

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af5268tcy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		5.7.4	Advanced control and general purpose timers	0
		5.7.5	Basic timer	1
	5.8	Analog	to digital converter (ADC) 22	2
	5.9	Commu	inication interfaces 22	2
		5.9.1	Universal synchronous/asynchronous receiver transmitter (USART) 22	2
		5.9.2	Universal asynchronous receiver/transmitter with LIN support (LINUART)	4
		5.9.3	Serial peripheral interface (SPI) 25	5
		5.9.4	Inter integrated circuit (I ² C) interface	5
		5.9.5	Controller area network interface (beCAN)	6
	5.10	Input/o	utput specifications	7
6	Pino	uts and	pin description 28	8
	6.1	Packag	e pinouts	8
	6.2	Alterna	te function remapping	Э
7	Mem	ory and	register map 40	D
	7.1	Memor	y map	D
	7.2	Registe	r map	1
8	Inter	rupt tab	le	3
9	Optic	on bytes	5	4
10	Elect	rical ch	aracteristics	9
	10.1	Parame	eter conditions	9
		10.1.1	Minimum and maximum values	9
		10.1.2	Typical values	9
		10.1.3	Typical curves	Э
		10.1.4	Loading capacitor	Э
		10.1.5	Pin input voltage60	С
	10.2	Absolut	e maximum ratings 60	C
	10.3	Operati	ng conditions	2
		10.3.1	VCAP external capacitor	3
		10.3.2	Supply current characteristics63	3
		10.3.3	External clock sources and timing characteristics	8
		10.3.4	Internal clock sources and timing characteristics	D

Table 47. Table 48. Table 49.	ESD absolute maximum ratings
	mechanical data
Table 50.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
	package mechanical data
Table 51.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
	mechanical data
Table 52.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
	mechanical data
Table 53.	VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch very thin profile fine pitch quad
	flat package mechanical data
Table 54.	Thermal characteristics
Table 55.	Document revision history

2 Description

The STM8AF526x/8x/Ax and STM8AF6269/8x/Ax automotive 8-bit microcontrollers described in this datasheet offer from 32 Kbyte to 128 Kbyte of non volatile memory and integrated true data EEPROM. They are referred to as high density STM8A devices in STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).

The STM8AF52 series features a CAN interface.

All devices of the STM8A product line provide the following benefits: reduced system cost, performance and robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, wtachdog, and brown-out reset.

Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map, and modular peripherals. Full documentation is offered with a wide choice of development tools.

Product longevity is ensured in the STM8A family thanks to their advanced core which is made in a state-of-the art technology for automotive applications with 3.3 V to 5.5 V operating supply.

All STM8A and ST7 microcontrollers are supported by the same tools including STVD/STVP development environment, the STice emulator and a low-cost, third party incircuit debugging tool.

4 Block diagram

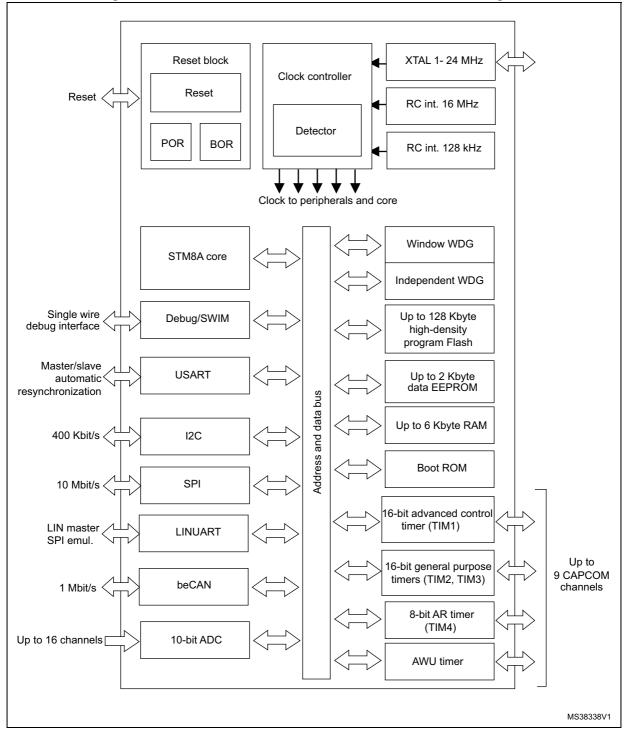


Figure 1. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax block diagram

DocID14395 Rev 15

5.2 Single wire interface module (SWIM) and debug module (DM)

5.2.1 SWIM

The single wire interface module, SWIM, together with an integrated debug module, permits non-intrusive, real-time in-circuit debugging and fast memory programming. The interface can be activated in all device operation modes and can be connected to a running device (hot plugging). The maximum data transmission speed is 145 bytes/ms.

5.2.2 Debug module

The non-intrusive debugging module features a performance close to a full-flavored emulator. Besides memory and peripheral operation, CPU operation can also be monitored in real-time by means of shadow registers.

- R/W of RAM and peripheral registers in real-time
- R/W for all resources when the application is stopped
- Breakpoints on all program-memory instructions (software breakpoints), except the interrupt vector table
- Two advanced breakpoints and 23 predefined breakpoint configurations

5.3 Interrupt controller

- Nested interrupts with three software priority levels
- 24 interrupt vectors with hardware priority
- Five vectors for external interrupts (up to 37 depending on the package)
- Trap and reset interrupts

5.4 Flash program and data EEPROM

- 32 Kbytes to 128 Kbytes of high density single voltage Flash program memory
- Up to 2 Kbytes true (not emulated) data EEPROM
- Read while write: writing in the data memory is possible while executing code in the Flash program memory.

The whole Flash program memory and data EEPROM are factory programmed with 0x00.

5.4.1 Architecture

- The memory is organized in blocks of 128 bytes each
- Read granularity: 1 word = 4 bytes
- Write/erase granularity: 1 word (4 bytes) or 1 block (128 bytes) in parallel
- Writing, erasing, word and block management is handled automatically by the memory interface.

The ROP circuit may provide a temporary access for debugging or failure analysis. The temporary read access is protected by a user defined, 8-byte keyword stored in the option byte area. This keyword must be entered via the SWIM interface to temporarily unlock the device.

If desired, the temporary unlock mechanism can be permanently disabled by the user through OPT6/NOPT6 option bytes.

5.5 Clock controller

The clock controller distributes the system clock coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness.

5.5.1 Features

- Clock sources
 - 16 MHz high-speed internal RC oscillator (HSI)
 - 128 kHz low-speed internal RC (LSI)
 - 1-24 MHz high-speed external crystal (HSE)
 - Up to 24 MHz high-speed user-external clock (HSE user-ext)
- **Reset**: After reset the microcontroller restarts by default with an internal 2-MHz clock (16 MHz/8). The clock source and speed can be changed by the application program as soon as the code execution starts.
- **Safe clock switching**: Clock sources can be changed safely on the fly in Run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
- **Clock management**: To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **Wakeup**: In case the device wakes up from low-power modes, the internal RC oscillator (16 MHz/8) is used for quick startup. After a stabilization time, the device switches to the clock source that was selected before Halt mode was entered.
- **Clock security system (CSS)**: The CSS permits monitoring of external clock sources and automatic switching to the internal RC (16 MHz/8) in case of a clock failure.
- **Configurable main clock output (CCO)**: This feature permits to output a clock signal for use by the application.

5.5.2 16 MHz high-speed internal RC oscillator (HSI)

- Default clock after reset 2 MHz (16 MHz/8)
- Fast wakeup time

User trimming

The register CLK_HSITRIMR with two trimming bits plus one additional bit for the sign permits frequency tuning by the application program. The adjustment range covers all possible frequency variations versus supply voltage and temperature. This trimming does not change the initial production setting.

DocID14395 Rev 15

Control bit	Peripheral			
PCKEN27	CAN			
PCKEN26	Reserved			
PCKEN25	Reserved			
PCKEN24	Reserved			
PCKEN23	ADC			
PCKEN22	AWU			
PCKEN21	Reserved			
PCKEN20	Reserved			

Table 5. Peripheral clock gating bits (CLK PCKENR2)

5.6 Low-power operating modes

For efficient power management, the application can be put in one of four different lowpower modes. Users can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources.

- Wait mode
 In this mode, the CPU is stopped but peripherals are kept running. The wakeup is
 performed by an internal or external interrupt or reset.
- Active-halt mode with regulator on

In this mode, the CPU and peripheral clocks are stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in Active-halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.

• Active-halt mode with regulator off

This mode is the same as Active-halt with regulator on, except that the main voltage regulator is powered off, so the wake up time is slower.

Halt mode

CPU and peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset.

In all modes the CPU and peripherals remain permanently powered on, the system clock is applied only to selected modules. The RAM content is preserved and the brown-out reset circuit remains activated.

5.9.3 Serial peripheral interface (SPI)

The devices covered by this datasheet contain one SPI. The SPI is available on all the supported packages.

- Maximum speed: 10 Mbit/s or f_{MASTER}/2 for master, 8 Mbit/s or f_{MASTER} /2 for slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave mode/master mode management by hardware or software for both master and slave
- Programmable clock polarity and phase
- Programmable data order with MSB-first or LSB-first shifting
- Dedicated transmission and reception flags with interrupt capability
- SPI bus busy status flag
- Hardware CRC feature for reliable communication:
 - CRC value can be transmitted as last byte in Tx mode
 - CRC error checking for last received byte

5.9.4 Inter integrated circuit (I²C) interface

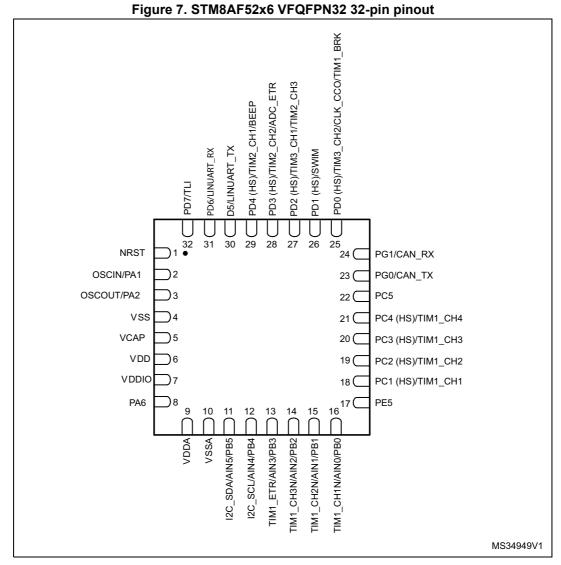
The devices covered by this datasheet contain one I^2C interface. The interface is available on all the supported packages.

- I²C master features:
 - Clock generation
 - Start and stop generation
- I²C slave features:
 - Programmable I²C address detection
 - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and general call
- Supports different communication speeds:
 - Standard speed (up to 100 kHz),
 - Fast speed (up to 400 kHz)
- Status flags:
 - Transmitter/receiver mode flag
 - End-of-byte transmission flag
 - I²C busy flag
- Error flags:
 - Arbitration lost condition for master mode
 - Acknowledgement failure after address/data transmission
 - Detection of misplaced start or stop condition
 - Overrun/underrun if clock stretching is disabled

5.10 Input/output specifications

The product features four I/O types:

- Standard I/O 2 MHz
- Fast I/O up to 10 MHz
- High sink 8 mA, 2 MHz
- True open drain (I²C interface)


To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum slew rate. The rise and fall times are similar to those of standard I/Os.

The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitttrigger input stage on the analog I/Os can be disabled in order to reduce the device standby consumption.

STM8A I/Os are designed to withstand current injection. For a negative injection current of 4 mA, the resulting leakage current in the adjacent input does not exceed 1 μ A. Thanks to this feature, external protection diodes against current injection are no longer required.

- Caution: In STM8AF5286UC device, the following I/O ports are not automatically configured by hardware: PA3, PA4, PA5, PA6, PF4, PB6, PB7, PE0, PE1, PE2, PE3, PE6, PE7. As a consequence, they must be put into one of the following configurations by software: - configured as input with internal pull-up/down resistor,
 - configured as output push-pull low.

The following I/O ports are not automatically configured by hardware: PA3, PA4, PA5, PA6, PF4, PB6, PB7, PE0, PE1, PE2, PE3, PE6, PE7. As a consequence, they must be put into one of the following configurations by software: - configured as input with internal pull-up/down resistor, - configured as output push-pull low. 1.

2. HS stands for high sink capability.

7 Memory and register map

7.1 Memory map

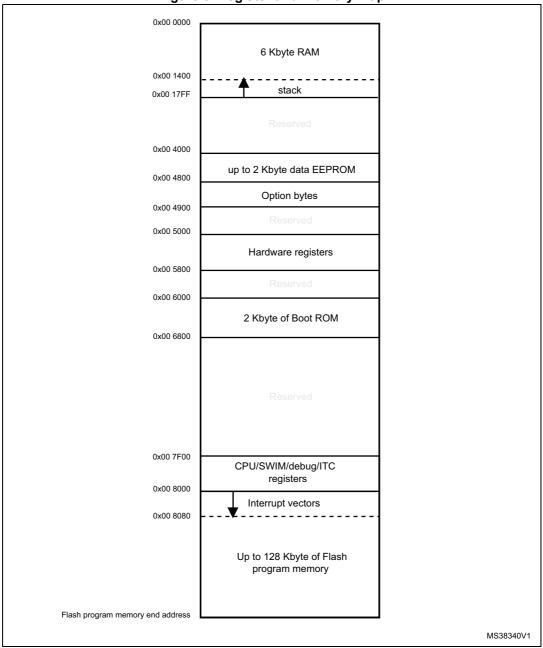


Figure 8. Register and memory map

Address	Block	ck Register label Register name		
0x00 5200		SPI_CR1	SPI control register 1	0x00
0x00 5201		SPI_CR2	SPI control register 2	0x00
0x00 5202		SPI_ICR	SPI interrupt control register	0x00
0x00 5203	SPI	SPI_SR	SPI status register	0x02
0x00 5204	381	SPI_DR	SPI data register	0x00
0x00 5205		SPI_CRCPR	SPI CRC polynomial register	0x07
0x00 5206		SPI_RXCRCR	SPI Rx CRC register	0xFF
0x00 5207		SPI_TXCRCR	SPI Tx CRC register	0xFF
0x00 5208 to 0x00 520F		R	eserved area (8 bytes)	
0x00 5210		I2C_CR1	I2C control register 1	0x00
0x00 5211		I2C_CR2	I2C control register 2	0x00
0x00 5212		I2C_FREQR	I2C frequency register	0x00
0x00 5213		I2C_OARL	I2C own address register low	0x00
0x00 5214		I2C_OARH	I2C own address register high	0x00
0x00 5215				
0x00 5216	I2C	I2C_DR	I2C data register	0x00
0x00 5217	120	I2C_SR1	I2C status register 1	0x00
0x00 5218		I2C_SR2	I2C status register 2	0x00
0x00 5219		I2C_SR3	I2C status register 3	0x00
0x00 521A		I2C_ITR	I2C interrupt control register	0x00
0x00 521B		I2C_CCRL	I2C clock control register low	0x00
0x00 521C		I2C_CCRH	I2C clock control register high	0x00
0x00 521D		I2C_TRISER	I2C TRISE register	0x02
0x00 521E to 0x00 522F		Re	eserved area (18 bytes)	

 Table 14. General hardware register map (continued)

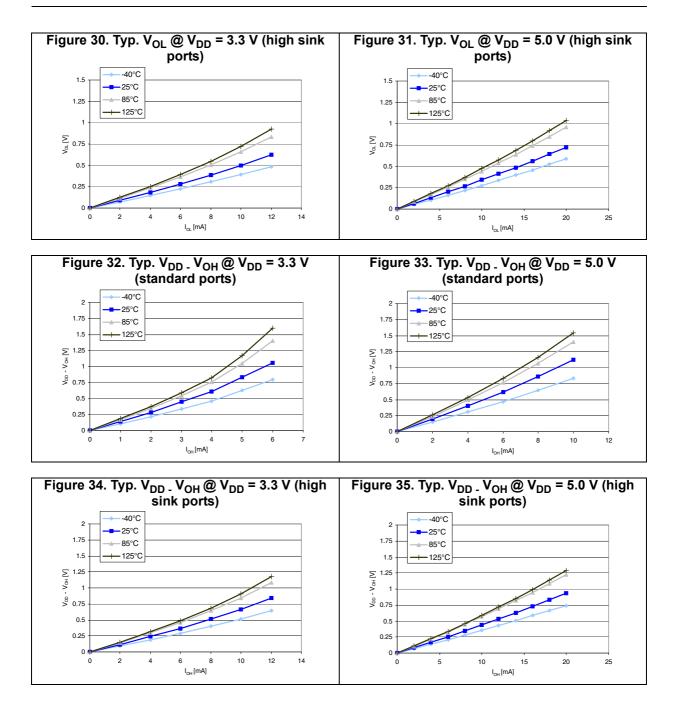
Address	Block	Register label	Register name	Reset status
0x00 7F81 to 0x00 7F8F			Reserved area (15 bytes)	
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF
0x00 7F96		DM_CR1	DM debug module control register 1	0x00
0x00 7F97		DM_CR2	DM debug module control register 2 0x0	
0x00 7F98		DM_CSR1	DM debug module control/status register 1 0x	
0x00 7F99		DM_CSR2	DM debug module control/status register 2 0	
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF
0x00 7F9B to 0x00 7F9F			Reserved area (5 bytes)	

Table 15. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

2. Product dependent value, see Figure 8: Register and memory map.

Address	Block	Register label	Register name	Reset status	
0x00 5800		TMU_K1	Temporary memory unprotection key register 1	0x00	
0x00 5801		TMU_K2	Temporary memory unprotection key register 2	0x00	
0x00 5802		TMU_K3	TMU_K3 Temporary memory unprotection key register 3		
0x00 5803		TMU_K4	TMU_K4 Temporary memory unprotection key register 4		
0x00 5804	TMU	TMU_K5	TMU_K5 Temporary memory unprotection key register 5		
0x00 5805		TMU_K6	Temporary memory unprotection key register 6	0x00	
0x00 5806		TMU_K7	Temporary memory unprotection key register 7	0x00	
0x00 5807		TMU_K8	Temporary memory unprotection key register 8	0x00	
0x00 5808		TMU_CSR	Temporary memory unprotection control and status register	0x00	


Table 16. Temporary memory unprotection registers

Option byte no.	Description
OPT12	TMU_KEY 5 [7:0]: Temporary unprotection key 4 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT13	TMU_KEY 6 [7:0]: Temporary unprotection key 5 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT14	TMU_KEY 7 [7:0]: Temporary unprotection key 6 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT15	TMU_KEY 8 [7:0]: Temporary unprotection key 7 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT16	 TMU_MAXATT [7:0]: TMU access failure counter TMU_MAXATT can be initialized with the desired value only if TMU is disabled (TMU[3:0]=0101 in OPT6 option byte). When TMU is enabled, any attempt to temporary remove the readout protection by using wrong key values increments the counter. When the option byte value reaches 0x08, the Flash memory and data EEPROM are erased.
OPT17	BL[7:0]: Bootloader enable If this option byte is set to 0x55 (complementary value 0xAA) the bootloader program is activated also in case of a programmed code memory (for more details, see the bootloader user manual, UM0560).

Table 19. Option byte description (continued)

DocID14395 Rev 15

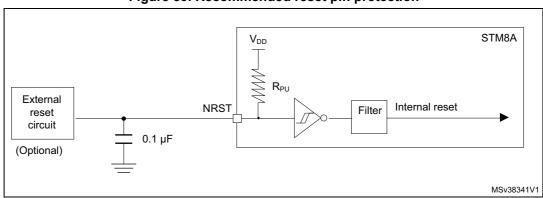


Figure 39. Recommended reset pin protection

10.3.8 TIM 1, 2, 3, and 4 electrical specifications

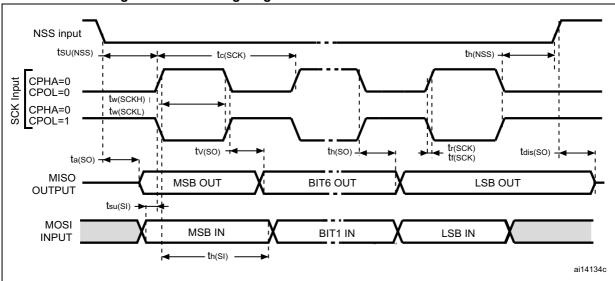
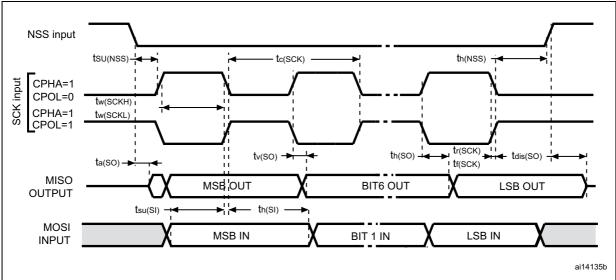

Subject to general operating conditions for $V_{\text{DD}},\,f_{\text{MASTER}}$ and $T_{\text{A}}.$

Table 40. TIM 1, 2, 3, and 4 electrical specifications

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{EXT}	Timer external clock frequency ⁽¹⁾	-	-	-	24	MHz


1. Not tested in production.

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

Electromagnetic interference (EMI)

Emission tests conform to the IEC 61967-2 standard for test software, board layout and pin loading.

		Conditions					
Symbol P	Parameter	Conorol	Monitorod	Max f _{CPU} ⁽¹⁾			Unit
		General conditions	Monitored frequency band	8 MHz	16 MHz	24 MHz	
		V _{DD} = 5 V,	0.1 MHz to 30 MHz	15	17	22	
S _{EMI} Peak level	T _A = 25 °C, LQFP80 package conforming to IEC	30 MHz to 130 MHz	18	22	16	dBµV	
		130 MHz to 1 GHz	-1	3	5	чομν	
	EMI level	61967-2	-	2	2.5	2.5	

Table 46. EMI data

1. Guaranteed by characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = 25$ °C, conforming to JESD22-A114	3A	4000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = 25 °C, conforming to JESD22-C101	3	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (charge device model)	$T_A = 25 \ ^{\circ}C$, conforming to JESD22-A115	В	200	

Table 47. ESD absolute maximum ratings

1. Guaranteed by characterization results, not tested in production

		millimeters			inches		
Symbol							
	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.220	0.320	0.380	0.0087	0.0126	0.0150	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.350	-	-	0.4862	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.350	-	-	0.4862	-	
е	-	0.650	-	-	0.0256	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.100	-	-	0.0039	

Table 49. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data⁽¹⁾

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Date	Revision	Changes		
13-Oct-2016	14	 Updated: Title of <i>Figure 7: STM8AF52x6 VFQFPN32 32-pin pinout</i>, (previously STM8AF5286UC VFQFPN32 32-pin pinout) Footnotes of <i>Figure 60: STM8AF526x/8x/Ax and</i> <i>STM8AF6269/8x/Ax ordering information scheme1</i> <i>Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin</i> <i>description</i> replaced "STM8AF5286UC VQFPN32" with "STM8AF52x6 VQFPN32" at header row Section 10.2: Absolute maximum ratings Section : Device marking on page 93 Section : Device marking on page 96 Section : Device marking on page 104 Section : Device marking on page 108 Added: Footnote on <i>Figure 47: LQFP80 marking example (package top</i> <i>view)</i>, <i>Figure 50: LQFP64 marking example (package top view)</i>, <i>Figure 56: LQFP32 marking example (package top view)</i>, <i>Figure 59: VFQFPN32 marking example (package top view)</i>. 		
10-Nov-2016	15	Updated header row and PA6/USART_CK pin row on <i>Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description</i> .		

