# E·XFL



#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                    |
|----------------------------|---------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M4/M4F                                                       |
| Core Size                  | 32-Bit Dual-Core                                                          |
| Speed                      | 120MHz                                                                    |
| Connectivity               | EBI/EMI, I <sup>2</sup> C, IrDA, SPI, UART/USART                          |
| Peripherals                | Brown-out Detect/Reset, DMA, LCD, POR, PWM, WDT                           |
| Number of I/O              | 57                                                                        |
| Program Memory Size        | 512KB (512K x 8)                                                          |
| Program Memory Type        | FLASH                                                                     |
| EEPROM Size                | -                                                                         |
| RAM Size                   | 128K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 1.62V ~ 3.6V                                                              |
| Data Converters            | A/D 6x10b                                                                 |
| Oscillator Type            | Internal                                                                  |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                         |
| Mounting Type              | Surface Mount                                                             |
| Package / Case             | 100-LQFP                                                                  |
| Supplier Device Package    | 100-LQFP (14x14)                                                          |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/atsam4cms8cc-au |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 12.6.6.11 UMULL, UMLAL, SMULL, and SMLAL

Signed and Unsigned Long Multiply, with optional Accumulate, using 32-bit operands and producing a 64-bit result.

Syntax

op{cond} RdLo, RdHi, Rn, Rm

where:

| ор         | is one of:                                                                                |
|------------|-------------------------------------------------------------------------------------------|
|            | UMULL Unsigned Long Multiply.                                                             |
|            | UMLAL Unsigned Long Multiply, with Accumulate.                                            |
|            | SMULL Signed Long Multiply.                                                               |
|            | SMLAL Signed Long Multiply, with Accumulate.                                              |
| cond       | is an optional condition code, see "Conditional Execution".                               |
| RdHi, RdLo | are the destination registers. For UMLAL and SMLAL they also hold the accumulating value. |
| Rn, Rm     | are registers holding the operands.                                                       |

Operation

The UMULL instruction interprets the values from *Rn* and *Rm* as unsigned integers. It multiplies these integers and places the least significant 32 bits of the result in *RdLo*, and the most significant 32 bits of the result in *RdHi*.

The UMLAL instruction interprets the values from *Rn* and *Rm* as unsigned integers. It multiplies these integers, adds the 64-bit result to the 64-bit unsigned integer contained in *RdHi* and *RdLo*, and writes the result back to *RdHi* and *RdLo*.

The SMULL instruction interprets the values from *Rn* and *Rm* as two's complement signed integers. It multiplies these integers and places the least significant 32 bits of the result in *RdLo*, and the most significant 32 bits of the result in *RdHi*.

The SMLAL instruction interprets the values from *Rn* and *Rm* as two's complement signed integers. It multiplies these integers, adds the 64-bit result to the 64-bit signed integer contained in *RdHi* and *RdLo*, and writes the result back to *RdHi* and *RdLo*.

### Restrictions

In these instructions:

- Do not use SP and do not use PC
- RdHi and RdLo must be different registers.

**Condition Flags** 

These instructions do not affect the condition code flags.

Examples

```
      UMULL
      R0, R4, R5, R6
      ; Unsigned (R4,R0) = R5 x R6

      SMLAL
      R4, R5, R3, R8
      ; Signed (R5,R4) = (R5,R4) + R3 x R8
```

#### 12.6.9.1 BFC and BFI

Bit Field Clear and Bit Field Insert.

Syntax

BFC{cond} Rd, #lsb, #width
BFI{cond} Rd, Rn, #lsb, #width

where:

cond is an optional condition code, see "Conditional Execution".

Rd is the destination register.

Rn is the source register.

lsb is the position of the least significant bit of the bitfield. *Isb* must be in the range 0 to 31.

width is the width of the bitfield and must be in the range 1 to 32-*lsb*.

Operation

BFC clears a bitfield in a register. It clears *width* bits in *Rd*, starting at the low bit position *lsb*. Other bits in *Rd* are unchanged.

BFI copies a bitfield into one register from another register. It replaces *width* bits in *Rd* starting at the low bit position *lsb*, with *width* bits from *Rn* starting at bit[0]. Other bits in *Rd* are unchanged.

Restrictions

Do not use SP and do not use PC.

**Condition Flags** 

These instructions do not affect the flags.

#### Examples

| BFC | R4, | #8, | #12 |     | ; | Clear bi  | t 8 | to  | bit 1 | L9 (1 | 2 b | lts) d | of R | 4 to | 0    |
|-----|-----|-----|-----|-----|---|-----------|-----|-----|-------|-------|-----|--------|------|------|------|
| BFI | R9, | R2, | #8, | #12 | ; | Replace I | bit | 8 t | o bit | : 19  | (12 | bits   | ) of | R9   | with |
|     |     |     |     |     | ; | bit 0 to  | bit | 11  | from  | n R2. |     |        |      |      |      |

#### 12.6.11.13 VMOV Immediate

Move floating-point Immediate

Syntax

VMOV{cond}.F32 Sd, #imm

where:

cond is an optional condition code, see "Conditional Execution".

Sd is the branch destination.

imm is a floating-point constant.

Operation

This instruction copies a constant value to a floating-point register.

Restrictions

There are no restrictions.

**Condition Flags** 

These instructions do not change the flags.







The inaccuracy of a crystal oscillator at typical room temperature (±20 ppm at 20–25 °C) can be compensated if a reference clock/signal is used to measure such inaccuracy. This kind of calibration operation can be set up during the final product manufacturing by means of measurement equipment embedding such a reference clock. The correction of value must be programmed into the (RTC\_MR), and this value is kept as long as the circuitry is powered (backup area). Removing the backup power supply cancels this calibration. This room temperature calibration can be further processed by means of the networking capability of the target application.



| 17.6.3 RTC | Time Register |    |    |     |    |    |    |
|------------|---------------|----|----|-----|----|----|----|
| Name:      | RTC_TIMR      |    |    |     |    |    |    |
| Address:   | 0x400E1468    |    |    |     |    |    |    |
| Access:    | Read/Write    |    |    |     |    |    |    |
| 31         | 30            | 29 | 28 | 27  | 26 | 25 | 24 |
| _          | -             | _  | _  | _   | _  | -  | -  |
| 23         | 22            | 21 | 20 | 19  | 18 | 17 | 16 |
| _          | AMPM          |    |    | HO  | UR |    |    |
| 15         | 14            | 13 | 12 | 11  | 10 | 9  | 8  |
| _          |               |    |    | MIN |    |    |    |
| 7          | 6             | 5  | 4  | 3   | 2  | 1  | 0  |
| _          |               |    |    | SEC |    |    |    |

## • SEC: Current Second

The range that can be set is 0–59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

### • MIN: Current Minute

The range that can be set is 0–59 (BCD).

The lowest four bits encode the units. The higher bits encode the tens.

## • HOUR: Current Hour

The range that can be set is 1–12 (BCD) in 12-hour mode or 0–23 (BCD) in 24-hour mode.

## • AMPM: Ante Meridiem Post Meridiem Indicator

This bit is the AM/PM indicator in 12-hour mode.

0: AM.

1: PM.





| Slave 0 | Internal SRAM1         |
|---------|------------------------|
| Slave 1 | Internal SRAM2         |
| Slave 2 | External Bus Interface |
| Slave 3 | Peripheral Bridge 1    |
| Slave 4 | Matrix0                |
| Slave 5 | CMCC1                  |

## Table 26-5. List of Bus Matrix Slaves

#### 26.2.2.3 Master to Slave Access (Matrix 1)

Table 26-6 gives valid paths for master to slave access on Matrix 1. The paths shown as "-" are forbidden or not wired, e.g. access from the Cortex-M4 S Bus to the Internal ROM.

#### Table 26-6. Matrix 1 Master to Slave Access

|        | Masters                |                      |                    |      |         |                 |       |
|--------|------------------------|----------------------|--------------------|------|---------|-----------------|-------|
|        |                        | 0                    | 1                  | 2    | 3       | 4               | 5     |
| Slaves |                        | Cortex-M4<br>I/D Bus | Cortex-M4<br>S Bus | PDC1 | Matrix0 | EBI<br>Matrix 0 | CMCC1 |
| 0      | Internal SRAM1         | Х                    | Х                  | Х    | Х       | -               | -     |
| 1      | Internal SRAM2         | -                    | Х                  | Х    | Х       | -               | -     |
| 2      | External Bus Interface | Х                    | Х                  | Х    | -       | Х               | Х     |
| 3      | Peripheral Bridge 1    | -                    | Х                  | Х    | Х       | -               | -     |
| 4      | Matrix0                | Х                    | Х                  | -    | -       | -               | Х     |
| 5      | CMCC1                  | Х                    | -                  | -    | -       | -               | -     |

## 26.2.2.4 Accesses through Matrix 1

- CM4P1 I/D Bus access to:
  - Flash (through 0x01000000 to 0x01FFFFFF)
  - EBI (through 0x03000000 to 0x06FFFFFF)
  - FLASH and EBI through Cache CMCC1
- CM4P1 S-Bus access to:
  - SRAM1, SRAM2, SRAM0 through Matrix0 (0x20000000),
  - EBI (0x60000000 to 0x63FFFFF and 0xA0000000 to 0xA3FFFFF),
  - HBRIDGE1, HBRIDGE0 through Matrix0 (0x40000000)
- PDC1 access to:
  - SRAM1, SRAM2
  - EBI (0x60000000 to 0x63FFFFF),
  - HBRIDGE1
- Matrix0 access to:
  - SRAM1, SRAM2,
  - HBRIDGE1
- EBI from Matrix 0 access to:
  - EBI (through 0x030000000 to 0x06FFFFFF, 0x60000000 to 0x63FFFFFF, 0xA0000000 to A3FFFFFF)



## 27.3 I/O Lines Description

| Name      | Description                                | Туре   | Active Level |
|-----------|--------------------------------------------|--------|--------------|
| NCS[3:0]  | Static Memory Controller Chip Select Lines | Output | Low          |
| NRD       | Read Signal                                | Output | Low          |
| NWR0/NWE  | Write 0/Write Enable Signal                | Output | Low          |
| NWR1/NBS1 | Write 1/Byte 1 Select Signal               | Output | Low          |
| A0/NBS0   | Address Bit 0/Byte 0 Select Signal         | Output | Low          |
| A[23:1]   | Address Bus                                | Output | _            |
| D[15:0]   | Data Bus                                   | I/O    | _            |
| NWAIT     | External Wait Signal                       | Input  | Low          |
| NANDCS    | NAND Flash Chip Select Line                | Output | Low          |
| NANDOE    | NAND Flash Output Enable                   | Output | Low          |
| NANDWE    | NAND Flash Write Enable                    | Output | Low          |
| NANDALE   | NAND Flash Address Latch Enable            | Output | _            |
| NANDCLE   | NAND Flash Command Latch Enable            | Output | _            |

#### Table 27-1. I/O Line Description

## 27.4 Product Dependencies

#### 27.4.1 I/O Lines

The pins used for interfacing the SMC are multiplexed with the PIO lines. The programmer must first program the PIO controller to assign the SMC pins to their peripheral function. If I/O Lines of the SMC are not used by the application, they can be used for other purposes by the PIO Controller.

#### 27.4.2 Power Management

The SMC is clocked through the Power Management Controller (PMC), thus the programmer must first configure the PMC to enable the SMC clock.

## 27.5 Multiplexed Signals

 Table 27-2.
 Static Memory Controller (SMC) Multiplexed Signals

| Multiplexed | Signals | Related Function                                                                                                        |
|-------------|---------|-------------------------------------------------------------------------------------------------------------------------|
| NWR0        | NWE     | Byte-write or Byte-select access.<br>See Section 27.7.2.1 "Byte Write Access" and Section 27.7.2.2 "Byte Select Access" |
| A0          | NBS0    | 8-bit or 16-bit data bus. See Section 27.7.1 "Data Bus Width"                                                           |
| NWR1        | NBS1    | Byte-write or Byte-select access. See Section 27.7.2.1 "Byte Write Access" and Section 27.7.2.2 "Byte Select Access"    |
| A22         | NANDCLE | NAND Flash Command Latch Enable                                                                                         |
| A21         | NANDALE | NAND Flash Address Latch Enable                                                                                         |



- Falling edge on PIO line 6
- Rising edge on PIO line 7
- Any edge on the other lines

Table 32-2 provides the required configuration for this example.

| Table 32-2 | Configuration for Example Interrupt Generation |
|------------|------------------------------------------------|
|            |                                                |

| Configuration                         | Description                                                                                                                                                                                                                                              |  |  |  |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                       | All the interrupt sources are enabled by writing 32'hFFFF_FFFF in PIO_IER.                                                                                                                                                                               |  |  |  |  |  |
| Interrupt Mode                        | Then the additional interrupt mode is enabled for lines 0 to 7 by writing 32'h0000_00FF in PIO_AIMER.                                                                                                                                                    |  |  |  |  |  |
|                                       | Lines 3, 4 and 5 are configured in level detection by writing 32'h0000_0038 in PIO_LSR.                                                                                                                                                                  |  |  |  |  |  |
| Edge or Level Detection               | The other lines are configured in edge detection by default, if they have not been previously configured. Otherwise, lines 0, 1, 2, 6 and 7 must be configured in edge detection by writing 32'h0000_00C7 in PIO_ESR.                                    |  |  |  |  |  |
| Falling/Piking Edge or Low/High Lovel | Lines 0, 2, 4, 5 and 7 are configured in rising edge or high-level detection by writing 32'h0000_00B5 in PIO_REHLSR.                                                                                                                                     |  |  |  |  |  |
| Detection                             | The other lines are configured in falling edge or low-level detection by default if they have not been previously configured. Otherwise, lines 1, 3 and 6 must be configured in falling edge/low-level detection by writing 32'h0000_004A in PIO_FELLSR. |  |  |  |  |  |

#### Figure 32-7. Input Change Interrupt Timings When No Additional Interrupt Modes



#### 32.5.11 Programmable I/O Drive

It is possible to configure the I/O drive for pads PA0 to PA31. Refer to Section 46. "Electrical Characteristics".

#### 32.5.12 Programmable Schmitt Trigger

It is possible to configure each input for the Schmitt trigger. By default the Schmitt trigger is active. Disabling the Schmitt trigger is requested when using the QTouch<sup>®</sup> Library.

#### 32.5.13 I/O Lines Programming Example

The programming example shown in Table 32-3 is used to obtain the following configuration:

- 4-bit output port on I/O lines 0 to 3 (should be written in a single write operation), open-drain, with pull-up resistor
- Four output signals on I/O lines 4 to 7 (to drive LEDs for example), driven high and low, no pull-up resistor, no pull-down resistor
- Four input signals on I/O lines 8 to 11 (to read push-button states for example), with pull-up resistors, glitch filters and input change interrupts



Figure 33-13. Slave Mode Functional Block Diagram



#### 33.7.5 Register Write Protection

To prevent any single software error from corrupting SPI behavior, certain registers in the address space can be write-protected by setting the WPEN bit in the SPI Write Protection Mode Register (SPI\_WPMR).

If a write access to a write-protected register is detected, the WPVS flag in the SPI Write Protection Status Register (SPI\_WPSR) is set and the WPVSRC field indicates the register in which the write access has been attempted.

The WPVS bit is automatically cleared after reading SPI\_WPSR.

The following registers can be write-protected:

- SPI Mode Register
- SPI Chip Select Register

## • TXBUFE: TX Buffer Empty (cleared by writing SPI\_TCR or SPI\_TNCR)

0: SPI\_TCR<sup>(1)</sup> or SPI\_TNCR<sup>(1)</sup> has a value other than 0.

1: Both SPI\_TCR<sup>(1)</sup> and SPI\_TNCR<sup>(1)</sup> have a value of 0.

## • NSSR: NSS Rising (cleared on read)

0: No rising edge detected on NSS pin since the last read of SPI\_SR.

1: A rising edge occurred on NSS pin since the last read of SPI\_SR.

## • TXEMPTY: Transmission Registers Empty (cleared by writing SPI\_TDR)

0: As soon as data is written in SPI\_TDR.

1: SPI\_TDR and internal shift register are empty. If a transfer delay has been defined, TXEMPTY is set after the end of this delay.

## • UNDES: Underrun Error Status (Slave mode only) (cleared on read)

0: No underrun has been detected since the last read of SPI\_SR.

1: A transfer starts whereas no data has been loaded in SPI\_TDR.

## • SPIENS: SPI Enable Status

0: SPI is disabled.

1: SPI is enabled.

Note: 1. SPI\_RCR, SPI\_RNCR, SPI\_TCR, SPI\_TNCR are PDC registers.











## 34.8.4 TWI Internal Address Register

| Name:    | TWI_IADR       |              |     |    |    |    |    |  |  |  |
|----------|----------------|--------------|-----|----|----|----|----|--|--|--|
| Address: | 0x4001800C (0) | , 0x4001C00C | (1) |    |    |    |    |  |  |  |
| Access:  | Read/Write     |              |     |    |    |    |    |  |  |  |
| 31       | 30             | 29           | 28  | 27 | 26 | 25 | 24 |  |  |  |
| _        | -              | _            | _   | _  | -  | _  | _  |  |  |  |
| 23       | 22             | 21           | 20  | 19 | 18 | 17 | 16 |  |  |  |
|          |                |              | IAI | DR |    |    |    |  |  |  |
| 15       | 14             | 13           | 12  | 11 | 10 | 9  | 8  |  |  |  |
|          |                |              | IAI | DR |    |    |    |  |  |  |
| 7        | 6              | 5            | 4   | 3  | 2  | 1  | 0  |  |  |  |
|          | IADR           |              |     |    |    |    |    |  |  |  |

## • IADR: Internal Address

0, 1, 2 or 3 bytes depending on IADRSZ.



## 37.7.5 TC Counter Value Register

Name: TC\_CVx [x=0..2]

Address: 0x40010010 (0)[0], 0x40010050 (0)[1], 0x40010090 (0)[2], 0x40014010 (1)[0], 0x40014050 (1)[1], 0x40014090 (1)[2]

| Access: | Read-only |    |    |    |    |    |    |
|---------|-----------|----|----|----|----|----|----|
| 31      | 30        | 29 | 28 | 27 | 26 | 25 | 24 |
|         |           |    | C  | V  |    |    |    |
| 23      | 22        | 21 | 20 | 19 | 18 | 17 | 16 |
|         |           |    | C  | V  |    |    |    |
| 15      | 14        | 13 | 12 | 11 | 10 | 9  | 8  |
|         |           |    | C  | V  |    |    |    |
| 7       | 6         | 5  | 4  | 3  | 2  | 1  | 0  |
|         |           |    | C  | V  |    |    |    |

## • CV: Counter Value

CV contains the counter value in real time.

IMPORTANT: For 16-bit channels, CV field size is limited to register bits 15:0.

## 40.7.14 ADC Overrun Status Register

| Name:    | ADC_OVER   |    |    |       |       |       |       |
|----------|------------|----|----|-------|-------|-------|-------|
| Address: | 0x4003803C |    |    |       |       |       |       |
| Access:  | Read-only  |    |    |       |       |       |       |
| 31       | 30         | 29 | 28 | 27    | 26    | 25    | 24    |
| _        | -          | -  | -  | -     | -     | -     | -     |
| 23       | 22         | 21 | 20 | 19    | 18    | 17    | 16    |
| _        | _          | _  | _  | _     | _     | _     | _     |
| 15       | 14         | 13 | 12 | 11    | 10    | 9     | 8     |
| -        | -          | -  | -  | -     | -     | -     | -     |
| 7        | 6          | 5  | 4  | 3     | 2     | 1     | 0     |
| OVRE7    | OVRE6      | —  | —  | OVRE3 | OVRE2 | OVRE1 | OVRE0 |

### • OVREx: Overrun Error x

0: No overrun error on the corresponding channel since the last read of ADC\_OVER.

1: There has been an overrun error on the corresponding channel since the last read of ADC\_OVER.

Note: An overrun error does not always mean that the unread data has been replaced by a new valid data. Refer to Section 40.6.11 "Enhanced Resolution Mode and Digital Averaging Function" for details.

- If the first block of the fragment is a block of Plaintext data, set IV in AES\_IVRx with a value constructed as follows: 'LSB96(J0) || CTR' value, (96 bit LSB of J0 concatenated with saved CTR value from previous fragment).
- 4. Set AADLEN field in AES\_AADLENR and CLEN field in AES\_CLENR according to the length of the current fragment, or set the fields with the remaining message length, both configurations work.
- 5. Fill the GHASH field of AES\_GHASHRx with the value stored after the previous fragment.
- 6. Fill the IDATA field of AES\_IDATARx with the current fragment of the message to process (aligned on 16 byte boundary) according to the SMOD configuration used. If Manual Mode or Auto Mode is used, the DATRDY bit indicates when the data have been processed (however, no output data are generated when processing *AAD*).
- 7. Make sure the last output data have been read if the fragment ends in C phase (or wait for DATRDY if the fragment ends in *AAD* phase), then read the GHASH field of AES\_GHASHRx to obtain the value of the hash after the last processed data and finally read the CTR field of the AES\_CTR to obtain the value of the CTR encryption counter (not needed when the fragment ends in *AAD* phase).

Note: Step 1 and 2 are required only if the value of the concerned registers has been modified.

Once the last fragment has been processed, the GHASH value will allow manual generation of the GCM tag (see "Manual GCM Tag Generation" for details).

### **Manual GCM Tag Generation**

This section describes the last steps of the GCM Tag generation.

The Manual GCM Tag Generation is used to complete the GCM Tag Generation when the message has been processed without Tag Generation.

Note: The Message Processing without Tag Generation must be finished before processing the Manual GCM Tag Generation.

To generate a GCM Tag manually, the sequence is as follows:

Processing  $S = GHASH_H (AAD || 0_V || C || 0_u || [len(AAD)]_{64} || [len(C)]_{64})$ :

- 1. In AES\_MR set OPMOD to GCM and GTAGEN to '0' (configuration as usual for the rest).
- 2. Set KEYW in AES\_KEYWRx and wait for DATRDY bit of AES\_ISR to be set (GCM hash subkey generation complete); use interrupt if needed. After the GCM hash subkey generation is complete the GCM hash subkey can be read or overwritten with specific value in the AES\_GCMHRx (see Section 42.4.6.2 "Key Writing and Automatic Hash Subkey Calculation" for details).
- 3. Set AADLEN field to 0x10 (16 bytes) in AES\_AADLENR and CLEN field to '0' in AES\_CLENR. This will allow running a single GHASHH on a 16-byte input data (see Figure 42-7).
- 4. Fill the GHASH field of AES\_GHASHRx with the state of the GHASH field stored at the end of the message processing.
- 5. Fill the IDATA field of AES\_IDATARx according to the SMOD configuration used with ' $len(AAD)_{64} || len(C)_{64}$ ' value as described in the NIST documentation and wait for DATRDY to be set; use interrupt if needed.
- 6. Read the GHASH field of AES\_GHASHRx to obtain the current value of the hash.

Processing  $T = \text{GCTR}\kappa(J_0, S)$ :

- 7. In AES\_MR set OPMOD to CTR (configuration as usual for the rest).
- 8. Set the IV field in AES\_IVRx with ' $J_0$ ' value.
- 9. Fill the IDATA field of AES\_IDATARx with the GHASH value read at step 6 and wait for DATRDY to be set (use interrupt if needed).
- 10. Read the ODATA field of AES\_ODATARx to obtain the GCM Tag value.

Note: Step 4 is optional if the GHASH field is to be filled with value '0' (0 length packet for instance).



## 42.5.16 AES GCM H Word Register x

| Name:    | AES_GCMHRx [x=03] |    |    |    |    |    |    |  |  |  |
|----------|-------------------|----|----|----|----|----|----|--|--|--|
| Address: | 0x4000009C        |    |    |    |    |    |    |  |  |  |
| Access:  | Read/Write        |    |    |    |    |    |    |  |  |  |
| 31       | 30                | 29 | 28 | 27 | 26 | 25 | 24 |  |  |  |
|          |                   |    | ŀ  | 1  |    |    |    |  |  |  |
| 23       | 22                | 21 | 20 | 19 | 18 | 17 | 16 |  |  |  |
|          |                   |    | ŀ  | 1  |    |    |    |  |  |  |
| 15       | 14                | 13 | 12 | 11 | 10 | 9  | 8  |  |  |  |
|          |                   |    | ŀ  | 1  |    |    |    |  |  |  |
| 7        | 6                 | 5  | 4  | 3  | 2  | 1  | 0  |  |  |  |
|          |                   |    | ŀ  | 1  |    |    |    |  |  |  |

### • H: GCM H Word x

The four 32-bit H Word registers contain the 128-bit GCM hash subkey H value.

Whenever a new key (AES\_KEYWRx) is written to the hardware two automatic actions are processed:

- GCM hash subkey H generation
- AES\_GHASHRx Clear

If the application software requires a specific hash subkey, the automatically generated H value can be overwritten in the AES\_GCMHRx (see Section 42.4.6.2 "Key Writing and Automatic Hash Subkey Calculation" for details).

The choice of a GCM hash subkey H by a write in the AES\_GCMHRx permits

- selection of the GCM hash subkey H for GHASH operations
- selection of one operand to process a single GF128 multiply

## 46.6 Embedded Flash Characteristics

## 46.6.1 Embedded Flash DC Characteristics

#### Table 46-50. DC Flash Characteristics

| Symbol          | Parameter      | Conditions                                                    | Тур | Max | Unit |
|-----------------|----------------|---------------------------------------------------------------|-----|-----|------|
|                 |                | Random 128-bit Read:                                          |     |     |      |
|                 |                | Maximum Read Frequency onto V <sub>DDCORE</sub> = 1.2V @ 25°C | 16  | 25  | mA   |
|                 |                | Maximum Read Frequency onto V <sub>DDIO</sub> = 3.3V @ 25°C   | 3   | 5   |      |
|                 |                | Random 64-bit Read:                                           |     |     |      |
| I <sub>cc</sub> | Active current | Maximum Read Frequency onto V <sub>DDCORE</sub> = 1.2V @ 25°C | 10  | 18  | mA   |
|                 |                | Maximum Read Frequency onto $V_{DDIO} = 3.3V @ 25^{\circ}C$   | 3   | 5   |      |
|                 |                | Program:                                                      |     |     |      |
|                 |                | - Onto V <sub>DDCORE</sub> = 1.2V @ 25°C                      | 3   | 5   | mA   |
|                 |                | - Onto V <sub>DDIO</sub> = 3.3V @ 25°C                        | 10  | 15  |      |
|                 |                | Erase:                                                        |     |     |      |
|                 |                | - Onto V <sub>DDCORE</sub> = 1.2V @ 25°C                      | 3   | 5   | mA   |
|                 |                | - Onto V <sub>DDIO</sub> = 3.3V @ 25°C                        | 10  | 15  |      |

#### 46.6.2 Embedded Flash AC Characteristics

## Table 46-51. AC Flash Characteristics

| Parameter                | Conditions                                          | Min | Тур | Max | Unit   |
|--------------------------|-----------------------------------------------------|-----|-----|-----|--------|
|                          | Write page (512 bytes)                              | -   | 1.5 | 3   | ms     |
|                          | Erase page                                          | -   | 10  | 50  | ms     |
|                          | Erase block (4 Kbytes)                              | -   | 50  | 200 | ms     |
| Program/ Erase Operation | Erase sector                                        | -   | 400 | 950 | ms     |
| Cycle Time               | Full chip erase                                     |     |     |     |        |
|                          | - 1 Mbyte                                           | -   | 9   | 18  | S      |
|                          | - 512 Kbytes                                        |     | 5.5 | 11  |        |
|                          | Lock/Unlock time per region                         | -   | 1.5 | 3   | ms     |
| Data Retention           | Not powered or powered                              | -   | 20  | -   | Years  |
| Endurance                | Write/Erase cycles per page, block or sector @ 85°C | 10K | -   | -   | Cycles |



#### 46.7.4.1 Test Setup 1: CoreMark™

- CoreMark on Core 0 (CM4P0) running out of flash in 128-bit or 64-bit Access mode with and without Cache Enabled. Cache is enabled above 0 WS.
- Sub-system 1 Master Clock (CPBMCK) and Core Clock (CPHCLK) stopped and in reset state

|                | 128-bit Flash Access |          |          |                |        |          | 64-bit Flash Access |           |          |                |        |          |      |
|----------------|----------------------|----------|----------|----------------|--------|----------|---------------------|-----------|----------|----------------|--------|----------|------|
|                | Cache Enabled        |          |          | Cache Disabled |        |          | Cache Enabled       |           |          | Cache Disabled |        |          |      |
| Clock<br>(MHz) | IDD_IN               | IDD_I0   | IDD_CORE | IDD_IN         | IDD_I0 | IDD_CORE | IDD_IN              | IDD_I0    | IDD_CORE | IDD_IN         | IDD_I0 | IDD_CORE | Unit |
| (100           |                      | (ANII 2) | (ANII 3) |                |        | (ANII 3) |                     | (AIIII 2) |          |                |        |          | Onic |
| 120            | 21.8                 | 0.27     | 18.5     | 24.4           | 2.0    | 21.1     | 21.5                | 0.27      | 18.3     | 21.2           | 1.9    | 17.9     |      |
| 100            | 18.1                 | 0.27     | 15.4     | 21.6           | 1.8    | 18.9     | 18.1                | 0.27      | 15.4     | 19.0           | 1.8    | 16.3     |      |
| 84             | 15.3                 | 0.27     | 13.0     | 18.8           | 1.7    | 16.6     | 15.3                | 0.27      | 13.0     | 16.8           | 1.7    | 14.5     |      |
| 64             | 11.8                 | 0.27     | 10.1     | 15.2           | 1.5    | 13.5     | 11.8                | 0.27      | 10.1     | 14.1           | 1.4    | 12.5     |      |
| 48             | 9.2                  | 0.27     | 7.9      | 11.7           | 1.4    | 10.5     | 9.2                 | 0.27      | 7.9      | 11.3           | 1.3    | 10.0     |      |
| 32             | 7.2                  | 0.27     | 5.6      | 9.5            | 1.2    | 7.9      | 7.2                 | 0.27      | 5.6      | 9.3            | 1.2    | 7.7      |      |
| 24             | 5.6                  | 0.27     | 4.3      | 7.5            | 1.1    | 6.2      | 5.6                 | 0.27      | 4.3      | 7.2            | 1.2    | 5.9      | m۸   |
| 12             | 2.4                  | 0.09     | 2.4      | 3.1            | 0.9    | 3.1      | 2.4                 | 0.09      | 2.4      | 3.1            | 1.0    | 3.1      | ШA   |
| 8              | 1.6                  | 0.09     | 1.6      | 2.1            | 0.7    | 2.1      | 1.6                 | 0.09      | 1.6      | 2.1            | 0.9    | 2.1      |      |
| 4              | 1.0                  | 0.09     | 1.0      | 1.4            | 0.5    | 1.4      | 1.0                 | 0.09      | 1.0      | 1.4            | 0.8    | 1.4      |      |
| 2              | 0.70                 | 0.09     | 0.69     | 0.90           | 0.40   | 0.90     | 0.70                | 0.09      | 0.69     | 0.70           | 0.70   | 0.70     |      |
| 1              | 0.54                 | 0.09     | 0.53     | 0.65           | 0.30   | 0.65     | 0.55                | 0.09      | 0.54     | 0.65           | 0.40   | 0.65     |      |
| 0.5            | 0.47                 | 0.09     | 0.46     | 0.50           | 0.20   | 0.50     | 0.47                | 0.09      | 0.46     | 0.60           | 0.20   | 0.60     |      |
| 0.25           | 0.25                 | 0.09     | 0.24     | 0.26           | 0.10   | 0.25     | 0.25                | 0.09      | 0.24     | 0.36           | 0.10   | 0.25     |      |

#### Table 46-62. SAM4CM4/8/16 Test Setup 1 Current Consumption



|                |                  | 128-bit Flash Access |                    |                   |                  |                    |                  | 64-bit Flash Access |                    |                  |                  |                    |      |
|----------------|------------------|----------------------|--------------------|-------------------|------------------|--------------------|------------------|---------------------|--------------------|------------------|------------------|--------------------|------|
|                | Cache Enabled    |                      |                    | ed Cache Disabled |                  | Cache Enabled      |                  |                     | Cache Disabled     |                  |                  |                    |      |
| Clock<br>(MHz) | IDD_IN<br>(AMP1) | IDD_I0<br>(AMP2)     | IDD_CORE<br>(AMP3) | IDD_IN<br>(AMP1)  | IDD_I0<br>(AMP2) | IDD_CORE<br>(AMP3) | IDD_IN<br>(AMP1) | IDD_I0<br>(AMP2)    | IDD_CORE<br>(AMP3) | IDD_IN<br>(AMP1) | IDD_I0<br>(AMP2) | IDD_CORE<br>(AMP3) | Unit |
| 120            | 35.0             | 0.23                 | 31.7               | 38.4              | 2.1              | 35.1               | 34.9             | 0.23                | 31.6               | 33.8             | 1.8              | 30.5               |      |
| 100            | 29.5             | 0.23                 | 26.8               | 33.8              | 2.0              | 31.0               | 29.4             | 0.23                | 26.7               | 29.5             | 1.7              | 27.0               |      |
| 84             | 25.1             | 0.23                 | 22.8               | 29.4              | 1.8              | 27.1               | 24.9             | 0.23                | 22.7               | 26.6             | 1.7              | 24.3               |      |
| 64             | 19.3             | 0.23                 | 17.7               | 23.2              | 1.5              | 21.5               | 19.2             | 0.23                | 17.6               | 21.8             | 1.5              | 20.1               |      |
| 48             | 14.7             | 0.23                 | 13.4               | 18.0              | 1.3              | 16.8               | 14.6             | 0.23                | 13.4               | 17.7             | 1.5              | 16.5               |      |
| 32             | 10.9             | 0.23                 | 9.2                | 13.3              | 1.1              | 11.7               | 10.8             | 0.23                | 9.2                | 13.5             | 1.3              | 11.8               |      |
| 24             | 8.2              | 0.23                 | 7.0                | 10.5              | 1.0              | 9.3                | 8.2              | 0.22                | 7.0                | 10.3             | 1.2              | 9.0                | m۸   |
| 12             | 3.5              | 0.02                 | 3.5                | 4.8               | 0.86             | 4.7                | 3.5              | 0.02                | 3.5                | 4.7              | 1.1              | 4.6                | ШA   |
| 8              | 2.4              | 0.02                 | 2.4                | 3.2               | 0.74             | 3.2                | 2.4              | 0.02                | 2.4                | 3.1              | 1.0              | 3.1                |      |
| 4              | 1.3              | 0.02                 | 1.3                | 1.7               | 0.42             | 1.7                | 1.3              | 0.02                | 1.3                | 1.7              | 0.87             | 1.7                |      |
| 2              | 0.72             | 0.02                 | 0.71               | 0.92              | 0.40             | 0.89               | 0.71             | 0.02                | 0.81               | 0.94             | 0.56             | 0.94               |      |
| 1              | 0.43             | 0.02                 | 0.42               | 0.52              | 0.18             | 0.52               | 0.43             | 0.02                | 0.42               | 0.55             | 0.36             | 0.54               |      |
| 0.5            | 0.29             | 0.02                 | 0.28               | 0.36              | 0.09             | 0.36               | 0.29             | 0.02                | 0.28               | 0.35             | 0.18             | 0.34               |      |
| 0.25           | 0.16             | 0.02                 | 0.15               | 0.18              | 0.02             | 0.16               | 0.16             | 0.02                | 0.15               | 0.17             | 0.06             | 0.16               |      |

#### Table 46-67. SAM4CM32 Test Setup 3 Current Consumption









