

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	24MHz
Connectivity	CANbus, I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	68
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af52aatcx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Detailed feature list:

- Full duplex, asynchronous communications
- NRZ standard format (mark/space)
- High-precision baud rate generator system
 - Common programmable transmit and receive baud rates up to f_{MASTER}/16
- Programmable data word length (8 or 9 bits)
- Configurable stop bits: Support for 1 or 2 stop bits
- LIN master mode:
 - LIN break and delimiter generation
 - LIN break and delimiter detection with separate flag and interrupt source for readback checking.
- Transmitter clock output for synchronous communication
- Separate enable bits for transmitter and receiver
- Transfer detection flags:
 - Receive buffer full
 - Transmit buffer empty
 - End of transmission flags
- Parity control:
 - Transmits parity bit
 - Checks parity of received data byte
- Four error detection flags:
 - Overrun error
 - Noise error
 - Frame error
 - Parity error
- Six interrupt sources with flags:
 - Transmit data register empty
 - Transmission complete
 - Receive data register full
 - Idle line received
 - Parity error
 - LIN break and delimiter detection
- Two interrupt vectors:
 - Transmitter interrupt
 - Receiver interrupt
- Reduced power consumption mode
- Wakeup from mute mode (by idle line detection or address mark detection)
- Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line

5.9.3 Serial peripheral interface (SPI)

The devices covered by this datasheet contain one SPI. The SPI is available on all the supported packages.

- Maximum speed: 10 Mbit/s or f_{MASTER}/2 for master, 8 Mbit/s or f_{MASTER} /2 for slave
- Full duplex synchronous transfers
- Simplex synchronous transfers on two lines with a possible bidirectional data line
- Master or slave operation selectable by hardware or software
- CRC calculation
- 1 byte Tx and Rx buffer
- Slave mode/master mode management by hardware or software for both master and slave
- Programmable clock polarity and phase
- Programmable data order with MSB-first or LSB-first shifting
- Dedicated transmission and reception flags with interrupt capability
- SPI bus busy status flag
- Hardware CRC feature for reliable communication:
 - CRC value can be transmitted as last byte in Tx mode
 - CRC error checking for last received byte

5.9.4 Inter integrated circuit (I²C) interface

The devices covered by this datasheet contain one I^2C interface. The interface is available on all the supported packages.

- I²C master features:
 - Clock generation
 - Start and stop generation
- I²C slave features:
 - Programmable I²C address detection
 - Stop bit detection
- Generation and detection of 7-bit/10-bit addressing and general call
- Supports different communication speeds:
 - Standard speed (up to 100 kHz),
 - Fast speed (up to 400 kHz)
- Status flags:
 - Transmitter/receiver mode flag
 - End-of-byte transmission flag
 - I²C busy flag
- Error flags:
 - Arbitration lost condition for master mode
 - Acknowledgement failure after address/data transmission
 - Detection of misplaced start or stop condition
 - Overrun/underrun if clock stretching is disabled

The following I/O ports are not automatically configured by hardware: PA3, PA4, PA5, PA6, PF4, PB6, PB7, PE0, PE1, PE2, PE3, PE6, PE7. As a consequence, they must be put into one of the following configurations by software: - configured as input with internal pull-up/down resistor, - configured as output push-pull low. 1.

2. HS stands for high sink capability.

	0	E E				
Туре	I= input, O = output, S = power supply					
	Input	CM = CMOS (standard for all I/Os)				
Level	Output	HS = high sink (8 mA)				
Output speed	O1 = Standard (up to 2 MHz) O2 = Fast (up to 10 MHz) O3 = Fast/slow programmability with slow as default state after reset O4 = Fast/slow programmability with fast as default state after reset					
Port and control	Input	float = floating, wpu = weak pull-up				
configuration	Output	T = true open drain, OD = open drain, PP = push pull				
Reset state	Bold X (pin state after reset release). Unless otherwise specified, the pin state is the same during the reset phase "under reset") and after internal reset release (i.e. at reset state).					

Table 10. Legend/abbreviation for the pin (description	table
---	-------------	-------

	Pir	n nu	mber				Ir	npu	t		Out	out				
LQFP80	LQFP64	LQFP48	STM8AF62xx LQFP32/VFQFPN32	STM8AF52x6 VFQFPN32	Pin name	Type	Floating	Mpu	Ext. interrupt	High sink	Speed	OD	ЬР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
78	62	46	30	30	PD5/ LINUART_TX	I/O	x	х	х	-	01	х	х	Port D5	LINUART data transmit	-
79	63	47	31	31	PD6/ LINUART_RX	I/O	x	х	х	-	01	х	x	Port D6	LINUART data receive	-
80	64	48	32	32	PD7/TLI ⁽⁵⁾	I/O	x	х	х	-	01	х	х	Port D7	Top level interrupt	-

Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description (continued)

In Halt/Active-halt mode, this pin behaves as follows:

The input/output path is disabled.
If the HSE clock is used for wakeup, the internal weak pull-up is disabled.
If the HSE clock is off, the internal weak pull-up setting is used. It is configured through Px_CR1[7:0] bits of the corresponding port control register. Px_CR1[7:0] bits must be set correctly to ensure that the pin is not left floating in Halt/Active halt mode. Halt/Active-halt mode.

2. SPI and USTART are not available in STM8AF5286UC, refer to Figure 7: STM8AF52x6 VFQFPN32 32-pin pinout for the pin names.

In the open-drain output column, 'T' defines a true open-drain I/O (P-buffer, week pull-up and protection diode to V_{DD} are not implemented)

4. The PD1 pin is in input pull-up during the reset phase and after reset release.

5. If this pin is configured as interrupt pin, it will trigger the TLI.

Address	Block	Register label	Register name	Reset status			
0x00 50C3		CLK_CMSR	Clock master status register	0xE1			
0x00 50C4		CLK_SWR	Clock master switch register	0xE1			
0x00 50C5		CLK_SWCR	Clock switch control register	0xXX			
0x00 50C6		CLK_CKDIVR	Clock divider register	0x18			
0x00 50C7		CLK_PCKENR1	Peripheral clock gating register 1	0xFF			
0x00 50C8	CLK	CLK_CSSR	Clock security system register	0x00			
0x00 50C9		CLK_CCOR	Configurable clock control register	0x00			
0x00 50CA		CLK_PCKENR2	Peripheral clock gating register 2	0xFF			
0x00 50CB			Reserved area (1 byte)				
0x00 50CC		CLK_HSITRIMR	HSI clock calibration trimming register	0x00			
0x00 50CD		CLK_SWIMCCR	SWIM clock control register	0bXXXX XXX0			
0x00 50CE to 0x00 50D0		Reserved area (3 bytes)					
0x00 50D1		WWDG_CR WWDG control register		0x7F			
0x00 50D2	WWDG	WWDG_WR	WWDR window register	0x7F			
0x00 50D3 to 0x00 50DF		Re	eserved area (13 bytes)				
0x00 50E0		IWDG_KR	IWDG key register	0xXX ⁽²⁾			
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00			
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF			
0x00 50E3 to 0x00 50EF		Re	eserved area (13 bytes)				
0x00 50F0		AWU_CSR1	AWU control/status register 1	0x00			
0x00 50F1	AWU	AWU_APR	AWU asynchronous prescaler buffer register	0x3F			
0x00 50F2		AWU_TBR	AWU timebase selection register	0x00			
0x00 50F3	BEEP	BEEP_CSR	BEEP control/status register	0x1F			
0x00 50F4 to 0x00 50FF	Reserved area (12 bytes)						

 Table 14. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status		
0x00 5320		TIM3_CR1	TIM3 control register 1	0x00		
0x00 5321		TIM3_IER	TIM3 interrupt enable register	0x00		
0x00 5322		TIM3_SR1	TIM3 status register 1	0x00		
0x00 5323		TIM3_SR2	TIM3 status register 2	0x00		
0x00 5324		TIM3_EGR	TIM3 event generation register	0x00		
0x00 5325		TIM3_CCMR1	TIM3 capture/compare mode register 1	0x00		
0x00 5326		TIM3_CCMR2	TIM3 capture/compare mode register 2	0x00		
0x00 5327		TIM3_CCER1	TIM3 capture/compare enable register 1	0x00		
0x00 5328	TIM3	TIM3_CNTRH	TIM3 counter high	0x00		
0x00 5329		TIM3_CNTRL	TIM3 counter low	0x00		
0x00 532A		TIM3_PSCR TIM3 prescaler register		0x00		
0x00 532B		TIM3_ARRH	TIM3 auto-reload register high	0xFF		
0x00 532C		TIM3_ARRL	TIM3 auto-reload register low	0xFF		
0x00 532D		TIM3_CCR1H	TIM3 capture/compare register 1 high	0x00		
0x00 532E		TIM3_CCR1L	TIM3 capture/compare register 1 low	0x00		
0x00 532F		TIM3_CCR2H	TIM3 capture/compare register 2 high	0x00		
0x00 5330		TIM3_CCR2L	TIM3 capture/compare register 2 low	0x00		
0x00 5331 to 0x00 533F		Re	eserved area (15 bytes)			
0x00 5340		TIM4_CR1	TIM4 control register 1	0x00		
0x00 5341		TIM4_IER	TIM4 interrupt enable register	0x00		
0x00 5342		TIM4_SR	TIM4 status register	0x00		
0x00 5343	TIM4	TIM4_EGR	TIM4 event generation register	0x00		
0x00 5344		TIM4_CNTR	TIM4 counter	0x00		
0x00 5345		TIM4_PSCR	TIM4 prescaler register	0x00		
0x00 5346		TIM4_ARR	TIM4 auto-reload register	0xFF		
0x00 5347 to 0x00 53FF		Reserved area (185 bytes)				

 Table 14. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status		
0x00 7F81 to 0x00 7F8F			Reserved area (15 bytes)			
0x00 7F90		DM_BK1RE	DM breakpoint 1 register extended byte	0xFF		
0x00 7F91		DM_BK1RH	DM breakpoint 1 register high byte	0xFF		
0x00 7F92		DM_BK1RL	DM breakpoint 1 register low byte	0xFF		
0x00 7F93		DM_BK2RE	DM breakpoint 2 register extended byte	0xFF		
0x00 7F94		DM_BK2RH	DM breakpoint 2 register high byte	0xFF		
0x00 7F95	DM	DM_BK2RL	DM breakpoint 2 register low byte	0xFF		
0x00 7F96		DM_CR1	DM debug module control register 1	0x00		
0x00 7F97		DM_CR2	DM debug module control register 2	0x00		
0x00 7F98		DM_CSR1	DM debug module control/status register 1	0x10		
0x00 7F99		DM_CSR2	DM debug module control/status register 2	0x00		
0x00 7F9A		DM_ENFCTR	DM enable function register	0xFF		
0x00 7F9B to 0x00 7F9F	Reserved area (5 bytes)					

Table 15. CPU/SWIM/debug module/interrupt controller registers (continued)

1. Accessible by debug module only

2. Product dependent value, see Figure 8: Register and memory map.

Address	Block	Register label	Register name	Reset status
0x00 5800		TMU_K1	Temporary memory unprotection key register 1	0x00
0x00 5801		TMU_K2	Temporary memory unprotection key register 2	0x00
0x00 5802		TMU_K3	Temporary memory unprotection key register 3	0x00
0x00 5803		TMU_K4	Temporary memory unprotection key register 4	0x00
0x00 5804	TMU	TMU_K5	Temporary memory unprotection key register 5	0x00
0x00 5805		TMU_K6	Temporary memory unprotection key register 6	0x00
0x00 5806		TMU_K7	Temporary memory unprotection key register 7	0x00
0x00 5807		TMU_K8	Temporary memory unprotection key register 8	0x00
0x00 5808		TMU_CSR	Temporary memory unprotection control and status register	0x00

Table 16. Temporary memory unprotection registers

8 Interrupt table

Priority	Source block	Description	Interrupt vector address	Wakeup from Halt	Comments	
-	Reset	Reset	0x00 8000	Yes	-	
-	TRAP	SW interrupt	0x00 8004	-	-	
0	TLI	External top level interrupt	0x00 8008	-	-	
1	AWU	Auto-wakeup from Halt	0x00 800C	Yes	-	
2	Clock controller	Main clock controller	0x00 8010	-	-	
3	MISC	External interrupt E0	0x00 8014	Yes	Port A interrupts	
4	MISC	External interrupt E1	0x00 8018	Yes	Port B interrupts	
5	MISC	External interrupt E2	0x00 801C	Yes	Port C interrupts	
6	MISC	External interrupt E3	0x00 8020	Yes	Port D interrupts	
7	MISC	External interrupt E4	0x00 8024	Yes	Port E interrupts	
8	CAN	CAN interrupt Rx	0x00 8028	Yes	-	
9	CAN	CAN interrupt TX/ER/SC	0x00 802C	-	-	
10	SPI	End of transfer	0x00 8030	Yes	-	
11	Timer 1	Update/overflow/ trigger/break	0x00 8034	-	-	
12	Timer 1	Capture/compare	0x00 8038	-	-	
13	Timer 2	Update/overflow	0x00 803C	-	-	
14	Timer 2	Capture/compare	0x00 8040	-	-	
15	Timer 3	Update/overflow	0x00 8044	-	-	
16	Timer 3	Capture/compare	0x00 8048	-	-	
17	USART	Tx complete	0x00 804C	-	-	
18	USART	Receive data full reg.	0x00 8050	-	-	
19	l ² C	I ² C interrupts	0x00 8054	Yes	-	
20	LINUART	Tx complete/error	0x00 8058	-	-	
21	LINUART	Receive data full reg.	0x00 805C	-	-	
22	ADC	End of conversion	0x00 8060	-	-	
23	Timer 4	Update/overflow	0x00 8064	-	-	
24	EEPROM	End of programming/ write in not allowed area	0x00 8068	-	-	

Table 17. STM8A interrupt table⁽¹⁾

1. All unused interrupts must be initialized with 'IRET' for robust programming.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
+	V _{DD} rise time rate	-	2 ⁽¹⁾	-	8	ue//
^I VDD	V _{DD} fall time rate	-	2 ⁽¹⁾	-	8	μ5/ν
+	Reset release delay	V_{DD} rising	-	1	1.7	ms
^I TEMP	Reset generation delay	V _{DD} falling	-	3	-	μs
V _{IT+}	Power-on reset threshold ^{(2) (3)}	-	2.65	2.8	2.95	V
V _{IT-}	Brown-out reset threshold	-	2.58	2.73	2.88	v
V _{HYS(BOR)}	Brown-out reset hysteresis	-	-	70 ⁽¹⁾	-	mV

Table 25. Operating conditions at power-up/power-down

1. Guaranteed by design, not tested in production.

2. If V_{DD} is below 3 V, the code execution is guaranteed above the V_{IT-} and V_{IT+} thresholds. RAM content is kept. The EEPROM programming sequence must not be initiated.

3. There is inrush current into V_{DD} present after device power on to charge C_{EXT} capacitor. This inrush energy depends from C_{EXT} capacitor value. For example, a C_{EXT} of 1 μ F requires Q=1 μ F x 1.8 V = 1.8 μ C.

10.3.1 VCAP external capacitor

Stabilization for the main regulator is achieved connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 24*. Care should be taken to limit the series inductance to less than 15 nH.

1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.2 Supply current characteristics

The current consumption is measured as described in *Figure 9 on page 59* and *Figure 10 on page 60*.

If not explicitly stated, general conditions of temperature and voltage apply.

Table 27. Total current consumption in Halt and Active-halt modes. General conditions for V_{DD} applied. T_A = -40 °C to 55 °C unless otherwise stated

			Cond	litions			
Symbol	Parameter	Main voltage regulator (MVR) ⁽¹⁾	Flash mode ⁽²⁾	Clock source and temperature condition	Тур	Мах	Unit
	Supply current in		Power	Clocks stopped	5	35 ⁽³⁾	
I _{DD(H)}	Halt mode	Off	down	Clocks stopped, T _A = 25 °C	5	25	
	Supply current in Active-halt mode On with regulator on	On	Power-	External clock 16 MHz f _{MASTER} = 125 kHz	770 900 ⁽³⁾		μA
			down	LSI clock 128 kHz	150	230 ⁽³⁾	
IDD(AH)	Supply current in Active-halt mode with regulator off	Off	Power- down	LSI clock 128 kHz	25	42 ⁽³⁾	
				LSI clock 128 kHz, T _A = 25 °C	25	30	
t	Wakeup time from Active-halt mode with regulator on	On	Operating	T. = 40 to 150 °C	10	30 ⁽³⁾	116
^t wu(AH)	Wakeup time from Active-halt mode with regulator off	Off	mode	1 _A - 40 10 100 0	50	80 ⁽³⁾	μs

1. Configured by the REGAH bit in the CLK_ICKR register.

2. Configured by the AHALT bit in the FLASH_CR1 register.

3. Guaranteed by characterization results, not tested in production.

Current consumption for on-chip peripherals

Table 28.	. Oscillator	current	consumption
-----------	--------------	---------	-------------

Symbol	Parameter	Con	Тур	Max ⁽¹⁾	Unit	
I _{DD(OSC)}	HSE oscillator current consumption ⁽²⁾	Quartz or ceramic resonator, CL = 33 pF V _{DD} = 5 V	f _{OSC} = 24 MHz	1	2.0 ⁽³⁾	mA
			f _{OSC} = 16 MHz	0.6	-	
			f _{OSC} = 8 MHz	0.57	-	
I _{DD(OSC)}	HSE oscillator current consumption ⁽²⁾	Quartz or ceramic resonator, CL = 33 pF V _{DD} = 3.3 V	f _{OSC} = 24 MHz	0.5	1.0 ⁽³⁾	
			f _{OSC} = 16 MHz	0.25	-	
			f _{OSC} = 8 MHz	0.18	-	

1. During startup, the oscillator current consumption may reach 6 mA.

2. The supply current of the oscillator can be further optimized by selecting a high quality resonator with small R_m value. Refer to crystal manufacturer for more details

3. Informative data.

Current consumption curves

Figure 13 to *Figure 18* show typical current consumption measured with code executing in RAM.

DocID14395 Rev 15

Figure 25. Typical pull-up current I_{pu} vs V_{DD} @ four temperatures⁽¹⁾

1. The pull-up is a pure resistor (slope goes through 0).

Typical output level curves

Figure 26 to *Figure 35* show typical output level curves measured with output on a single pin.

DocID14395 Rev 15

Electromagnetic interference (EMI)

Emission tests conform to the IEC 61967-2 standard for test software, board layout and pin loading.

Symbol	Parameter	Conditions						
		Conoral	Monitorod	Max f _{CPU} ⁽¹⁾			Unit	
		conditions	frequency band	8 MHz	16 MHz	24 MHz		
S _{EMI}	Peak level	$V_{DD} = 5 V,$ $T_A = 25 °C,$ LQFP80 package conforming to IEC	0.1 MHz to 30 MHz	15	17	22		
			30 MHz to 130 MHz	18	22	16	dBull	
			130 MHz to 1 GHz	-1	3	5	ubμv	
	EMI level	61967-2	-	2	2.5	2.5		

Table	46.	EMI	data

1. Guaranteed by characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = 25 °C, conforming to JESD22-A114	ЗA	4000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = 25 °C, conforming to JESD22-C101	3	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (charge device model)	$T_A = 25 \ ^{\circ}C$, conforming to JESD22-A115	В	200	

Table 47. ESD absolute maximum ratings

1. Guaranteed by characterization results, not tested in production

Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance.

- A supply overvoltage (applied to each power supply pin) and
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ⁽¹⁾
LU		T _A = 25 °C	
	Static latch-up class	T _A = 85 °C	
		T _A = 125 °C	A
		T _A = 150 °C	

Table 48. El	lectrical	sensitivities
--------------	-----------	---------------

1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).

Symbol	millimeters			inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах	
E3	-	7.500	-	-	0.2953	-	
е	-	0.500	-	-	0.0197	-	
К	0°	3.5°	7°	0°	3.5°	7°	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
CCC	-	-	0.080	-	-	0.0031	

Table 50. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

11.4 LQFP32 package information

Figure 54. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

Figure 55. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

11.5 VFQFPN32 package information

Figure 57. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline

1. Drawing is not to scale.

57

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

