

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	52
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af52a9tcx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet refers to the STM8AF526x/8x/Ax and STM8AF6269/8x/Ax products with 32 to 128 Kbyte of program memory.

In the order code, the letter 'F' refers to product versions with Flash and data EEPROM and 'P' to product versions with FASTROM. The identifiers 'F' and 'P' do not coexist in a given order code.

The datasheet contains the description of family features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8A microcontroller memory, registers and peripherals, please refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8S and STM8A Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

2 Description

The STM8AF526x/8x/Ax and STM8AF6269/8x/Ax automotive 8-bit microcontrollers described in this datasheet offer from 32 Kbyte to 128 Kbyte of non volatile memory and integrated true data EEPROM. They are referred to as high density STM8A devices in STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).

The STM8AF52 series features a CAN interface.

All devices of the STM8A product line provide the following benefits: reduced system cost, performance and robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, wtachdog, and brown-out reset.

Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map, and modular peripherals. Full documentation is offered with a wide choice of development tools.

Product longevity is ensured in the STM8A family thanks to their advanced core which is made in a state-of-the art technology for automotive applications with 3.3 V to 5.5 V operating supply.

All STM8A and ST7 microcontrollers are supported by the same tools including STVD/STVP development environment, the STice emulator and a low-cost, third party incircuit debugging tool.

4 Block diagram

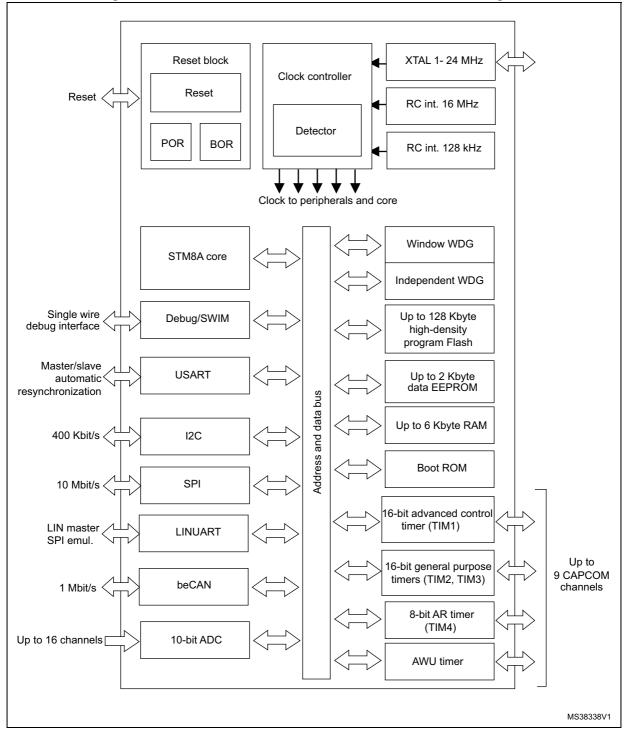


Figure 1. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax block diagram

DocID14395 Rev 15

5.5.3 128 kHz low-speed internal RC oscillator (LSI)

The frequency of this clock is 128 kHz and it is independent from the main clock. It drives the independent watchdog or the AWU wakeup timer.

In systems which do not need independent clock sources for the watchdog counters, the 128 kHz signal can be used as the system clock. This configuration has to be enabled by setting an option byte (OPT3/OPT3N, bit LSI_EN).

5.5.4 24 MHz high-speed external crystal oscillator (HSE)

The external high-speed crystal oscillator can be selected to deliver the main clock in normal Run mode. It operates with quartz crystals and ceramic resonators.

- Frequency range: 1 MHz to 24 MHz
- Crystal oscillation mode: preferred fundamental
- I/Os: standard I/O pins multiplexed with OSCIN, OSCOUT

5.5.5 External clock input

An external clock signal can be applied to the OSCIN input pin of the crystal oscillator. The frequency range is 0 to 24 MHz.

5.5.6 Clock security system (CSS)

The clock security system protects against a system stall in case of an external crystal clock failure.

In case of a clock failure an interrupt is generated and the high-speed internal clock (HSI) is automatically selected with a frequency of 2 MHz (16 MHz/8).

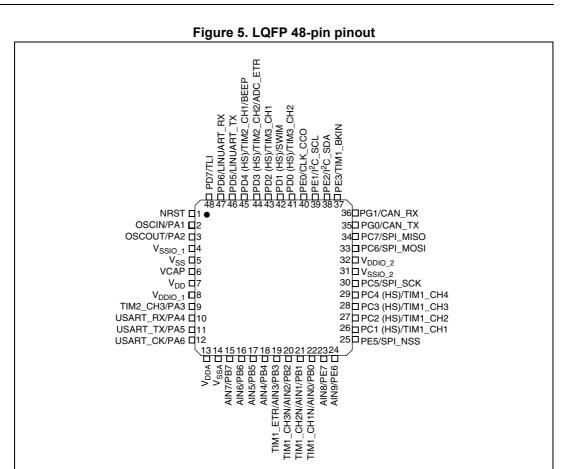
······································								
Control bit	Peripheral							
PCKEN17	TIM1							
PCKEN16	TIM3							
PCKEN15	TIM2							
PCKEN14	TIM4							
PCKEN13	LINUART							
PCKEN12	USART							
PCKEN11	SPI							
PCKEN10	l ² C							

Table 4. Peripheral clock gating bits (CLK_PCKENR1)

5.10 Input/output specifications

The product features four I/O types:

- Standard I/O 2 MHz
- Fast I/O up to 10 MHz
- High sink 8 mA, 2 MHz
- True open drain (I²C interface)


To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum slew rate. The rise and fall times are similar to those of standard I/Os.

The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitttrigger input stage on the analog I/Os can be disabled in order to reduce the device standby consumption.

STM8A I/Os are designed to withstand current injection. For a negative injection current of 4 mA, the resulting leakage current in the adjacent input does not exceed 1 μ A. Thanks to this feature, external protection diodes against current injection are no longer required.

- Caution: In STM8AF5286UC device, the following I/O ports are not automatically configured by hardware: PA3, PA4, PA5, PA6, PF4, PB6, PB7, PE0, PE1, PE2, PE3, PE6, PE7. As a consequence, they must be put into one of the following configurations by software: - configured as input with internal pull-up/down resistor,
 - configured as output push-pull low.

1. The CAN interface is only available on STM8AF52xx product lines.

2. HS stands for high sink capability.

	Pir		mber		WOAF 5202/02/A			npu		-	Out				(*******	,
LQFP80	LQFP64	LQFP48	STM8AF62xx LQFP32/VFQFPN32	STM8AF52x6 VFQFPN32	Pin name	Type	Floating	Mpu	Ext. interrupt	High sink	Speed	OD	ЬР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
22	18	-	-	-	V _{REF+}	s	-	-	-	-	-	-	-	ADC positive reference voltage		-
23	19	13	9	9	V _{DDA}	S	-	-	-	-	-	-	-	Analog power supply		-
24	20	14	10	10	V _{SSA}	S	-	-	-	-	-	-	-	-	g ground	-
25	21	-	-	-	V _{REF-}	S	-	-	-	-	-	-	-	ADC negative reference voltage		-
26	22	-	-	-	PF0/AIN10	I/O	x	х	-	-	01	х	х	Port F0 Analog input 10		-
27	23	15	-	-	PB7/AIN7	I/O	x	х	х	-	01	х	х	Port B7	Analog input 7	-
28	24	16	-	-	PB6/AIN6	I/O	x	х	х	-	01	х	х	Port B6	Analog input 6	-
29	25	17	11	11	PB5/AIN5	I/O	x	х	х	-	01	х	x	Port B5	Analog input 5	I ² C_SDA [AFR6]
30	26	18	12	12	PB4/AIN4	I/O	x	х	х	-	01	х	х	Port B4	Analog input 4	I ² C_SCL [AFR6]
31	27	19	13	13	PB3/AIN3	I/O	x	х	х	-	01	х	х	Port B3	Analog input 3	TIM1_ETR [AFR5]
32	28	20	14	14	PB2/AIN2	I/O	x	х	х	-	01	х	х	Port B2	Analog input	TIM1_CH3N [AFR5]
33	29	21	15	15	PB1/AIN1	I/O	x	х	х	-	01	х	х	Port B1	Analog input 1	TIM1_CH2N [AFR5]
34	30	22	16	16	PB0/AIN0	I/O	x	х	х	-	01	х	х	Port B0	Analog input 0	TIM1_CH1N [AFR5]
35	-	-	-	-	PH4/TIM1_ETR	I/O	x	х	-	-	01	х	x	Port H4	Timer 1 - trigger input	-
36	-	-	-	-	PH5/ TIM1_CH3N	I/O	x	х	-	-	01	х	x	Port H5	Timer 1 - inverted channel 3	-
37	-	-	-	-	PH6/ TIM1_CH2N	I/O	x	x	-	-	01	х	x	Port H6	Timer 1 - inverted channel 2	-

Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax p	oin description (conti	nued)

6.2 Alternate function remapping

As shown in the rightmost column of *Table 11*, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. Refer to *Section 9: Option bytes on page 54*. When the remapping option is active, the default alternate function is no longer available.

To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.

Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016).

Flash program memory size	Flash program memory end address	RAM size	RAM end address	Stack roll-over address	
128 K	0x00 27FFF				
64 K	0x00 17FFF	6 K	0x00 17FF	0x00 1400	
32 K	0x00 0FFFF				

Table 12. Memory model 128K

7.2 Register map

In this section the memory and register map of the devices covered by this datasheet is described. For a detailed description of the functionality of the registers, refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016.

Address	Block	Register label	Register name	Reset status
0x00 5000		PA_ODR	Port A data output latch register	0x00
0x00 5001		PA_IDR	Port A input pin value register	0xXX ⁽¹⁾
0x00 5002	Port A	PA_DDR	Port A data direction register	0x00
0x00 5003		PA_CR1	Port A control register 1	0x00
0x00 5004		PA_CR2	Port A control register 2	0x00
0x00 5005		PB_ODR	Port B data output latch register	0x00
0x00 5006		PB_IDR	Port B input pin value register	0xXX ⁽¹⁾
0x00 5007	Port B	PB_DDR	Port B data direction register	0x00
0x00 5008		PB_CR1	Port B control register 1	0x00
0x00 5009		PB_CR2	Port B control register 2	0x00
0x00 500A		PC_ODR	Port C data output latch register	0x00
0x00 500B		PB_IDR	Port C input pin value register	0xXX ⁽¹⁾
0x00 500C	Port C	PC_DDR	Port C data direction register	0x00
0x00 500D		PC_CR1	Port C control register 1	0x00
0x00 500E		PC_CR2	Port C control register 2	0x00
0x00 500F		PD_ODR	Port D data output latch register	0x00
0x00 5010		PD_IDR	Port D input pin value register	0xXX ⁽¹⁾
0x00 5011	Port D	PD_DDR	Port D data direction register	0x00
0x00 5012		PD_CR1	Port D control register 1	0x02
0x00 5013		PD_CR2	Port D control register 2	0x00

Table 13. I/O port hardware register map

Address	Block	Register label	Register name	Reset status	
0x00 5320		TIM3_CR1	TIM3 control register 1	0x00	
0x00 5321		TIM3_IER	TIM3 interrupt enable register	0x00	
0x00 5322		TIM3_CR1 TIM3_IER TIM3_SR1 TIM3_SR2 TIM3_EGR TIM3_CCMR1 TIM3_CCMR1 TIM3_CCR11 TIM3_CCR11 TIM3_CNTRH TIM3_CNTRH TIM3_CNTRL TIM3_ARRH TIM3_ARRH TIM3_ARRH TIM3_CCR1L TIM3_CCR1L TIM3_CCR1L TIM3_CCR1L TIM3_CCR1L TIM3_CCR2H TIM3_CCR2H TIM3_CCR2H TIM3_CCR2H TIM3_CCR2H TIM3_CCR2H TIM3_CCR2L Ref TIM4_CR1 TIM4_IER TIM4_EGR TIM4_SR TIM4_SR TIM4_SR TIM4_CNTR TIM4_PSCR TIM4_ARR	TIM3 status register 1	0x00	
0x00 5323			TIM3 status register 2	0x00	
0x00 5324			TIM3 event generation register	0x00	
0x00 5325			TIM3 capture/compare mode register 1	0x00	
0x00 5326		TIM3_CCMR2	TIM3 capture/compare mode register 2	0x00	
0x00 5327		TIM3_CCER1	TIM3 capture/compare enable register 1	0x00	
0x00 5328	TIM3	TIM3_CNTRH	TIM3 counter high	0x00	
0x00 5329		TIM3_CNTRL	TIM3 counter low	0x00	
0x00 532A		TIM3_PSCR TIM3 prescaler register			
0x00 532B		TIM3_ARRH	TIM3 auto-reload register high	0xFF	
0x00 532C		TIM3_ARRL	TIM3 auto-reload register low	0xFF	
0x00 532D		TIM3_CCR1H	TIM3 capture/compare register 1 high	0x00	
0x00 532E		TIM3_CCR1L	TIM3 capture/compare register 1 low	0x00	
0x00 532F		TIM3_CCR2H	TIM3 capture/compare register 2 high	0x00	
0x00 5330		TIM3_SR1 TIM3_SR2 TIM3_EGR TIM3_CCMR1 TIM3_CCMR2 TIM3_CCMR1 TIM3_CCMR1 TIM3_CCR1 TIM3_RRL TIM3_CCR1H TIM3_CCR1H TIM3_CCR1L TIM3_CCR1L TIM3_CCR1L TIM3_CCR1L TIM3_CCR2H TIM3_CCR2L FIM3_CCR2L TIM3_CCR2L TIM3_CCR2L TIM4_ER TIM4_SR TIM4_PSCR TIM4_ARR	TIM3 capture/compare register 2 low	0x00	
0x00 5331 to 0x00 533F		Re	eserved area (15 bytes)		
0x00 5340		TIM4_CR1	TIM4 control register 1	0x00	
0x00 5341		TIM4_IER	TIM4 interrupt enable register	0x00	
0x00 5342		TIM4_SR	TIM4 status register	0x00	
0x00 5343	TIM4	TIM3_CNTRH TIM3_CNTRL TIM3_PSCR TIM3_ARRH TIM3_CCR1H TIM3_CCR1L TIM3_CCR1L TIM3_CCR2H TIM3_CCR2H TIM3_CCR2H TIM3_CCR2L TIM3_CCR2L TIM4_CR1 TIM4_EGR TIM4_PSCR TIM4_ARR	TIM4 event generation register	0x00	
0x00 5344			TIM4 counter	0x00	
0x00 5345		TIM4_PSCR	TIM4 prescaler register	0x00	
0x00 5346		TIM4_ARR	TIM4 auto-reload register	0xFF	
0x00 5347 to 0x00 53FF		Re	served area (185 bytes)		

 Table 14. General hardware register map (continued)

9 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated block of the memory. Each option byte has to be stored twice, for redundancy, in a regular form (OPTx) and a complemented one (NOPTx), except for the ROP (read-out protection) option byte and option bytes 8 to 16.

Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address shown in *Table 18: Option bytes* below.

Option bytes can also be modified 'on the fly' by the application in IAP mode, except the ROP and UBC options that can only be changed in ICP mode (via SWIM).

Refer to the STM8 Flash programming manual (PM0047) and STM8 SWIM communication protocol and debug module user manual (UM0470) for information on SWIM programming procedures.

Addr.	Option	Option byte no.	Option bits									
Auur.	name		7	6	5	4	3	2	1	0	default setting	
0x00 4800	Read-out protection (ROP)	OPT0		ROP[7:0]								
0x00 4801	User boot code	OPT1		UBC[7:0]								
0x00 4802	(UBC)	NOPT1		NUBC[7:0]								
0x00 4803	Alternate function	OPT2	AFR7	AFR6	AFR5	AFR4	AFR3	AFR2	AFR1	AFR0	0x00	
0x00 4804	remapping (AFR)	NOPT2	NAFR7	NAFR6	NAFR5	NAFR4	NAFR3	NAFR2	NAFR1	NAFR0	0xFF	
0x00 4805	Watchdog	OPT3		Rese	erved		LSI_ EN	IWDG _HW	WWD G_HW	WWDG _HALT	0x00	
0x00 4806	option	NOPT3		Rese	erved		NLSI_ EN	NIWD G_HW	NWWD G_HW	NWWG _HALT	0xFF	
0x00 4807	Clock	OPT4		Rese	erved		EXT CLK	CKAW USEL	PRSC1	PRSC0	0x00	
0x00 4808	option	NOPT4		Reserved				NCKAW USEL	NPRSC1	NPRSC 0	0xFF	
0x00 4809	HSE clock	OPT5		HSECNT[7:0]						0x00		
0x00 480A	startup	NOPT5				NHSE	ECNT[7:0]			0xFF	

Table 18. Option bytes

10 Electrical characteristics

10.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

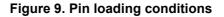
10.1.1 Minimum and maximum values

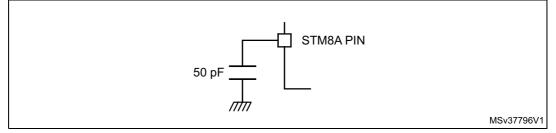
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = -40$ °C, $T_A = 25$ °C, and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

10.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5.0$ V. They are given only as design guidelines and are not tested.


Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.


10.1.3 Typical curves

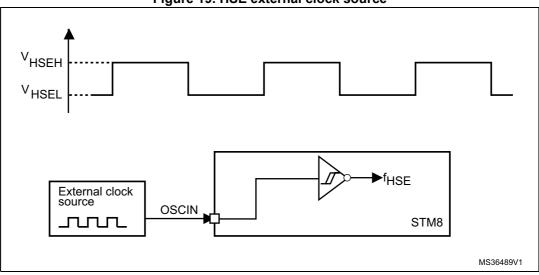
Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 9*.

10.3.3 External clock sources and timing characteristics

HSE external clock


An HSE clock can be generated by feeding an external clock signal of up to 24 MHz to the OSCIN pin.

Clock characteristics are subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE_ext}	User external clock source frequency	T _A = -40 °C to 150 °C	0 ⁽¹⁾	-	24	MHz
V _{HSEdHL}	Comparator hysteresis	-	0.1 x V _{DD}	-	-	
V _{HSEH}	OSCIN high-level input pin voltage	-	0.7 x V _{DD}	-	V _{DD}	V
V _{HSEL}	OSCIN low-level input pin voltage	-	V _{SS}	-	0.3 x V _{DD}	
I _{LEAK_HSE}	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1	-	+1	μA

 Table 31. HSE external clock characteristics

1. If CSS is used, the external clock must have a frequency above 500 kHz.

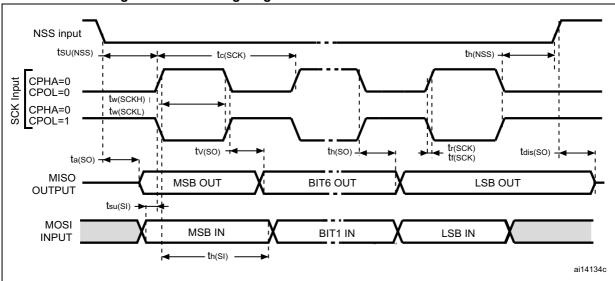
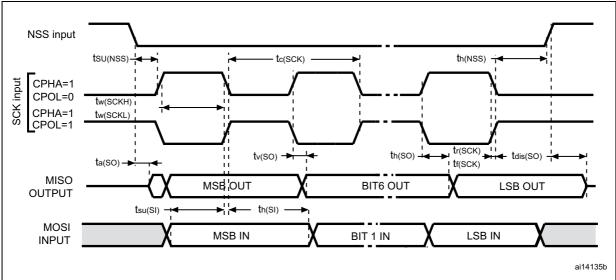
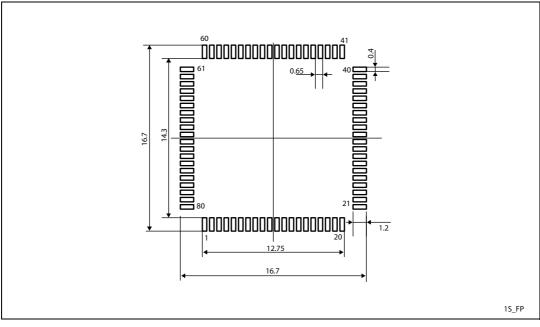


Figure 19. HSE external clock source

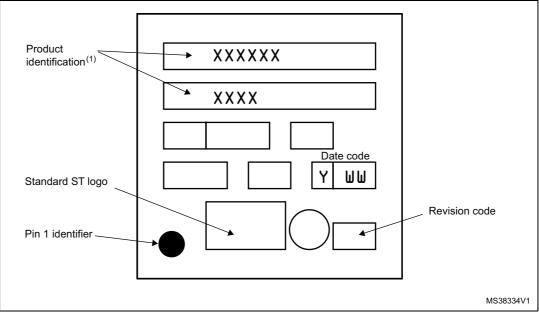
HSE crystal/ceramic resonator oscillator


The HSE clock can be supplied using a crystal/ceramic resonator oscillator of up to 24 MHz. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).


1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}



1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 $V_{\text{DD}}.$

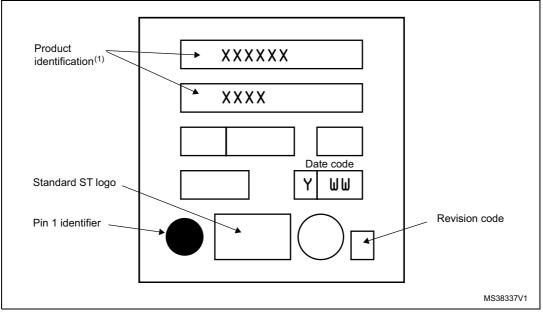

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 50. LQFP64 marking example (package top view)


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 56. LQFP32 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

11.6.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the order code (see *Figure 60: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax ordering information scheme1 on page 111*).

The following example shows how to calculate the temperature range needed for a given application.

Assuming the following application conditions:

- Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2)
- I_{DDmax} = 8 mA
- V_{DD} = 5 V
- maximum 20 I/Os used at the same time in output at low-level with I_{OL} = 8 mA

P_{INTmax} = 8 mA x 5 V = 400 mW

 $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$

This gives:

 P_{INTmax} = 400 mW and P_{IOmax} 64 mW P_{Dmax} = 400 mW + 64 mW

Thus:

P_{Dmax} = 464 mW.

Using the values obtained in *Table 54: Thermal characteristics* T_{Jmax} is calculated as follows:

For LQFP64 46 °C/W

T_{imax} = 82 °C + (46 °C/W x 464 mW) = 82 °C + 21 °C = 103 ° C

This is within the range of the suffix C version parts (-40 $^{\circ}$ C < T_i < 125 $^{\circ}$ C).

Parts must be ordered at least with the temperature range suffix C.

13.2 Software tools

STM8 development tools are supported by a complete, free software package from STMicroelectronics that includes ST visual develop (STVD) IDE and the ST visual programmer (STVP) software interface. STVD provides seamless integration of the Cosmic and Raisonance C compilers for STM8.

13.2.1 STM8 toolset

The STM8 toolset with STVD integrated development environment and STVP programming software is available for free download at *www.st.com*. This package includes:

ST visual develop

Full-featured integrated development environment from STMicroelectronics, featuring:

- Seamless integration of C and ASM toolsets
- Full-featured debugger
- Project management
- Syntax highlighting editor
- Integrated programming interface
- Support of advanced emulation features for STice such as code profiling and coverage

ST visual programmer (STVP)

Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8A microcontroller's Flash memory. STVP also offers project mode for saving programming configurations and automating programming sequences.

13.2.2 C and assembly toolchains

Control of C and assembly toolchains is seamlessly integrated into the STVD integrated development environment, making it possible to configure and control the building of the application directly from an easy-to-use graphical interface. Available toolchains include:

C compiler for STM8

All compilers are available in free version with a limited code size depending on the compiler. For more information, refer to www.cosmic-software.com, www.raisonance.com, and www.iar.com.

STM8 assembler linker

Free assembly toolchain included in the STM8 toolset, which allows users to assemble and link their application source code.

13.3 Programming tools

During the development cycle, STice provides in-circuit programming of the STM8A Flash microcontroller on the application board via the SWIM protocol. Additional tools are to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming the STM8A.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

