 SCK Serial Clock SLK is selected

Value Name Description

3 8_BIT Character length is 8 bits
819SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

37.7.8 TC Register C

Name: TC_RCx [x=0..2]

Address: 0x4001001C (0)[0], 0x4001005C (0)[1], 0x4001009C (0)[2], 0x4001401C (1)[0], 0x4001405C (1)[1],
0x4001409C (1)[2]

Access: Read/Write

This register can only be written if the WPEN bit is cleared in the TC Write Protection Mode Register.

• RC: Register C

RC contains the Register C value in real time.

IMPORTANT: For 16-bit channels, RC field size is limited to register bits 15:0.

31 30 29 28 27 26 25 24

RC

23 22 21 20 19 18 17 16

RC

15 14 13 12 11 10 9 8

RC

7 6 5 4 3 2 1 0

RC
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

880

37.7.16 TC QDEC Interrupt Disable Register

Name: TC_QIDR

Address: 0x400100CC (0), 0x400140CC (1)

Access: Write-only

• IDX: Index

0: No effect.

1: Disables the interrupt when a rising edge occurs on IDX input.

• DIRCHG: Direction Change

0: No effect.

1: Disables the interrupt when a change on rotation direction is detected.

• QERR: Quadrature Error

0: No effect.

1: Disables the interrupt when a quadrature error occurs on PHA, PHB.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – QERR DIRCHG IDX
893SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

46.5.4 VDDCORE Brownout Detector

Note: 1. The product is guaranteed to be functional at VIT-.

Figure 46-13. Core Brownout Output Waveform

Figure 46-14. Core Brownout Transfer Characteristics

Table 46-20. LCD Buffers Characteristics

Symbol Parameter Conditions Min Typ Max Unit

IDDIN Current consumption (VDDIN) LDO enabled – 25 35 µA

ZOUT Buffer output impedance GPIO in LCD mode (SEG or COM) 200 500 1500 Ω

CLOAD Capacitive output load – 10p – 50n F

tr / tf
Rising or falling time

95% convergence

CLOAD = 10 pF

CLOAD = 50 nF
– –

3

225
µs

Table 46-21. Core Power Supply Brownout Detector Characteristics

Symbol Parameter Conditions Min Typ Max Unit

VIT-
Negative-going input threshold voltage
(VDDCORE) (1) – 0.98 1.0 1.04 V

VIT+
Positive-going input threshold voltage
(VDDCORE)

– 0.80 1.0 1.08 V

VHYST Hysteresis voltage VIT+ - VIT- – 25 50 mV

td- VIT- detection propagation time VDDCORE = VIT+ to (VIT- - 100mV) – 200 300 ns

tSTART Start-up time From disabled state to enabled state – – 300 µs

IDDCORE Current consumption (VDDCORE) Brownout detector enabled – – 15 µA

IDDIO Current consumption (VDDIO) Brownout detector enabled – – 18 µA

t

VDDCORE

VIT-

VIT+

BODCORE_out

t

td+td-

VDDCORE

Increasing Supply

Vhyst

Decreasing Supply

Vth- Vth+

BODCORE_out
SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

1094

Figure 46-28. Typical Current Consumption in Active Mode (Test Setup 2)

46.7.4.3 Test Setup 3: CoreMark

 CoreMark on Core 0 (CM4P0) running out of Flash in 128-bit or 64-bit Access mode with and without Cache
Enabled. Cache is enabled above 0 WS.

 CoreMark on Core 1 (CM4P1) running out of SRAM1 (Code) / SRAM2 (Data)

SAM4Cx4/8/16 SAM4Cx32

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100 110 120

ID
D

 (m
A)

Master Clock Frequency (MHz)

IDDIN (AMP1)

IDDIO (AMP2)

IDDCORE (AMP3)

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100 110 120

ID
D

 (m
A)

Master Clock Frequency (MHz)

IDDIN (AMP1)

IDDIO (AMP2)

IDDCORE (AMP3)

Table 46-66. SAM4CM4/8/16 Test Setup 3 Current Consumption

Clock
(MHz)

128-bit Flash Access 64-bit Flash Access

Unit

Cache Enabled Cache Disabled Cache Enabled Cache Disabled

IDD_IN

(AMP1)

IDD_I0

(AMP2)

IDD_CORE

(AMP3)

IDD_IN

(AMP1)

IDD_I0

(AMP2)

IDD_CORE

(AMP3)

IDD_IN

(AMP1)

IDD_I0

(AMP2)

IDD_CORE

(AMP3)

IDD_IN

(AMP1)

IDD_I0

(AMP2)

IDD_CORE

(AMP3)

120 31.3 0.28 28.0 34.2 1.9 30.9 31.3 0.28 28.0 30.7 1.8 27.4

mA

100 26.4 0.28 23.6 29.8 1.8 27.1 26.4 0.28 23.6 27.0 1.8 24.3

84 22.4 0.28 20.1 26.3 1.7 24.0 22.4 0.28 20.1 24.1 1.7 21.8

64 17.2 0.28 15.6 21.0 1.5 19.3 17.2 0.28 15.6 19.6 1.6 18.0

48 13.1 0.28 11.8 16.6 1.4 15.3 13.1 0.28 11.8 16.0 1.6 14.7

32 9.8 0.28 8.1 12.6 1.2 10.9 9.8 0.28 8.1 12.3 1.4 10.6

24 7.4 0.28 6.2 9.5 1.1 8.3 7.4 0.28 6.2 9.4 1.3 8.1

12 3.1 0.11 3.1 4.2 0.88 4.2 3.1 0.11 3.1 4.2 1.2 4.2

8 2.1 0.11 2.1 2.8 0.78 2.8 2.1 0.11 2.1 2.8 1.0 2.8

4 1.1 0.11 1.1 1.5 0.58 1.5 1.1 0.11 1.1 1.5 0.9 1.5

2 0.63 0.11 0.61 0.82 0.40 0.81 0.63 0.11 0.61 0.82 0.66 0.81

1 0.38 0.11 0.37 0.47 0.26 0.46 0.38 0.11 0.37 0.47 0.38 0.46

0.5 0.25 0.11 0.24 0.30 0.18 0.29 0.25 0.11 0.24 0.30 0.23 0.29

0.25 0.14 0.11 0.13 0.16 0.12 0.15 0.14 0.11 0.13 0.16 0.14 0.15
1123SAM4CM Series [DATASHEET]
Atmel-11203E-ATARM-SAM4CM32-SAM4CM16-SAM4CM8-SAM4CM4-Datasheet_24-Oct-16

