

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, I ² C, LINbus, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af5286ucx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 48. Figure 49.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
	recommended footprint
Figure 50.	LQFP64 marking example (package top view)96
Figure 51.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
Figure 52.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
-	recommended footprint
Figure 53.	LQFP48 marking example (package top view)
Figure 54.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline
Figure 55.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
U	recommended footprint
Figure 56.	LQFP32 marking example (package top view)
Figure 57.	VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch guad
0	flat package outline
Figure 58.	VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch very thin profile fine pitch quad
U	flat package recommended footprint
Figure 59.	VFQFPN32 marking example (package top view) 108
Figure 60.	STM8AF526x/8x/Ax and STM8AF6269/8x/Ax ordering information scheme ¹

1 Introduction

This datasheet refers to the STM8AF526x/8x/Ax and STM8AF6269/8x/Ax products with 32 to 128 Kbyte of program memory.

In the order code, the letter 'F' refers to product versions with Flash and data EEPROM and 'P' to product versions with FASTROM. The identifiers 'F' and 'P' do not coexist in a given order code.

The datasheet contains the description of family features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8A microcontroller memory, registers and peripherals, please refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8S and STM8A Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

5.10 Input/output specifications

The product features four I/O types:

- Standard I/O 2 MHz
- Fast I/O up to 10 MHz
- High sink 8 mA, 2 MHz
- True open drain (I²C interface)

To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum slew rate. The rise and fall times are similar to those of standard I/Os.

The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitttrigger input stage on the analog I/Os can be disabled in order to reduce the device standby consumption.

STM8A I/Os are designed to withstand current injection. For a negative injection current of 4 mA, the resulting leakage current in the adjacent input does not exceed 1 μ A. Thanks to this feature, external protection diodes against current injection are no longer required.

- Caution: In STM8AF5286UC device, the following I/O ports are not automatically configured by hardware: PA3, PA4, PA5, PA6, PF4, PB6, PB7, PE0, PE1, PE2, PE3, PE6, PE7. As a consequence, they must be put into one of the following configurations by software: configured as input with internal pull-up/down resistor,
 - configured as output push-pull low.

Туре	I= input, O = output, S = power supply					
	Input	CM = CMOS (standard for all I/Os)				
Level	Output	HS = high sink (8 mA)				
Output speed	O1 = Standard (up to 2 MHz) O2 = Fast (up to 10 MHz) O3 = Fast/slow programmability with slow as default state after reset O4 = Fast/slow programmability with fast as default state after reset					
Port and control	Input	float = floating, wpu = weak pull-up				
configuration	Output	T = true open drain, OD = open drain, PP = push pull				
Reset state	Bold X (pin state after reset release). Unless otherwise specified, the pin state is the same during the reset phase "under reset") and after internal reset release (i.e. at reset state).					

Table 10. Legend/abbreviation for the pin (description	table
---	-------------	-------

	Pir	n nu	mber				h	npu	t		Out	put				
LQFP80	LQFP64	LQFP48	STM8AF62xx LQFP32/VFQFPN32	STM8AF52x6 VFQFPN32	Pin name	Type	Floating	Mpu	Ext. interrupt	High sink	Speed	QO	ЬР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
22	18	-	-	-	V _{REF+}	s	-	-	-	-	-	-	-	ADC refe vol	positive rence Itage	-
23	19	13	9	9	V _{DDA}	S	-	-	-	-	-	-	-	Analog po	ower supply	-
24	20	14	10	10	V _{SSA}	S	-	-	-	-	-	-	-	Analog	g ground	-
25	21	-	-	-	V _{REF-}	S	-	-	-	-	-	-	-	ADC r referenc	negative ce voltage	-
26	22	-	-	-	PF0/AIN10	I/O	x	х	-	-	01	х	х	Port F0	Analog input 10	-
27	23	15	-	-	PB7/AIN7	I/O	x	х	х	-	01	х	х	Port B7	Analog input 7	-
28	24	16	-	-	PB6/AIN6	I/O	x	х	х	-	01	х	х	Port B6	Analog input 6	-
29	25	17	11	11	PB5/AIN5	I/O	x	х	х	-	01	х	х	Port B5	Analog input 5	I ² C_SDA [AFR6]
30	26	18	12	12	PB4/AIN4	I/O	x	х	х	-	01	х	х	Port B4	Analog input 4	I ² C_SCL [AFR6]
31	27	19	13	13	PB3/AIN3	I/O	x	х	х	-	01	х	х	Port B3	Analog input 3	TIM1_ETR [AFR5]
32	28	20	14	14	PB2/AIN2	I/O	x	х	х	-	01	х	x	Port B2	Analog input	TIM1_CH3N [AFR5]
33	29	21	15	15	PB1/AIN1	I/O	x	х	х	-	01	х	х	Port B1	Analog input 1	TIM1_CH2N [AFR5]
34	30	22	16	16	PB0/AIN0	I/O	x	х	х	-	01	х	х	Port B0	Analog input 0	TIM1_CH1N [AFR5]
35	-	-	-	-	PH4/TIM1_ETR	I/O	x	x	-	-	01	x	x	Port H4	Timer 1 - trigger input	-
36	-	-	-	-	PH5/ TIM1_CH3N	I/O	x	x	-	-	01	х	х	Port H5	Timer 1 - inverted channel 3	-
37	-	-	-	-	PH6/ TIM1_CH2N	I/O	x	x	-	-	01	x	x	Port H6	Timer 1 - inverted channel 2	-

Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax	pin descri	ption (continued)
---	------------	---------	------------

6.2 Alternate function remapping

As shown in the rightmost column of *Table 11*, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. Refer to *Section 9: Option bytes on page 54*. When the remapping option is active, the default alternate function is no longer available.

To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.

Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016).

Address	Block	Register label	Register name	Reset status					
0x00 5250		TIM1_CR1	TIM1 control register 1	0x00					
0x00 5251		TIM1_CR2	TIM1 control register 2	0x00					
0x00 5252		TIM1_SMCR	TIM1 slave mode control register	0x00					
0x00 5253		TIM1_ETR	TIM1 external trigger register	0x00					
0x00 5254		TIM1_IER	TIM1 Interrupt enable register	0x00					
0x00 5255		TIM1_SR1	TIM1 status register 1	0x00					
0x00 5256		TIM1_SR2	TIM1 status register 2	0x00					
0x00 5257		TIM1_EGR	TIM1 event generation register	0x00					
0x00 5258		TIM1_CCMR1	TIM1 capture/compare mode register 1	0x00					
0x00 5259		TIM1_CCMR2	TIM1 capture/compare mode register 2	0x00					
0x00 525A		TIM1_CCMR3	TIM1 capture/compare mode register 3	0x00					
0x00 525B		TIM1_CCMR4	TIM1 capture/compare mode register 4	0x00					
0x00 525C		TIM1_CCER1	TIM1 capture/compare enable register 1	0x00					
0x00 525D		TIM1_CCER2	TIM1 capture/compare enable register 2	0x00					
0x00 525E		TIM1_CNTRH	TIM1 counter high	0x00					
0x00 525F	TIMA	TIM1_CNTRL	TIM1 counter low	0x00					
0x00 5260	T HVI T	TIM1_PSCRH	TIM1 prescaler register high	0x00					
0x00 5261		TIM1_PSCRL	TIM1 prescaler register low	0x00					
0x00 5262		TIM1_ARRH	TIM1 auto-reload register high	0xFF					
0x00 5263		TIM1_ARRL	TIM1 auto-reload register low	0xFF					
0x00 5264		TIM1_RCR	TIM1 repetition counter register	0x00					
0x00 5265		TIM1_CCR1H	TIM1 capture/compare register 1 high	0x00					
0x00 5266		TIM1_CCR1L	TIM1 capture/compare register 1 low	0x00					
0x00 5267		TIM1_CCR2H	TIM1 capture/compare register 2 high	0x00					
0x00 5268		TIM1_CCR2L	TIM1 capture/compare register 2 low	0x00					
0x00 5269		TIM1_CCR3H	TIM1 capture/compare register 3 high	0x00					
0x00 526A		TIM1_CCR3L	TIM1 capture/compare register 3 low	0x00					
0x00 526B		TIM1_CCR4H	TIM1 capture/compare register 4 high	0x00					
0x00 526C		TIM1_CCR4L	TIM1 capture/compare register 4 low	0x00					
0x00 526D		TIM1_BKR	TIM1 break register	0x00					
0x00 526E		TIM1_DTR	TIM1 dead-time register	0x00					
0x00 526F		TIM1_OISR	TIM1 output idle state register	0x00					
0x00 5270 to 0x00 52FF		Reserved area (147 bytes)							

 Table 14. General hardware register map (continued)

1	0			r 1		
Address	Block	Register label	Register name	Reset status		
0x00 5400		ADC _CSR	ADC control/status register	0x00		
0x00 5401		ADC_CR1 ADC configuration register 1		0x00		
0x00 5402		ADC_CR2	ADC configuration register 2	0x00		
0x00 5403		ADC_CR3	ADC configuration register 3	0x00		
0x00 5404	ADC	ADC_DRH	ADC data register high	0xXX		
0x00 5405		ADC_DRL	ADC data register low	0xXX		
0x00 5406		ADC_TDRH	ADC Schmitt trigger disable register high	0x00		
0x00 5407		ADC_TDRL	ADC Schmitt trigger disable register low	0x00		
0x00 5408 to 0x00 541F		Reserved area (24 bytes)				
0x00 5420		CAN_MCR	CAN master control register	0x02		
0x00 5421		CAN_MSR	CAN master status register	0x02		
0x00 5422		CAN_TSR	CAN transmit status register	0x00		
0x00 5423		CAN_TPR	CAN transmit priority register	0x0C		
0x00 5424		CAN_RFR	CAN receive FIFO register	0x00		
0x00 5425		CAN_IER	CAN interrupt enable register	0x00		
0x00 5426		CAN_DGR	CAN diagnosis register	0x0C		
0x00 5427		CAN_FPSR	CAN page selection register	0x00		
0x00 5428		CAN_P0	0 CAN paged register 0			
0x00 5429		CAN_P1	CAN paged register 1	0xXX ⁽³⁾		
0x00 542A		CAN_P2	CAN paged register 2	0xXX ⁽³⁾		
0x00 542B	beCAN	CAN_P3	CAN paged register 3	0xXX ⁽³⁾		
0x00 542C		CAN_P4	CAN paged register 4	0xXX ⁽³⁾		
0x00 542D		CAN_P5	CAN paged register 5	0xXX ⁽³⁾		
0x00 542E		CAN_P6	CAN paged register 6	0xXX ⁽³⁾		
0x00 542F		CAN_P7	CAN paged register 7	0xXX ⁽³⁾		
0x00 5430		CAN_P8	CAN paged register 8	0xXX ⁽³⁾		
0x00 5431		CAN_P9	CAN paged register 9	0xXX ⁽³⁾		
0x00 5432		CAN_PA	CAN paged register A	0xXX ⁽³⁾		
0x00 5433		CAN_PB	CAN paged register B	0xXX ⁽³⁾		
0x00 5434		CAN_PC	CAN paged register C	0xXX ⁽³⁾		
0x00 5435		CAN_PD	CAN paged register D	0xXX ⁽³⁾		
0x00 5436		CAN_PE	CAN paged register E	0xXX ⁽³⁾		

 Table 14. General hardware register map (continued)

8 Interrupt table

Priority	Source block	Description	Interrupt vector address	Wakeup from Halt	Comments
-	Reset	Reset	0x00 8000	Yes	-
-	TRAP	SW interrupt	0x00 8004	-	-
0	TLI	External top level interrupt	0x00 8008	-	-
1	AWU	Auto-wakeup from Halt	0x00 800C	Yes	-
2	Clock controller	Main clock controller	0x00 8010	-	-
3	MISC	External interrupt E0	0x00 8014	Yes	Port A interrupts
4	MISC	External interrupt E1	0x00 8018	Yes	Port B interrupts
5	MISC	External interrupt E2	0x00 801C	Yes	Port C interrupts
6	MISC	External interrupt E3	0x00 8020	Yes	Port D interrupts
7	MISC	External interrupt E4	0x00 8024	Yes	Port E interrupts
8	CAN	CAN interrupt Rx	0x00 8028	Yes	-
9	CAN	CAN interrupt TX/ER/SC	0x00 802C	-	-
10	SPI	End of transfer	0x00 8030	Yes	-
11	Timer 1	Update/overflow/ trigger/break	0x00 8034	-	-
12	Timer 1	Capture/compare	0x00 8038	-	-
13	Timer 2	Update/overflow	0x00 803C	-	-
14	Timer 2	Capture/compare	0x00 8040	-	-
15	Timer 3	Update/overflow	0x00 8044	-	-
16	Timer 3	Capture/compare	0x00 8048	-	-
17	USART	Tx complete	0x00 804C	-	-
18	USART	Receive data full reg.	0x00 8050	-	-
19	l ² C	I ² C interrupts	0x00 8054	Yes	-
20	LINUART	Tx complete/error	0x00 8058	-	-
21	LINUART	Receive data full reg.	0x00 805C	-	-
22	ADC	End of conversion	0x00 8060	-	-
23	Timer 4	Update/overflow	0x00 8064	-	-
24	EEPROM	End of programming/ write in not allowed area	0x00 8068	-	-

Table 17. STM8A interrupt table⁽¹⁾

1. All unused interrupts must be initialized with 'IRET' for robust programming.

Table 27. Total current consumption in Halt and Active-halt modes. General conditions for V_{DD} applied. T_A = -40 °C to 55 °C unless otherwise stated

			Cond					
Symbol	Parameter	Main voltage regulator (MVR) ⁽¹⁾	Flash mode ⁽²⁾	Clock source and temperature condition	Тур	Мах	Unit	
	Supply current in		Power	Clocks stopped	5	35 ⁽³⁾		
I _{DD(H)}	Halt mode	Off	down	Clocks stopped, T _A = 25 °C	5	25		
	Supply current in Active-halt mode	On	Power-	External clock 16 MHz f _{MASTER} = 125 kHz	770	900 ⁽³⁾	μA	
	with regulator on		down	LSI clock 128 kHz	150	230 ⁽³⁾		
IDD(AH)	Supply current in Active-halt mode with regulator off	Off	Power- down	LSI clock 128 kHz	25	42 ⁽³⁾		
				LSI clock 128 kHz, T _A = 25 °C	25	30	30	
twu(ah)	Wakeup time from Active-halt mode with regulator on	On	Operating	T. = 40 to 150 °C	10	30 ⁽³⁾	116	
	Wakeup time from Active-halt mode with regulator off	Off	mode	1 _A - 40 10 100 0	50	80 ⁽³⁾	μο	

1. Configured by the REGAH bit in the CLK_ICKR register.

2. Configured by the AHALT bit in the FLASH_CR1 register.

3. Guaranteed by characterization results, not tested in production.

Current consumption for on-chip peripherals

Table 28.	. Oscillator	current	consumption
-----------	--------------	---------	-------------

Symbol	Parameter	Con	Тур	Max ⁽¹⁾	Unit	
I _{DD(OSC)}	HSE oscillator current	Quartz or	f _{OSC} = 24 MHz	1	2.0 ⁽³⁾	
		ceramic resonator,	f _{OSC} = 16 MHz	0.6	-	
	consumption	CL = 33 pF V _{DD} = 5 V	f _{OSC} = 8 MHz	0.57	-	~ ^
I _{DD(OSC)}	HSE oscillator current	Quartz or	f _{OSC} = 24 MHz	0.5	1.0 ⁽³⁾	mA
		ceramic resonator	f _{OSC} = 16 MHz	0.25	-	
	consumption	CL = 33 pF V _{DD} = 3.3 V	f _{OSC} = 8 MHz	0.18	-	

1. During startup, the oscillator current consumption may reach 6 mA.

2. The supply current of the oscillator can be further optimized by selecting a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

3. Informative data.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _F	Feedback resistor	-	-	220	-	kΩ
$C_{L1}/C_{L2}^{(1)}$	Recommended load capacitance	-	-	-	20	pF
9 _m	Oscillator trans conductance	-	5	-	-	mA/V
t _{SU(HSE)} ⁽²⁾	Startup time	V _{DD} is stabilized	-	2.8	-	ms

Table 32. HSE oscillator characteristics

1. The oscillator needs two load capacitors, C_{L1} and C_{L2} , to act as load for the crystal. The total load capacitance (C_{Load}) is $(C_{L1} * C_{L2})/(C_{L1} + C_{L2})$. If $C_{L1} = C_{L2}$, $C_{load} = C_{L1/2}$. Some oscillators have built-in load capacitors, C_{L1} and C_{L2} .

2. This value is the startup time, measured from the moment it is enabled (by software) until a stabilized 24 MHz oscillation is reached. It can vary with the crystal type that is used.

HSE oscillator critical g_m formula

The crystal characteristics have to be checked with the following formula:

Equation 1

 $g_m \gg g_{mcrit}$

where g_{mcrit} can be calculated with the crystal parameters as follows:

Equation 2

$$g_{mcrit} = (2 \times \Pi \times {}^{f}HSE)^{2} \times R_{m}(2Co + C)^{2}$$

 $\begin{array}{l} \textbf{R}_m: \mbox{ Notional resistance (see crystal specification)} \\ \textbf{L}_m: \mbox{ Notional inductance (see crystal specification)} \\ \textbf{C}_m: \mbox{ Notional capacitance (see crystal specification)} \\ \textbf{Co}: \mbox{ Shunt capacitance (see crystal specification)} \\ \textbf{C}_{L1} = \textbf{C}_{L2} = \textbf{C}: \mbox{ Grounded external capacitance} \end{array}$

DocID14395 Rev 15

Low-speed internal RC oscillator (LSI)

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

Table 34. LSI oscillator characteristics

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{LSI}	Frequency	-	112	128	144	kHz
t _{su(LSI)}	LSI oscillator wakeup time	-	-	-	7 ⁽¹⁾	μs

1. Guaranteed by characterization results, not tested in production.

Figure 22. Typical LSI frequency vs V_{DD}

- 2. Guaranteed by design.
- 3. Guaranteed by characterization results, not tested in production.

Figure 24. Typical pull-up resistance R_{PU} vs V_{DD} @ four temperatures

11 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com.* ECOPACK[®] is an ST trademark.

11.1 LQFP80 package information

Figure 45. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package outline

1. Drawing is not to scale.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 47. LQFP80 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

11.6 Thermal characteristics

In case the maximum chip junction temperature (T_{Jmax}) specified in *Table 24: General operating conditions* is exceeded, the functionality of the device cannot be guaranteed.

T_{Jmax}, in degrees Celsius, may be calculated using the following equation:

$$T_{Jmax} = T_{Amax} + (P_{Dmax} \times \Theta_{JA})$$

where:

 T_{Amax} is the maximum ambient temperature in ° C

 Θ_{JA} is the package junction-to-ambient thermal resistance in $^\circ\,$ C/W

 P_{Dmax} is the sum of P_{INTmax} and $P_{I/Omax} (P_{Dmax} = P_{INTmax} + P_{I/Omax})$

 $\textbf{P}_{\textbf{INTmax}}$ is the product of \textbf{I}_{DD} and $\textbf{V}_{DD},$ expressed in Watts. This is the maximum chip internal power.

PI/Omax represents the maximum power dissipation on output pins

where:

$$\mathsf{P}_{\mathsf{I}/\mathsf{Omax}} = \Sigma \left(\mathsf{V}_{\mathsf{OL}} * \mathsf{I}_{\mathsf{OL}} \right) + \Sigma \left(\left(\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}} \right) * \mathsf{I}_{\mathsf{OH}} \right)$$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low- and high-level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP 80 - 14 x 14 mm	38	
	Thermal resistance junction-ambient LQFP 64 - 10 x 10 mm	46	
Θ_{JA}	Thermal resistance junction-ambient LQFP 48 - 7 x 7 mm	57	°C/W
	Thermal resistance junction-ambient LQFP 32 - 7 x 7 mm	59	
	Thermal resistance junction-ambient VFQFPN 32 - 5 x 5 mm	25	

Table 54. Thermal characteristics	Table 54.	Thermal	characteristics ⁽¹
-----------------------------------	-----------	---------	-------------------------------

1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection environment.

11.6.1 Reference document

JESD51-2 integrated circuits thermal test method environment conditions - natural convection (still air). Available from www.jedec.org.

12 Ordering information

Figure 60. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax ordering information scheme¹

Example:	STM8A ²	F	62	А	А	Т	D	XXX ³	٢
Product class									ĺ
8-bit automotive microcontroller									
Program memory type									
F = Flash + EEPROM									
P = FASTROM									
Device family									
52 = Silicon rev U and rev T, CAN/LIN									
62 = Silicon rev U and rev T, LIN only									
Program memory size									
6 = 32 Kbyte									
8 = 64 Kbyte									
A= 128 Kbyte									
Pin count									
6 = 32 pins									
8 = 48 pins									
9 = 64 pins									
A = 80 pins									
Package type									
T = LQFP									
U = VFQFPN									
Temperature range									ļ
A = -40 to 85 °C									
C = -40 to 125 °C									
D = -40 to 150 °C									
Packing									
r = Trav									
J = Tube									
	、 、								

1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further information on any aspect of this device, please go to www.st.com or contact the nearest ST Sales Office.

- 2. Qualified and characterized according to AEC Q100 and Q003 or equivalent, advanced screening according to AEC Q001 and Q002 or equivalent.
- 3. Customer specific FASTROM code or custom device configuration. This field shows 'SSS' if the device contains a super set silicon, usually equipped with bigger memory and more I/Os. This silicon is supposed to be replaced later by the target silicon.

Date	Revision	Changes
Date	Revision	Changes Modified references to reference manual, and Flash programming manual in the whole document. Added reference to AEC Q100 standard on cover page. Renamed timer types as follows: - Auto-reload timer to general purpose timer - Multipurpose timer to advanced control timer - System timer to basic timer Introduced concept of high density Flash program memory. Updated the number of I/Os for devices in 80-, 64-, and 48-pin packages in Table: STM8AF52xx product line-up with CAN, Table: STM8AF/H/P51xx product line-up with CAN, and Table: STM8AF/H/P61xx product line-up with CAN, and Table: STM8AF/H/P61xx product line-up with CAN. Added TMU brief description in Section 5.4: Flash program and data EEPROM, updated TMU_MAXATT description in Table 19: Option byte description, and TMU_MAWATT reset value in Table 18: Option bytes. Updated clock sources in Section 5.5.1: Features. Added Table 4: Peripheral clock gating bits (CLK_PCKENR1). Added calibration using TIM3 in Section 5.7.2: Auto-wakeup counter. Added Table 8: ADC naming and Table 9: Communication peripheral naming correspondence. Updated SPI data rate to f _{MASTER} /2 in Section 5.9.3: Serial peripheral interface (SPI). Added reset state in Table 10: Legend/abbreviation for the pin description table. Table: STM8A microcontroller family pin description: modified footnotes related to PD1/SWIM, corrected wpu input for PE1 and PE2, and renamed TIM_CCx and TIMn_NCCx to TIMn_CHx an

Table 55.	Document	revision	history	(continued)
-----------	----------	----------	---------	-------------

Date	Revision	Changes
31-Mar-2014	10 (continued)	 Added: <i>Figure 7: STM8AF52x6 VFQFPN32 32-pin pinout;</i> the caution in <i>Section 5.10: Input/output specifications,</i> The table footnote "Not recommended for new designs" to <i>Table: STM8AF/H/P51xx product line-up with CAN</i> and <i>Table: STM8AF/H/P61xx product line-up without CAN.</i> The figure footnotes to <i>Figure 7: STM8AF52x6 VFQFPN32 32-pin pinout and Figure: VFQFPN 32-lead very thin fine pitch quad flat no-lead package (5 x 5)</i>
13-Jun-2014	11	Added STM8AF52A6 part number.
09-Jun-2015	12	 Added: the third table footnote to <i>Table 25: Operating conditions at power-up/power-down</i>, <i>Figure 47: LQFP80 marking example (package top view)</i>, <i>Figure 50: LQFP64 marking example (package top view)</i>, <i>Figure 53: LQFP48 marking example (package top view)</i>, <i>Figure 56: LQFP32 marking example (package top view)</i>, <i>Figure 59: VFQFPN32 marking example (package top view)</i>, <i>the footnote about the device marking to <i>Figure 60: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax ordering information scheme1</i>.</i> Removed STM8AF51xx and STM8AF61xx obsolete root part numbers, and consequently "H" products: <i>Table 1: Device summary</i>, <i>Section 2: Description</i>, <i>Section 3: Product line-up</i>, <i>Table 12: Memory model 128K</i>, <i>Section 10.3: Operating conditions</i>, <i>Figure 60: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax ordering information scheme1</i>. Moved Section 11.6: Thermal characteristics to Section 11: Package information. Updated: the product naming in the document headers and captions, the standard reference for EMI characteristics in <i>Table 46: EMI data</i>.
13-Jun-2016	13	Updated Table 53: VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package mechanical data

Table 55. Document revision history (continued)

Date	Revision	Changes
13-Oct-2016	14	 Updated: Title of <i>Figure 7: STM8AF52x6 VFQFPN32 32-pin pinout</i>, (previously STM8AF5286UC VFQFPN32 32-pin pinout) Footnotes of <i>Figure 60: STM8AF526x/8x/Ax and</i> <i>STM8AF6269/8x/Ax ordering information scheme1</i> <i>Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin</i> <i>description</i> replaced "STM8AF5286UC VQFPN32" with "STM8AF52x6 VQFPN32" at header row Section 10.2: Absolute maximum ratings Section : Device marking on page 93 Section : Device marking on page 96 Section : Device marking on page 104 Section : Device marking on page 108 Added: Footnote on <i>Figure 47: LQFP80 marking example (package top</i> <i>view)</i>, <i>Figure 50: LQFP64 marking example (package top view)</i>, <i>Figure 56: LQFP32 marking example (package top view)</i>, <i>Figure 59: VFQFPN32 marking example (package top view)</i>.
10-Nov-2016	15	Updated header row and PA6/USART_CK pin row on <i>Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description.</i>

|--|

