

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af528atay

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2 Description

The STM8AF526x/8x/Ax and STM8AF6269/8x/Ax automotive 8-bit microcontrollers described in this datasheet offer from 32 Kbyte to 128 Kbyte of non volatile memory and integrated true data EEPROM. They are referred to as high density STM8A devices in STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).

The STM8AF52 series features a CAN interface.

All devices of the STM8A product line provide the following benefits: reduced system cost, performance and robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, wtachdog, and brown-out reset.

Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map, and modular peripherals. Full documentation is offered with a wide choice of development tools.

Product longevity is ensured in the STM8A family thanks to their advanced core which is made in a state-of-the art technology for automotive applications with 3.3 V to 5.5 V operating supply.

All STM8A and ST7 microcontrollers are supported by the same tools including STVD/STVP development environment, the STice emulator and a low-cost, third party incircuit debugging tool.

5.5.3 128 kHz low-speed internal RC oscillator (LSI)

The frequency of this clock is 128 kHz and it is independent from the main clock. It drives the independent watchdog or the AWU wakeup timer.

In systems which do not need independent clock sources for the watchdog counters, the 128 kHz signal can be used as the system clock. This configuration has to be enabled by setting an option byte (OPT3/OPT3N, bit LSI_EN).

5.5.4 24 MHz high-speed external crystal oscillator (HSE)

The external high-speed crystal oscillator can be selected to deliver the main clock in normal Run mode. It operates with quartz crystals and ceramic resonators.

- Frequency range: 1 MHz to 24 MHz
- Crystal oscillation mode: preferred fundamental
- I/Os: standard I/O pins multiplexed with OSCIN, OSCOUT

5.5.5 External clock input

An external clock signal can be applied to the OSCIN input pin of the crystal oscillator. The frequency range is 0 to 24 MHz.

5.5.6 Clock security system (CSS)

The clock security system protects against a system stall in case of an external crystal clock failure.

In case of a clock failure an interrupt is generated and the high-speed internal clock (HSI) is automatically selected with a frequency of 2 MHz (16 MHz/8).

•	
Control bit	Peripheral
PCKEN17	TIM1
PCKEN16	TIM3
PCKEN15	TIM2
PCKEN14	TIM4
PCKEN13	LINUART
PCKEN12	USART
PCKEN11	SPI
PCKEN10	l ² C

Table 4. Peripheral clock gating bits (CLK_PCKENR1)

Control bit	Peripheral
PCKEN27	CAN
PCKEN26	Reserved
PCKEN25	Reserved
PCKEN24	Reserved
PCKEN23	ADC
PCKEN22	AWU
PCKEN21	Reserved
PCKEN20	Reserved

Table 5. Peripheral clock gating bits (CLK PCKENR2)

5.6 Low-power operating modes

For efficient power management, the application can be put in one of four different lowpower modes. Users can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources.

- Wait mode
 In this mode, the CPU is stopped but peripherals are kept running. The wakeup is
 performed by an internal or external interrupt or reset.
- Active-halt mode with regulator on

In this mode, the CPU and peripheral clocks are stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in Active-halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.

• Active-halt mode with regulator off

This mode is the same as Active-halt with regulator on, except that the main voltage regulator is powered off, so the wake up time is slower.

Halt mode

CPU and peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset.

In all modes the CPU and peripherals remain permanently powered on, the system clock is applied only to selected modules. The RAM content is preserved and the brown-out reset circuit remains activated.

5.10 Input/output specifications

The product features four I/O types:

- Standard I/O 2 MHz
- Fast I/O up to 10 MHz
- High sink 8 mA, 2 MHz
- True open drain (I²C interface)

To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum slew rate. The rise and fall times are similar to those of standard I/Os.

The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitttrigger input stage on the analog I/Os can be disabled in order to reduce the device standby consumption.

STM8A I/Os are designed to withstand current injection. For a negative injection current of 4 mA, the resulting leakage current in the adjacent input does not exceed 1 μ A. Thanks to this feature, external protection diodes against current injection are no longer required.

- Caution: In STM8AF5286UC device, the following I/O ports are not automatically configured by hardware: PA3, PA4, PA5, PA6, PF4, PB6, PB7, PE0, PE1, PE2, PE3, PE6, PE7. As a consequence, they must be put into one of the following configurations by software: configured as input with internal pull-up/down resistor,
 - configured as output push-pull low.

	Pir	n nu	mber				I	npu	t		Out	put				
LQFP80	LQFP64	LQFP48	STM8AF62xx LQFP32/VFQFPN32	STM8AF52x6 VFQFPN32	Pin name	Type	Floating	Wpu	Ext. interrupt	High sink	Speed	QO	đđ	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
55	46	-	-	-	PG3	I/O	Х	Х	-	-	01	Х	Х	Port G3	-	-
56	47	-	-	-	PG4	I/O	Х	Х	-	-	01	Х	Х	Port G4	-	-
57	48	-	-	-	PI0	I/O	Х	Х	-	-	01	Х	Х	Port I0	-	-
58	-	-	-	-	PI1	I/O	Х	Х	-	-	01	Х	Х	Port I1	-	-
59	-	-	-	-	PI2	I/O	Х	Х	-	-	01	Х	Х	Port I2	-	-
60	-	-	-	-	PI3	I/O	Х	Х	-	-	01	Х	Х	Port I3	-	-
61	-	-	-	-	PI4	I/O	Х	Х	-	-	01	Х	Х	Port I4	-	-
62	-	-	-	-	PI5	I/O	Х	Х	-	-	01	Х	Х	Port I5	-	-
63	49	-	-	-	PG5	I/O	Х	Х	-	-	01	Х	Х	Port G5	-	-
64	50	-	-	-	PG6	I/O	Х	Х	-	-	01	Х	Х	Port G6	-	-
65	51	-	-	-	PG7	I/O	Х	Х	-	-	01	Х	Х	Port G7	-	-
66	52	-	-	-	PE4	I/O	Х	Х	Х	-	01	Х	Х	Port E4	-	-
67	53	37	-	-	PE3/TIM1_BKIN	I/O	x	х	х	-	01	х	х	Port E3	Timer 1 - break input	-
68	54	38	-	-	PE2/I ² C_SDA	I/O	Х	-	Х	-	01	T ⁽³⁾	-	Port E2	I ² C data	-
69	55	39	-	-	PE1/I ² C_SCL	I/O	Х	-	Х	-	01	T ⁽³⁾	-	Port E1	I ² C clock	-
70	56	40	-	-	PE0/CLK_CCO	I/O	x	х	х	-	O3	х	х	Port E0	Configurab le clock output	-
71	-	-	-	-	PI6	I/O	Х	Х	-	-	01	Х	Х	Port I6	-	-
72	-	-	-	-	PI7	I/O	Х	Х	-	-	01	Х	Х	Port I7	-	-
73	57	41	25	25	PD0/TIM3_CH2	I/O	x	x	x	HS	O3	x	x	Port D0	Timer 3 - channel 2	TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
74	58	42	26	26	PD1/SWIM ⁽⁴⁾	I/O	х	x	х	HS	04	х	х	Port D1	SWIM data interface	-
75	59	43	27	27	PD2/TIM3_CH1	I/O	x	х	х	HS	O3	х	х	Port D2	Timer 3 - channel 1	TIM2_CH3 [AFR1]
76	60	44	28	28	PD3/TIM2_CH2	I/O	x	х	х	HS	O3	х	х	Port D3	Timer 2 - channel 2	ADC_ETR [AFR0]
77	61	45	29	29	PD4/TIM2_CH1/ BEEP	I/O	x	х	х	HS	O3	х	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]

Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description (continued)

Address	Block	Register label	Register name	Reset status		
0x00 505A		FLASH_CR1	Flash control register 1	0x00		
0x00 505B		FLASH_CR2	Flash control register 2	0x00		
0x00 505C		FLASH_NCR2	Flash complementary control register 2	0xFF		
0x00 505D	Flash	FLASH_FPR	Flash protection register	0x00		
0x00 505E		FLASH_NFPR	Flash complementary protection register	0xFF		
0x00 505F		FLASH_IAPSR	Flash in-application programming status register	0x40		
0x00 5060 to 0x005061	Reserved area (2 bytes)					
0x00 5062	Flash	FLASH_PUKR	Flash Program memory unprotection register	0x00		
0x00 5063	Reserved area (1 byte)					
0x00 5064	Flash	FLASH_DUKR	Data EEPROM unprotection register	0x00		
0x00 5065 to 0x00 509F		Re	eserved area (59 bytes)			
0x00 50A0	ITC	EXTI_CR1	External interrupt control register 1	0x00		
0x00 50A1	ne	EXTI_CR2	External interrupt control register 2	0x00		
0x00 50A2 to 0x00 50B2		Re	eserved area (17 bytes)			
0x00 50B3	RST	RST_SR	Reset status register	0xXX ⁽¹⁾		
0x00 50B4 to 0x00 50BF	Reserved area (12 bytes)					
0x00 50C0		CLK_ICKR	Internal clock control register	0x01		
0x00 50C1	ULK	CLK_ECKR	External clock control register	0x00		
0x00 50C2		F	Reserved area (1 byte)			

Table 14. General hardware register map

Option byte no.	Description
	LSI_EN: Low speed internal clock enable 0: LSI clock is not available as CPU clock source 1: LSI clock is available as CPU clock source
	IWDG_HW: Independent watchdog 0: IWDG Independent watchdog activated by software 1: IWDG Independent watchdog activated by hardware
OP13	WWDG_HW: Window watchdog activation 0: WWDG window watchdog activated by software 1: WWDG window watchdog activated by hardware
	WWDG_HALT: Window watchdog reset on Halt 0: No reset generated on Halt if WWDG active 1: Reset generated on Halt if WWDG active
	EXTCLK: External clock selection 0: External crystal connected to OSCIN/OSCOUT 1: External clock signal on OSCIN
OPT4	CKAWUSEL: Auto-wakeup unit/clock 0: LSI clock source selected for AWU 1: HSE clock with prescaler selected as clock source for AWU
	PRSC[1:0]: AWU clock prescaler 00: 24 MHz to 128 kHz prescaler 01: 16 MHz to 128 kHz prescaler 10: 8 MHz to 128 kHz prescaler 11: 4 MHz to 128 kHz prescaler
OPT5	HSECNT[7:0]: HSE crystal oscillator stabilization time This configures the stabilization time to 0.5, 8, 128, and 2048 HSE cycles with corresponding option byte values of 0xE1, 0xD2, 0xB4, and 0x00.
OPT6	TMU [3:0]: Enable temporary memory unprotection 0101: TMU disabled (permanent ROP). Any other value: TMU enabled.
OPT7	 WAIT STATE: Wait state configuration This option configures the number of wait states inserted when reading from the Flash/data EEPROM memory. 0: No wait state 1: One wait state
OPT8	TMU_KEY 1 [7:0]: Temporary unprotection key 0 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT9	TMU_KEY 2 [7:0]: Temporary unprotection key 1 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT10	TMU_KEY 3 [7:0]: Temporary unprotection key 2 Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT11	TMU_KEY 4 [7:0]: Temporary unprotection key 3 Temporary unprotection key: Must be different from 0x00 or 0xFF

	Table 19	. Option	byte	description	ו (continued)
--	----------	----------	------	-------------	---------------

Table 27. Total current consumption in Halt and Active-halt modes. General conditions for V_{DD} applied. T_A = -40 °C to 55 °C unless otherwise stated

			Cond					
Symbol	Parameter	Main voltage regulator (MVR) ⁽¹⁾	Flash mode ⁽²⁾	Clock source and temperature condition	Тур	Мах	Unit	
	Supply current in		Power	Clocks stopped	5	35 ⁽³⁾		
I _{DD(H)}	Halt mode	Off	down	Clocks stopped, T _A = 25 °C	5	25		
	Supply current in Active-halt mode	pply current in tive-halt mode On h regulator on	Power-	External clock 16 MHz f _{MASTER} = 125 kHz	770	900 ⁽³⁾	μA	
	with regulator on		down	LSI clock 128 kHz	150	230 ⁽³⁾		
IDD(AH)	Supply current in Active-halt mode with regulator off	Off	Power- down	LSI clock 128 kHz	25	42 ⁽³⁾		
				LSI clock 128 kHz, T _A = 25 °C	25	30		
t _{WU(AH)}	Wakeup time from Active-halt mode with regulator on	On	Operating	Operating	T. = 40 to 150 °C	10	30 ⁽³⁾	116
	Wakeup time from Active-halt mode with regulator off	Off	mode	$I_A = 40$ to 150 °C	50	80 ⁽³⁾	μο	

1. Configured by the REGAH bit in the CLK_ICKR register.

2. Configured by the AHALT bit in the FLASH_CR1 register.

3. Guaranteed by characterization results, not tested in production.

Current consumption for on-chip peripherals

Table 28.	. Oscillator	current	consumption
-----------	--------------	---------	-------------

Symbol	Parameter	Con	Тур	Max ⁽¹⁾	Unit	
I _{DD(OSC)}		Quartz or	f _{OSC} = 24 MHz	1	2.0 ⁽³⁾	
	HSE oscillator current consumption ⁽²⁾	ceramic resonator.	f _{OSC} = 16 MHz	0.6	-	
		CL = 33 pF V _{DD} = 5 V	f _{OSC} = 8 MHz	0.57	-	~ ^
I _{DD(OSC)}	HSE oscillator current consumption ⁽²⁾	Quartz or	f _{OSC} = 24 MHz	0.5	1.0 ⁽³⁾	mA
		ceramic resonator, CL = 33 pF V _{DD} = 3.3 V	f _{OSC} = 16 MHz	0.25	-	
			f _{OSC} = 8 MHz	0.18	-	

1. During startup, the oscillator current consumption may reach 6 mA.

2. The supply current of the oscillator can be further optimized by selecting a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

3. Informative data.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
R _F	Feedback resistor	-	-	220	-	kΩ
$C_{L1}/C_{L2}^{(1)}$	Recommended load capacitance	-	-	-	20	pF
9 _m	Oscillator trans conductance	-	5	-	-	mA/V
t _{SU(HSE)} ⁽²⁾	Startup time	V _{DD} is stabilized	-	2.8	-	ms

Table 32. HSE oscillator characteristics

1. The oscillator needs two load capacitors, C_{L1} and C_{L2} , to act as load for the crystal. The total load capacitance (C_{Load}) is $(C_{L1} * C_{L2})/(C_{L1} + C_{L2})$. If $C_{L1} = C_{L2}$, $C_{load} = C_{L1/2}$. Some oscillators have built-in load capacitors, C_{L1} and C_{L2} .

2. This value is the startup time, measured from the moment it is enabled (by software) until a stabilized 24 MHz oscillation is reached. It can vary with the crystal type that is used.

HSE oscillator critical g_m formula

The crystal characteristics have to be checked with the following formula:

Equation 1

 $g_m \gg g_{mcrit}$

where g_{mcrit} can be calculated with the crystal parameters as follows:

Equation 2

$$g_{mcrit} = (2 \times \Pi \times {}^{f}HSE)^{2} \times R_{m}(2Co + C)^{2}$$

 $\begin{array}{l} \textbf{R}_m: \mbox{ Notional resistance (see crystal specification)} \\ \textbf{L}_m: \mbox{ Notional inductance (see crystal specification)} \\ \textbf{C}_m: \mbox{ Notional capacitance (see crystal specification)} \\ \textbf{Co}: \mbox{ Shunt capacitance (see crystal specification)} \\ \textbf{C}_{L1} = \textbf{C}_{L2} = \textbf{C}: \mbox{ Grounded external capacitance} \end{array}$

DocID14395 Rev 15

10.3.9 SPI interface

Unless otherwise specified, the parameters given in *Table 41* are derived from tests performed under ambient temperature, f_{MASTER} frequency, and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Cond	Min	Max	Unit		
		Master mode		0	10		
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	V _{DD} < 4.5 V	0	6 ⁽¹⁾	MHz	
-C(SCR)		Slave mode	V _{DD} = 4.5 V to 5.5 V	0	8 ⁽¹⁾		
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C =	-	25 ⁽²⁾			
t _{su(NSS)} ⁽³⁾	NSS setup time	Slave mode		4 * t _{MASTER}	-		
t _{h(NSS)} ⁽³⁾	NSS hold time	Slave mode		70	-		
t _{w(SCKH)} ⁽³⁾ t _{w(SCKL)} ⁽³⁾	SCK high and low time	Master mode t _{SCK} /2 - 15		t _{SCK} /2 + 15	t _{w(SCKH)} ⁽³⁾ t _{w(SCKL)} ⁽³⁾		
t _{su(MI)} (3)	Data input setup time	Master mode		5	-		
t _{su(SI)} (3)		Slave mode	5	-			
t _{h(MI)} (3)	Data input hold time	Master mode		7	-	ns	
t _{h(SI)} (3)		Slave mode	10	-			
t _{a(SO)} (3)(4)	Data output access time	Slave mode	-	3* t _{MASTER}			
t _{dis(SO)} ⁽³⁾⁽⁵⁾	Data output disable time	Slave mode		25			
t	Data output valid time	Slave mode	V _{DD} < 4.5 V	-	75		
^۱ v(SO) ^۲		(after enable edge)	V_{DD} = 4.5 V to 5.5 V	-	53		
t _{v(MO)} ⁽³⁾	Data output valid time	Master mode (after enable edge)		-	30		
t _{h(SO)} ⁽³⁾	Data output hold time	Slave mode (after e	31	-	1		
t _{h(MO)} ⁽³⁾		Master mode (after	enable edge)	12	-		

Table 41. SPI ch	aracteristics
------------------	---------------

1. $f_{SCK} < f_{MASTER}/2$.

2. The pad has to be configured accordingly (fast mode).

3. Guaranteed by design or by characterization results, not tested in production.

4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

10.3.10 I²C interface characteristics

Cumhal	Devenueter	Standard	mode I ² C	Fast mode I ² C ⁽¹⁾		Unit
Зутвої	Parameter	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	110
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾	-	0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time (V _{DD} 3 V to 5.5 V)	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time (V _{DD} 3 V to 5.5 V)	-	300	-	300	
t _{h(STA)}	START condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF

Table 42. I²C characteristics

1. $f_{MASTER},$ must be at least 8 MHz to achieve max fast I^2C speed (400 kHz) $\,$

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

10.3.11 10-bit ADC characteristics

Subject to general operating conditions for $V_{\text{DDA}},\,f_{\text{MASTER}}$ and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{ADC}	ADC clock frequency	-	111 kHz	-	4 MHz	kHz/MHz
V _{DDA}	Analog supply	-	3	-	5.5	
V _{REF+}	Positive reference voltage	-	2.75	-	V _{DDA}	
V _{REF-}	Negative reference voltage	-	V _{SSA}	-	0.5	V
		-	V _{SSA}	-	V _{DDA}	
V _{AIN}	Conversion voltage range ⁽¹⁾	Devices with external V _{REF+} / V _{REF-} pins	V _{REF-}	-	V _{REF+}	
C _{samp}	Internal sample and hold capacitor	-	-	-	3	pF
$t_{a}(1)$	Sampling time	f _{ADC} = 2 MHz	-	1.5	-	
(3 x 1/f _{ADC})		f _{ADC} = 4 MHz	-	0.75	-	
t	Wakeup time from standby	f _{ADC} = 2 MHz	-	7	-	
' STAB	wakeup time nom standby	f _{ADC} = 4 MHz	-	3.5	-	μs
	Total conversion time including	f _{ADC} = 2 MHz	-	7	-	
^t CON∨	sampling time (14 x 1/f _{ADC})	f _{ADC} = 4 MHz	-	3.5	-	
R _{switch}	Equivalent switch resistance	-	-	-	30	kΩ

	Table	43. A		harac	teristics
--	-------	-------	--	-------	-----------

 During the sample time, the sampling capacitance, C_{samp} (3 pF typ), can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_S. After the end of the sample time t_S, changes of the analog input voltage have no effect on the conversion result.

Figure 43. Typical application with ADC

1. Legend: R_{AIN} = external resistance, C_{AIN} = capacitors, C_{samp} = internal sample and hold capacitor.

Symbol	Parameter	Conditions	Тур	Max ⁽¹⁾	Unit
E _T	Total unadjusted error ⁽²⁾		1.4	3 ⁽³⁾	
E _O	Offset error ⁽²⁾		0.8	3	
E _G	Gain error ⁽²⁾	f _{ADC} = 2 MHz	0.1	2	
E _D	Differential linearity error ⁽²⁾		0.9	1	
E _L	Integral linearity error ⁽²⁾		0.7	1.5	
E _T	Total unadjusted error ⁽²⁾		1.9 ⁽⁴⁾	4 ⁽⁴⁾	LOD
E _O	Offset error ⁽²⁾		1.3 ⁽⁴⁾	4 ⁽⁴⁾	
E _G	Gain error ⁽²⁾	f _{ADC} = 4 MHz	0.6 ⁽⁴⁾	3 ⁽⁴⁾	
E _D	Differential linearity error ⁽²⁾		1.5 ⁽⁴⁾	2 ⁽⁴⁾	
E _L	Integral linearity error ⁽²⁾		1.2 ⁽⁴⁾	1.5 ⁽⁴⁾	

Table 44. ADC accuracy for $V_{DDA} = 5 V$

1. Guaranteed by characterization results, not tested in production.

ADC accuracy vs. injection current: Any positive or negative injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 10.3.6 does not affect the ADC accuracy. 2.

TUE 2LSB can be reached on specific sales types on the whole temperature range. 3.

4. Target values.

Figure 44. ADC accuracy characteristics

1. Example of an actual transfer curve

2. The ideal transfer curve

3. End point correlation line

 E_T = Total unadjusted error: Maximum deviation between the actual and the ideal transfer curves. E_G = Offset error: Deviation between the first actual transition and the first ideal one. E_G = Gain error: Deviation between the last ideal transition and the last actual one.

 E_{D}^{c} = Differential linearity error: Maximum deviation between actual steps and the ideal one. E_{L}^{c} = Integral linearity error: Maximum deviation between any actual transition and the end point correlation line.

Symbol		millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах	
E3	-	7.500	-	-	0.2953	-	
е	-	0.500	-	-	0.0197	-	
К	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
CCC	-	-	0.080	-	-	0.0031	

Table 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Gumbal		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Мах	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat packagemechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 53. LQFP48 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 56. LQFP32 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

11.5 VFQFPN32 package information

Figure 57. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline

1. Drawing is not to scale.

57

13.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST visual develop (STVD) IDE and the ST visual programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8.

13.2.1 STM8 toolset

The STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at *www.st.com*. This package includes:

ST visual develop

Full-featured integrated development environment from STMicroelectronics, featuring:

- Seamless integration of C and ASM toolsets
- Full-featured debugger
- Project management
- Syntax highlighting editor
- Integrated programming interface
- Support of advanced emulation features for STice such as code profiling and coverage

ST visual programmer (STVP)

Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8A microcontroller's Flash memory. STVP also offers project mode for saving programming configurations and automating programming sequences.

13.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of the application directly from an easy-to-use graphical interface. Available toolchains include:

C compiler for STM8

All compilers are available in free version with a limited code size depending on the compiler. For more information, refer to www.cosmic-software.com, www.raisonance.com, and www.iar.com.

STM8 assembler linker

Free assembly toolchain included in the STM8 toolset, which allows users to assemble and link their application source code.

14 Revision history

Date	Revision	Changes
31-Jan-2008	1	Initial release
22-Aug-2008	2	Added 'H' products to the datasheet (Flash no EEPROM). Section : Features on cover page: Updated Memories, Reset and supply management, Communication interfaces and I/Os; reduced wakeup pins by 1. Table 1: Device summary: Removed STM8AF6168, STM8AF6148, STM8AF6166, STM8AF6146, STM8AF5166. Section 1: Introduction, Section 5: Product overview, Section 9: Option bytes, Section 6.2: Alternate function remapping, Table 21: Current characteristics: Updated reference documentation: RM0009, PM0047, and UM0470. Section 3: Description: added information about peak performance. Section 3: Product line-up: Removed STM8A common features table. Table 4: Peripheral clock gating bits (CLK_PCKENR1): Removed STM8AF5186T, STM8AF5176T, STM8AF5168T, and STM8AF5186T, STM8AF5176T, STM8AF5168T, and STM8AF5166T. Table 5: Peripheral clock gating bits (CLK_PCKENR2): Removed STM8AF6168T, STM8AF6166T, STM8AF6148T, and STM8AF6168T, STM8AF6166T, STM8AF6148T, and STM8AF6168T, STM8AF6166T, STM8AF6148T, and STM8AF6146T. Section 5.5.2: 16 MHz high-speed internal RC oscillator (LSI): Major modification, TMU included. Section 5.5.3: 128 kHz low-speed internal RC oscillator (LSI): User trimming updated. Section 5.5.3: 218 kHz low-speed internal RC oscillator (LSI): LSI as CPU clock added. Section 5.5.3: 128 kHz low-speed internal RC oscillator (LSI): LSI as CPU clock added. Section 5.5.4: 24 MHz high-speed external crystal oscillator (HSE), Section 5.5.5: External clock input: Maximum frequency conditional 32 Kbyte/128 Kbyte. Section 5.9: Communication interfaces, Section 5.9.3: Serial peripheral interface (SPI): SPI 10 Mb/s. Figure 3: LQFP 80-pin pinout, Figure 4: LQFP 64-pin pinout, Figure 6: STM8AF62xx LQFP/VFQFPN 32-pin pinout: Amended footnote 1. Table 12: Memory model 128K: HS output changed from 20 mA to 8 mA. Section 7.3. Expeription and register map: Corrected Table 8: Register and memory map; removed address list; added Table 14: General hardware register map.

Table 55. Document revision history

