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MPC8568E Overview

1.1 MPCP8568E Key Features
• High-performance, Power Architecture® e500v2 core with 36-bit physical addressing

• 512 Kbytes of level-2 cache

• QUICC Engine (QE)

• Integrated security engine with XOR acceleration

• Two integrated 10/100/1Gb enhanced three-speed Ethernet controllers (eTSECs) with TCP/IP 
acceleration and classification capabilities

• DDR/DDR2 memory controller

• Table lookup unit (TLU) to access application-defined routing topology and control tables

• 32-bit PCI controller

• A 1x/4x Serial RapidIO® and/or x1/x2/x4 PCI Express interface. If x8 PCI Express is needed, then 
RapidIO is not available due to the limitation of the pin multiplexing.

• Programmable interrupt controller (PIC)

• Four-channel DMA controller, two I2C controllers, DUART, and local bus controller (LBC)

NOTE
The MPC8568E and MPC8567E are also available without a security 
engine in a configuration known as the MPC8568 and MPC8567. All 
specifications other than those relating to security apply to the MPC8568 
and MPC8567 exactly as described in this document. 

1.2 MPC8568E Architecture Overview

1.2.1 e500 Core and Memory Unit
The MPC8568E contains a high-performance, 32-bit, Book E–enhanced e500v2 Power Architecture core. 
In addition to 36-bit physical addressing, this version of the e500 core includes the following:

• Double-precision floating-point APU—Provides an instruction set for double-precision (64-bit) 
floating-point instructions that use the 64-bit GPRs

• Embedded vector and scalar single-precision floating-point APUs—Provide an instruction set for 
single-precision (32-bit) floating-point instructions

The MPC8568E also contains 512 Kbytes of L2 cache/SRAM, as follows:

• Eight-way set-associative cache organization with 32-byte cache lines

• Flexible configuration (can be configured as part cache, part SRAM)

• External masters can force data to be allocated into the cache through programmed memory ranges 
or special transaction types (stashing).

• SRAM features include the following:

— I/O devices access SRAM regions by marking transactions as snoopable (global).

— Regions can reside at any aligned location in the memory map.
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MPC8568E Overview

— Three 1-Gbps Ethernet interfaces using three GMII, two RGMII/TBI/RTBI

— Up to eight 10/100-Mbps Ethernet interfaces using MII or RMII 

— Up to eight T1/E1/J1/E3 or DS-3 serial interfaces

1.2.4 Integrated Security Engine (SEC)
The SEC is a modular and scalable security core optimized to process all the algorithms associated with 
IPSec, IKE, WTLS/WAP, SSL/TLS, and 3GPP. Although it is not a protocol processor, the SEC is 
designed to perform multi-algorithmic operations (for example, 3DES-HMAC-SHA-1) in a single pass of 
the data. The version of the SEC used in the MPC8568E is specifically capable of performing single-pass 
security cryptographic processing for SSL 3.0, SSL 3.1/TLS 1.0, IPSec, SRTP, and 802.11i.

• Optimized to process all the algorithms associated with IPSec, IKE, WTLS/WAP, SSL/TLS, and 
3GPP

• Compatible with code written for the Freescale MPC8541E and MPC8555E devices

• XOR engine for parity checking in RAID storage applications. 

• Four crypto-channels, each supporting multi-command descriptor chains

• Cryptographic execution units:

— PKEU—public key execution unit

— DEU—Data Encryption Standard execution unit

— AESU—Advanced Encryption Standard unit

— AFEU—ARC four execution unit

— MDEU—message digest execution unit

— KEU—Kasumi execution unit 

— RNG—Random number generator

1.2.5 Enhanced Three-Speed Ethernet Controllers
The MPC8568E has two on-chip enhanced three-speed Ethernet controllers (eTSECs). The eTSECs 
incorporate a media access control (MAC) sublayer that supports 10- and 100-Mbps and 1-Gbps 
Ethernet/802.3 networks with MII, RMII, GMII, RGMII, TBI, and RTBI physical interfaces. The eTSECs 
include 2-Kbyte receive and 10-Kbyte transmit FIFOs and DMA functions.

The MPC8568E eTSECs support programmable CRC generation and checking, RMON statistics, and 
jumbo frames of up to 9.6 Kbytes. Frame headers and buffer descriptors can be forced into the L2 cache 
to speed classification or other frame processing. They are IEEE Std 802.3™, IEEE 802.3u, IEEE 802.3x, 
IEEE 802.3z, IEEE 802.3ac, IEEE 802.3ab-compatible.

The buffer descriptors are based on the MPC8260 and MPC860T 10/100 Ethernet programming models. 
Each eTSEC can emulate a PowerQUICC III TSEC, allowing existing driver software to be re-used with 
minimal change.

Some of the key features of these controllers include:

• Flexible configuration for multiple PHY interface configurations. Table 1 lists available 
configurations.
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Electrical Characteristics

Figure 2 shows the undershoot and overshoot voltages at the interfaces of the MPC8568E.

Figure 2. Overshoot/Undershoot Voltage for BVDD/GVDD/LVDD/TVDD/OVDD

Three-speed Ethernet I/O voltage LVDD
TVDD

3.3 V ± 165 mV
2.5 V ± 125 mV

V —

PCI, DUART, system control and power management, I2C, and JTAG I/O 
voltage

OVDD 3.3 V ± 165 mV V —

Local bus I/O voltage BVDD 3.3 V ± 165 mV
2.5 V ± 125 mV

V —

Input voltage DDR and DDR2 DRAM signals MVIN GND to GVDD V —

DDR and DDR2 DRAM reference MVREF GND to GVDD/2 V —

Three-speed Ethernet signals LVIN
TVIN

GND to LVDD
GND to TVDD

V —

Local bus signals BVIN GND to BVDD V —

PCI, DUART, SYSCLK, system control and power 
management, I2C, and JTAG signals

OVIN GND to OVDD V —

Junction temperature range Tj 0 to105 oC —

Table 3. Recommended Operating Conditions (continued)

Characteristic Symbol
Recommended 

Value
Unit Notes

GND
GND – 0.3 V

GND – 0.7 V
Not to Exceed 10%

B/G/L/T/OVDD + 20%

B/G/L/T/OVDD

B/G/L/T/OVDD + 5%

of tCLOCK
1

1. Note that tCLOCK refers to the clock period associated with the respective interface

VIH

VIL

Note:

For I2C and JTAG, tCLOCK references SYSCLK.
For DDR, tCLOCK references MCLK.
For eTSEC, tCLOCK references EC_GTX_CLK125.
For LBIU, tCLOCK references LCLK.
For PCI, tCLOCK references PCI_CLK or SYSCLK.
For SerDes, tCLOCK references SD_REF_CLK.

2. Note that with the PCI overshoot allowed (as specified above), the device 
does not fully comply with the maximum AC ratings and device protection guideline 
outlined in the PCI rev. 2.2 standard (section 4.2.2.3)
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DUART

Figure 5 shows the DDR SDRAM output timing diagram.

Figure 5. DDR SDRAM Output Timing Diagram

Figure 6 provides the AC test load for the DDR bus.

Figure 6. DDR AC Test Load

7 DUART
This section describes the DC and AC electrical specifications for the DUART interface of the 
MPC8568E. 

7.1 DUART DC Electrical Characteristics
Table 21 provides the DC electrical characteristics for the DUART interface.

Table 21. DUART DC Electrical Characteristics

Parameter Symbol Min Max Unit

High-level input voltage VIH 2 OVDD + 0.3 V

Low-level input voltage VIL – 0.3 0.8 V

ADDR/CMD

tDDKHAS ,tDDKHCS

tDDKHMH

tDDKLDS

tDDKHDS

MDQ[x]

MDQS[n]

MCK[n]

MCK[n]
tMCK

tDDKLDX

tDDKHDX

D1D0

tDDKHAX ,tDDKHCX

Write A0 NOOP

tDDKHME

tDDKHMP

Output Z0 = 50 Ω
RL = 50 Ω

GVDD/2
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Ethernet Interface and MII Management

Figure 9 shows the GMII transmit AC timing diagram.

Figure 9. GMII Transmit AC Timing Diagram

8.2.2.2 GMII Receive AC Timing Specifications

Table 28 provides the GMII receive AC timing specifications.

EC_GTX_CLK125 duty cycle tG125H/tG125 45 55 ns

Notes:
1.  The symbols used for timing specifications herein follow the pattern t(first two letters of functional block)(signal)(state) (reference)(state) 

for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tGTKHDV symbolizes GMII 
transmit timing (GT) with respect to the tGTX clock reference (K) going to the high state (H) relative to the time date input 
signals (D) reaching the valid state (V) to state or setup time. Also, tGTKHDX symbolizes GMII transmit timing (GT) with respect 
to the tGTX clock reference (K) going to the high state (H) relative to the time date input signals (D) going invalid (X) or hold 
time. Note that, in general, the clock reference symbol representation is based on three letters representing the clock of a 
particular functional. For example, the subscript of tGTX represents the GMII(G) transmit (TX) clock. For rise and fall times, 
the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design

Table 28. GMII Receive AC Timing Specifications
At recommended operating conditions with L/TVDD of 3.3 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

RX_CLK clock period tGRX — 8.0 — ns

RX_CLK duty cycle tGRXH/tGRX 40 — 60 ns

RXD[7:0], RX_DV, RX_ER setup time to RX_CLK tGRDVKH 2.0 — — ns

RXD[7:0], RX_DV, RX_ER hold time to RX_CLK tGRDXKH 0.5 — — ns

RX_CLK clock rise (20%-80%) tGRXR
2 — 1.0 2.0 ns

Table 27. GMII Transmit AC Timing Specifications (continued)
At recommended operating conditions with LVDD of 3.3 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

GTX_CLK

TXD[7:0]

tGTKHDX

tGTX

tGTXH

tGTXR

tGTXF

tGTKHDV

TX_EN
TX_ER
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Ethernet Interface and MII Management

8.2.4.1 TBI Transmit AC Timing Specifications

Table 31 provides the TBI transmit AC timing specifications.

Figure 15 shows the TBI transmit AC timing diagram.

Figure 15. TBI Transmit AC Timing Diagram

Table 31. TBI Transmit AC Timing Specifications
At recommended operating conditions with L/TVDD of 3.3 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

GTX_CLK clock period tTTX — 8.0 — ns

GTX_CLK duty cycle tTTXH/tTTX 47 — 53 %

TCG[9:0] setup time GTX_CLK going high tTTKHDV 2.0 — — ns

TCG[9:0] hold time from GTX_CLK going high tTTKHDX
3 1.0 — — ns

GTX_CLK rise (20%–80%) tTTXR
2 — 1.0 2.0 ns

GTX_CLK fall time (80%–20%) tTTXF
2 — 1.0 2.0 ns

EC_GTX_CLK125 clock rise time (20%-80%) tG125R — 1.0 2.0 ns

EC_GTX_CLK125 clock fall time (80%-20%) tG125F — 1.0 2.0 ns

EC_GTX_CLK125 duty cycle tG125H/tG125 45 — 55 ns

Notes:
1. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state 

)(reference)(state) for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, 
tTTKHDV symbolizes the TBI transmit timing (TT) with respect to the time from tTTX (K) going high (H) until the 
referenced data signals (D) reach the valid state (V) or setup time. Also, tTTKHDX symbolizes the TBI transmit timing 
(TT) with respect to the time from tTTX (K) going high (H) until the referenced data signals (D) reach the invalid state 
(X) or hold time. Note that, in general, the clock reference symbol representation is based on three letters 
representing the clock of a particular functional. For example, the subscript of tTTX represents the TBI (T) transmit 
(TX) clock. For rise and fall times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

2. Guaranteed by design.

GTX_CLK

TCG[9:0]

tTTXR

tTTX

tTTXH

tTTXR

tTTXF

tTTKHDV

tTTKHDX

tTTXF
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Ethernet Interface and MII Management

Figure 18 shows the RGMII and RTBI AC timing and multiplexing diagrams.

Figure 18. RGMII and RTBI AC Timing and Multiplexing Diagrams

8.2.7 RMII AC Timing Specifications
This section describes the RMII transmit and receive AC timing specifications.

8.2.7.1 RMII Transmit AC Timing Specifications

The RMII transmit AC timing specifications are in Table 35.

Table 35. RMII Transmit AC Timing Specifications
At recommended operating conditions with LVDD of 3.3 V ± 5%.

Parameter/Condition Symbol 1 Min Typ Max Unit

REF_CLK clock period tRMT 15.0 20.0 25.0 ns

REF_CLK duty cycle tRMTH 35 50 65 %

REF_CLK peak-to-peak jitter tRMTJ — — 250 ps

Rise time REF_CLK (20%–80%) tRMTR 1.0 — 2.0 ns

Fall time REF_CLK (80%–20%) tRMTF 1.0 — 2.0 ns

GTX_CLK

tRGT
tRGTH

tSKRGT

TX_CTL

TXD[8:5]
TXD[7:4]

TXD[9]
TXERR

TXD[4]
TXEN

TXD[3:0]

(At Transmitter)

TXD[8:5][3:0]
TXD[7:4][3:0]

TX_CLK
(At PHY)

RX_CTL

RXD[8:5]
RXD[7:4]

RXD[9]
RXERR

RXD[4]
RXDV

RXD[3:0]
RXD[8:5][3:0]
RXD[7:4][3:0]

RX_CLK
(At PHY)

tSKRGT

tSKRGT

tSKRGT
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Local Bus

Figure 27. Local Bus Signals, GPCM/UPM Signals for LCCR[CLKDIV] = 4 (PLL Bypass Mode)

tLBIVKH1

tLBIXKL2

Internal launch/capture clock

UPM Mode Input Signal:
LUPWAIT

T1

T3

Input Signals:
LAD[0:31]/LDP[0:3]

UPM Mode Output Signals:
LCS[0:7]/LBS[0:3]/LGPL[0:5]

GPCM Mode Output Signals:
LCS[0:7]/LWE

tLBKLOV1

tLBKLOZ1

LCLK

tLBKLOX1

tLBIXKH1

GPCM Mode Input Signal:
LGTA

tLBIVKL2
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JTAG

Figure 30 provides the AC test load for TDO and the boundary-scan outputs.

Figure 30. AC Test Load for the JTAG Interface

Figure 31 provides the JTAG clock input timing diagram.

Figure 31. JTAG Clock Input Timing Diagram

Figure 32 provides the TRST timing diagram.

Figure 32. TRST Timing Diagram

JTAG external clock to output high impedance:

Boundary-scan data
TDO

tJTKLDZ
tJTKLOZ

3
3

19
9

ns
5, 6

Notes:
1. All outputs are measured from the midpoint voltage of the falling/rising edge of tTCLK to the midpoint of the signal in question. 

The output timings are measured at the pins. All output timings assume a purely resistive 50-Ω load (see Figure 30). 
Time-of-flight delays must be added for trace lengths, vias, and connectors in the system.

2. The symbols used for timing specifications herein follow the pattern of t(first two letters of functional block)(signal)(state) (reference)(state) 
for inputs and t(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, tJTDVKH symbolizes JTAG 
device timing (JT) with respect to the time data input signals (D) reaching the valid state (V) relative to the tJTG clock reference 
(K) going to the high (H) state or setup time. Also, tJTDXKH symbolizes JTAG timing (JT) with respect to the time data input 
signals (D) went invalid (X) relative to the tJTG clock reference (K) going to the high (H) state. Note that, in general, the clock 
reference symbol representation is based on three letters representing the clock of a particular functional. For rise and fall 
times, the latter convention is used with the appropriate letter: R (rise) or F (fall).

3. TRST is an asynchronous level sensitive signal. The setup time is for test purposes only.
4. Non-JTAG signal input timing with respect to tTCLK.
5. Non-JTAG signal output timing with respect to tTCLK.
6. Guaranteed by design

Table 45. JTAG AC Timing Specifications (Independent of SYSCLK) 1 (continued)
At recommended operating conditions (see Table 3).

Parameter Symbol 2 Min Max Unit Notes

Output Z0 = 50 Ω OVDD/2
RL = 50 Ω

JTAG

tJTKHKL tJTGR

External Clock VMVMVM

tJTG tJTGF

VM = Midpoint Voltage (OVDD/2)

TRST

VM = Midpoint Voltage (OVDD/2)

VM VM

tTRST
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High-Speed Serial Interfaces (HSSI)

or AC-coupled into the unused phase (SD_REF_CLK) through the same source impedance as 
the clock input (SD_REF_CLK) in use.

Figure 41. Differential Reference Clock Input DC Requirements (External DC-Coupled)

Figure 42. Differential Reference Clock Input DC Requirements (External AC-Coupled)

Figure 43. Single-Ended Reference Clock Input DC Requirements

SD_REF_CLK

SD_REF_CLK

Vmax < 800 mV

Vmin > 0 V

100 mV < Vcm < 400 mV

200 mV < Input Amplitude or Differential Peak < 800 mV

SD_REF_CLK

SD_REF_CLK

Vcm

200 mV < Input Amplitude or Differential Peak < 800 mV

Vmax < Vcm + 400 mV

Vmin > Vcm − 400 mV

SD_REF_CLK

SD_REF_CLK

400 mV < SD_REF_CLK Input Amplitude < 800 mV

0 V
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High-Speed Serial Interfaces (HSSI)

13.2.3 Interfacing With Other Differential Signaling Levels
• With on-chip termination to SCOREGND, the differential reference clocks inputs are HCSL 

(High-Speed Current Steering Logic) compatible DC-coupled. 

• Many other low voltage differential type outputs like LVDS (Low Voltage Differential Signaling) 
can be used but may need to be AC-coupled due to the limited common mode input range allowed 
(100 to 400 mV) for DC-coupled connection. 

• LVPECL outputs can produce signal with too large amplitude and may need to be DC-biased at 
clock driver output first, then followed with series attenuation resistor to reduce the amplitude, in 
addition to AC-coupling.

NOTE
Figure 44 to Figure 47 below are for conceptual reference only. Due to the 
fact that clock driver chip's internal structure, output impedance and 
termination requirements are different between various clock driver chip 
manufacturers, it is very possible that the clock circuit reference designs 
provided by clock driver chip vendor are different from what is shown 
below. They might also vary from one vendor to the other. Therefore, 
Freescale Semiconductor can neither provide the optimal clock driver 
reference circuits, nor guarantee the correctness of the following clock 
driver connection reference circuits. The system designer is recommended 
to contact the selected clock driver chip vendor for the optimal reference 
circuits with the MPC8568 SerDes reference clock receiver requirement 
provided in this document. 
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PCI Express

14.5 Receiver Compliance Eye Diagrams
The RX eye diagram in Figure 50 is specified using the passive compliance/test measurement load (see 
Figure 51) in place of any real PCI Express RX component.

Note: In general, the minimum Receiver eye diagram measured with the compliance/test measurement 
load (see Figure 51) will be larger than the minimum Receiver eye diagram measured over a range of 
systems at the input Receiver of any real PCI Express component. The degraded eye diagram at the input 
Receiver is due to traces internal to the package as well as silicon parasitic characteristics which cause the 
real PCI Express component to vary in impedance from the compliance/test measurement load. The input 
Receiver eye diagram is implementation specific and is not specified. RX component designer should 
provide additional margin to adequately compensate for the degraded minimum Receiver eye diagram 
(shown in Figure 50) expected at the input Receiver based on some adequate combination of system 
simulations and the Return Loss measured looking into the RX package and silicon. The RX eye diagram 
must be aligned in time using the jitter median to locate the center of the eye diagram. 

LTX-SKEW Total Skew — — 20 ns Skew across all lanes on a Link. This includes 
variation in the length of SKP ordered set (for 
example, COM and one to five Symbols) at 
the RX as well as any delay differences 
arising from the interconnect itself.

Notes:
1. No test load is necessarily associated with this value.
2. Specified at the measurement point and measured over any 250 consecutive UIs. The test load in Figure 51 should be used 

as the RX device when taking measurements (also refer to the Receiver compliance eye diagram shown in Figure 50). If the 
clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must 
be used as a reference for the eye diagram.

3. A TRX-EYE = 0.40 UI provides for a total sum of 0.60 UI deterministic and random jitter budget for the Transmitter and 
interconnect collected any 250 consecutive UIs. The TRX-EYE-MEDIAN-to-MAX-JITTER specification ensures a jitter distribution in 
which the median and the maximum deviation from the median is less than half of the total. UI jitter budget collected over any 
250 consecutive TX UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point 
in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value. If the 
clocks to the RX and TX are not derived from the same reference clock, the TX UI recovered from 3500 consecutive UI must 
be used as the reference for the eye diagram. 

4. The Receiver input impedance shall result in a differential return loss greater than or equal to 15 dB with the D+ line biased to 
300 mV and the D- line biased to -300 mV and a common mode return loss greater than or equal to 6 dB (no bias required) 
over a frequency range of 50 MHz to 1.25 GHz. This input impedance requirement applies to all valid input levels. The 
reference impedance for return loss measurements for is 50 ohms to ground for both the D+ and D- line (that is, as measured 
by a Vector Network Analyzer with 50 ohm probes—see Figure 51). Note: that the series capacitors CTX is optional for the 
return loss measurement.

5. Impedance during all LTSSM states. When transitioning from a Fundamental Reset to Detect (the initial state of the LTSSM) 
there is a 5 ms transition time before Receiver termination values must be met on all un-configured Lanes of a Port.

6. The RX DC Common Mode Impedance that exists when no power is present or Fundamental Reset is asserted. This helps 
ensure that the Receiver Detect circuit will not falsely assume a Receiver is powered on when it is not. This term must be 
measured at 300 mV above the RX ground.

7. It is recommended that the recovered TX UI is calculated using all edges in the 3500 consecutive UI interval with a fit algorithm 
using a minimization merit function. Least squares and median deviation fits have worked well with experimental and simulated 
data.

Table 52. Differential Receiver (RX) Input Specifications (continued)

Symbol Parameter Min Nom Max Units Comments
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Serial RapidIO

Table 62. Receiver AC Timing Specifications—2.5 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Input Voltage VIN 200 1600 mV p-p Measured at receiver

Deterministic Jitter Tolerance JD 0.37 — UI p-p Measured at receiver

Combined Deterministic and Random 
Jitter Tolerance

JDR 0.55 — UI p-p Measured at receiver

Total Jitter Tolerance1 JT 0.65 — UI p-p Measured at receiver

Multiple Input Skew SMI — 24 ns Skew at the receiver input 
between lanes of a multilane 
link

Bit Error Rate BER — 10–12 — —

Unit Interval UI 400 400 ps +/– 100 ppm

Note:  
1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The 

sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 54. The sinusoidal jitter component 
is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.

Table 63. Receiver AC Timing Specifications—3.125 GBaud

Characteristic Symbol
Range

Unit Notes
Min Max

Differential Input Voltage VIN 200 1600 mV p-p Measured at receiver

Deterministic Jitter Tolerance JD 0.37 — UI p-p Measured at receiver

Combined Deterministic and Random 
Jitter Tolerance

JDR 0.55 — UI p-p Measured at receiver

Total Jitter Tolerance1 JT 0.65 — UI p-p Measured at receiver

Multiple Input Skew SMI — 22 ns Skew at the receiver input 
between lanes of a multilane 
link

Bit Error Rate BER — 10-12 — —

Unit Interval UI 320 320 ps +/- 100 ppm

Note:  
1. Total jitter is composed of three components, deterministic jitter, random jitter and single frequency sinusoidal jitter. The 

sinusoidal jitter may have any amplitude and frequency in the unshaded region of Figure 54. The sinusoidal jitter component 
is included to ensure margin for low frequency jitter, wander, noise, crosstalk and other variable system effects.
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Serial RapidIO

Continuous Jitter Test Pattern (CJPAT) defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial 
link shall be active in both the transmit and receive directions, and opposite ends of the links shall use 
asynchronous clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane 
implementations shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. The 
amount of data represented in the eye shall be adequate to ensure that the bit error ratio is less than 10-12. 
The eye pattern shall be measured with AC coupling and the compliance template centered at 0 Volts 
differential. The left and right edges of the template shall be aligned with the mean zero crossing points of 
the measured data eye. The load for this test shall be 100 Ohms resistive +/– 5% differential to 2.5 GHz. 

15.9.2 Jitter Test Measurements
For the purpose of jitter measurement, the effects of a single-pole high pass filter with a 3 dB point at (Baud 
Frequency)/1667 is applied to the jitter. The data pattern for jitter measurements is the Continuous Jitter 
Test Pattern (CJPAT) pattern defined in Annex 48A of IEEE 802.3ae. All lanes of the LP-Serial link shall 
be active in both the transmit and receive directions, and opposite ends of the links shall use asynchronous 
clocks. Four lane implementations shall use CJPAT as defined in Annex 48A. Single lane implementations 
shall use the CJPAT sequence specified in Annex 48A for transmission on lane 0. Jitter shall be measured 
with AC coupling and at 0 Volts differential. Jitter measurement for the transmitter (or for calibration of a 
jitter tolerance setup) shall be performed with a test procedure resulting in a BER curve such as that 
described in Annex 48B of IEEE 802.3ae.

15.9.3 Transmit Jitter
Transmit jitter is measured at the driver output when terminated into a load of 100 Ohms resistive +/– 5% 
differential to 2.5 GHz. 

15.9.4 Jitter Tolerance
Jitter tolerance is measured at the receiver using a jitter tolerance test signal. This signal is obtained by first 
producing the sum of deterministic and random jitter defined in  and then adjusting the signal amplitude 
until the data eye contacts the 6 points of the minimum eye opening of the receive template shown in  and 
. Note that for this to occur, the test signal must have vertical waveform symmetry about the average value 
and have horizontal symmetry (including jitter) about the mean zero crossing. Eye template measurement 
requirements are as defined above. Random jitter is calibrated using a high pass filter with a low frequency 
corner at 20 MHz and a 20 dB/decade roll-off below this. The required sinusoidal jitter specified in  is then 
added to the signal and the test load is replaced by the receiver being tested. 
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HDLC, BISYNC, Transparent and Synchronous UART

Figure 66 through Figure 67 represent the AC timing from Table 76. Note that although the specifications 
generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge 
is the active edge.

Figure 66 shows the timing with external clock.

Figure 66.  AC Timing (External Clock) Diagram

Figure 67 shows the timing with internal clock.

Figure 67.  AC Timing (Internal Clock) Diagram

Serial CLK (input)

tHEIXKH
tHEIVKH

tHEKHOV

Input Signals:

(See Note)

Output Signals:

(See Note)

tHEKHOX

Note: The clock edge is selectable 

Serial CLK (output)

tHIIXKH

tHIKHOV

Input Signals:

(See Note)

Output Signals:

(See Note)

tHIIVKH

tHIKHOX

Note: The clock edge is selectable 
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Package and Pinout

Table 79 provides the pin-out listing for the MPC8567E 1023 FC-PBGA package.

30. This pin requires an external 4.7-kΩ pull-down resistor to prevent PHY from seeing a valid Transmit Enable before it is actively 
driven.

33. PF[21:22] are multiplexed as cfg_dram_type[0:1]. THEY MUST BE VALID AT POWER-UP, EVEN BEFORE HRESET 
ASSERTION.

35. When a PCI block is disabled, either the POR config pin that selects between internal and external arbiter must be pulled 
down to select external arbiter if there is any other PCI device connected on the PCI bus, or leave the PCIn_AD pins as "No 
Connect" or terminated through 2–10 KΩ pull-up resistors with the default of internal arbiter if the PCIn_AD pins are not 
connected to any other PCI device.  The PCI block will drive the PCIn_AD pins if it is configured to be the PCI arbiter—through 
POR config pins—irrespective of whether it is disabled via the DEVDISR register or not. It may cause contention if there is any 
other PCI device connected on the bus.

36.MDIC[0] is grounded through an 18.2-Ω precision 1% resistor and MDIC[1] is connected to GVDD through an 18.2-Ω precision 
1% resistor. These pins are used for automatic calibration of the DDR IOs.

39. If  PCI is configured as PCI asynchronous mode, a valid clock must be provided on pin PCI_CLK . Otherwise the processor 
will not boot up.

41.These pins should be tied to SCOREGND through a 300 ohm resistor if the high speed interface is used.
43. It is highly recommended that unused SD_RX/SD_RX lanes should be powered down with lane_x_pd. Otherwise the 

receivers will burn extra power and the internal circuitry may develop long term reliability problems. 
44. See Section 25.9, “Guidelines for High-Speed Interface Termination.”
46. Must be high during HRESET. It is recommended to leave the pin open during HRESET since it has internal pullup resistor.
47. Must be pulled down with 4.7-kΩ resistor.
48. This pin must be left no connect.
49. A pull-up on LGPL4 is required for systems that boot from local bus (GPCM)-controlled NOR Flash.

Table 79. MPC8567E Pinout Listing

Signal Package Pin Number Pin Type
Power
Supply

Notes

PCI

PCI_AD[31:0] AE19, AG20, AF19, AB20, AC20, AG21, AG22, 
AB21, AF22, AH22, AE22, AF20, AB22, AE20, 
AE23, AJ23, AJ24, AF27, AJ26, AE29, AH24, 
AD24, AE25, AE26, AH27, AG27, AJ25, AE30, 
AF26, AG26, AF28, AH26

I/O OVDD —

PCI_C_BE[3:0] AC22, AD20, AE28, AH25 I/O OVDD —

PCI_GNT[4:1] AF29, AB18, AC18, AD18 O OVDD 5,9,35

PCI_GNT0 AE18 I/O OVDD —

PCI_IRDY AF23 I/O OVDD 2

PCI_PAR AJ22 I/O OVDD —

PCI_PERR AF24 I/O OVDD 2

PCI_SERR AD22 I/O OVDD 2,4

PCI_STOP AE24 I/O OVDD 2

PCI_TRDY AK24 I/O OVDD 2

Table 78. MPC8568E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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Package and Pinout

GPOUT[0:7] AM16, AJ15, AJ17, AF13, AK17, AH16, AG17, 
AL15

O LVDD —

I2C interface

IIC1_SCL AE32 I/O OVDD 4,27

IIC1_SDA AD32 I/O OVDD 4,27

SerDes

SD_RX[0:7] L30, M32, N30, P32, U30, V32, W30, Y32 I SCOREVDD 43,44

SD_RX[0:7] L29, M31, N29, P31, U29, V31, W29, Y31 I SCOREVDD 43,44

SD_TX[0:7] P26, R24, T26, U24, W24, Y26, AA24, AB26 O XVDD 44

SD_TX[0:7] P27, R25, T27, U25, W25, Y27, AA25, AB27 O XVDD 44

SD_PLL_TPD R32 O SCOREVDD 24

SD_RX_CLK U28 I XVDD 41,44

SD_RX_FRM_CTL V28 I XVDD 41,44

Reserved V26 — — 48

Reserved V27 — — 48

SD_REF_CLK T32 I SCOREVDD 44

SD_REF_CLK T31 I SCOREVDD 44

QUICC Engine 

PA[0:4] M1, M2, M5, M4, M3 I/O OVDD 5,17

PA[5] N3 I/O OVDD 29

PA[6:31] M6, M7, M8, N5, M10, N1, M11, M9, P1, N9, N7, R6, 
R2, P7, P5, R4, P3, P11, P10, P9, R8, R7, R5, R3, 
R1, T2

I/O OVDD —

PB[4:31] T1, R11, R9, T6, T5, T4, T3, U10, T9, T8, T7, U5, 
U3, U1, T11, V1, U11, U9, U7, V5, W4, V3, W2, V9, 
W8, V7, W6, W3

I/O OVDD —

PC[0:31] W1, V11, V10, W11, W9, W7, W5, Y4, Y3, Y2, Y1, 
Y8, Y7, Y6, Y5, AA1, Y11, AA10, Y9, AA9, AA7, 
AA5, AA3, AB3, AC2, AB1, AA11, AB7, AC6, AB5, 
AC4, AB9

I/O OVDD —

PD[4:31] AC8, AD1, AC1, AC7, AB10, AC5, AD3, AD2, AC3, 
AE4, AF1, AE3, AE1, AD6, AG2, AG1, AD5, AD7, 
AD4, AH1, AK3, AD8, AF5, AM4, AC9, AL2, AE5, 
AF3

I/O OVDD —

PE[5:7] AM6, AL5, AL9 I/O TVDD —

PE[8:10] AM9, AM10, AL10 I/O TVDD 5

PE[11:19] AJ9, AH10, AM8, AK9, AL7, AL8, AH9, AM7, AH8 I/O TVDD —

Table 79. MPC8567E Pinout Listing (continued)

Signal Package Pin Number Pin Type
Power
Supply

Notes
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Clocking

23.2 CCB/SYSCLK PLL Ratio 
The CCB clock is the clock that drives the e500 core complex bus (CCB) and is also called the platform 
clock. The frequency of the CCB is set using the following reset signals, as shown in Table 83:

• SYSCLK input signal

• Binary value on LA[28:31] at power up

Note that there is no default for this PLL ratio; these signals must be pulled to the desired values. Also note 
that the DDR data rate is the determining factor in selecting the CCB bus frequency, since the CCB 
frequency must equal the DDR data rate.

For specifications on the PCI_CLK, refer to the PCI 2.2 Specification.

Table 81. DDR/DDR2 Memory Bus Clocking Specifications

Characteristic

Maximum Processor Core Frequency

Unit Notes800, 1000, 1333 MHz

Min Max

DDR/DDR2 Memory bus clock frequency 166 266 MHz 1, 2

Notes:
1. Caution: The CCB clock to SYSCLK ratio and e500 core to CCB clock ratio settings must be chosen such that the 

resulting SYSCLK frequency, e500 core frequency, and CCB clock frequency do not exceed their respective maximum 
or minimum operating frequencies.

2. The memory bus clock speed is half the DDR/DDR2 data rate, hence, half the platform clock frequency.

Table 82. Local Bus Clocking Specifications

Characteristic

Maximum Processor Core Frequency

Unit Notes800, 1000, 1333 MHz

Min Max

Local bus clock speed (for Local Bus Controller) 25 166 MHz 1

Notes:
1.  The Local bus clock speed on LCLK[0:2] is determined by CCB clock divided by the Local Bus PLL ratio programmed 

in LCCR[CLKDIV]. See the reference manual for more information on this.

Table 83. CCB Clock Ratio

Binary Value of
LA[28:31] Signals

CCB:SYSCLK Ratio
Binary Value of

LA[28:31] Signals
CCB:SYSCLK Ratio

0000 16:1 1000 8:1

0001 Reserved 1001 9:1

0010 2:1 1010 10:1

0011 3:1 1011 Reserved

0100 4:1 1100 12:1
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Thermal

Millennium Electronics offer different heat sink-to-ambient thermal resistances, that will allow the 
MPC8568E to function in various environments.

24.2.1 Recommended Thermal Model
For system thermal modeling, the MPC8568E thermal model without a lid is shown in Figure 70. The 
substrate is modeled as a block 33x33x1.18 mm with an in-plane conductivity of 24 W/mK and a 
through-plane conductivity of 0.92 W/mK. The solder balls and air are modeled as a single block 
33x33x0.58 mm with an in-plane conductivity of 0.034 W/mK and a through plane conductivity of 12.2 
W/mK. The die is modeled as 8.2x12.1 mm with a thickness of 0.75 mm. The bump/underfill layer is 
modeled as a collapsed thermal resistance between the die and substrate assuming a conductivity of 5.3 
W/m•K in the thickness dimension of 0.07 mm. The die is centered on the substrate. The thermal model 
uses approximate dimensions to reduce grid. See the case outline for actual dimensions.

Figure 70. MPC8568E Thermal Model

24.2.2 Internal Package Conduction Resistance
For the packaging technology, shown in Table 87, the intrinsic internal conduction thermal resistance paths 
are as follows:

• The die junction-to-case thermal resistance

Heat Source

Substrate

Top View of Model (Not to Scale)

x

y

Conductivity Value Unit

Die
(8.2 × 12.1 × 0.75mm)

Silicon Temperature 
dependent

W/(m × K)

Bump/Underfill
(8.2 × 12.1 × 0.75 mm) 
Collapsed Resistance

kz 5.3

Substrate
(33 × 33× 1.18 mm)

kx 24

ky 24

kz 0.92

Soldera and Air
(33 × 33 × 0.58 mm)

kx 0.034

ky 0.034

kz 12.2

substrate

solder/air

die

Bump/Underfill

Side View of Model (Not to scale)

Z
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System Design Information

to fully control the processor. If the target system has independent reset sources, such as voltage monitors, 
watchdog timers, power supply failures, or push-button switches, then the COP reset signals must be 
merged into these signals with logic.

The arrangement shown in Figure 75 allows the COP to independently assert HRESET or TRST, while 
ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not be used, 
TRST should be tied to HRESET so that it is asserted when the system reset signal (HRESET) is asserted.

The COP header shown in Figure 75 adds many benefits—breakpoints, watchpoints, register and memory 
examination/modification, and other standard debugger features are possible through this interface—and 
can be as inexpensive as an unpopulated footprint for a header to be added when needed.

The COP interface has a standard header for connection to the target system, based on the 0.025" 
square-post, 0.100" centered header assembly (often called a Berg header). 

There is no standardized way to number the COP header shown in Figure 75; consequently, many different 
pin numbers have been observed from emulator vendors. Some are numbered top-to-bottom then 
left-to-right, while others use left-to-right then top-to-bottom, while still others number the pins counter 
clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in 
Figure 75 is common to all known emulators.


