

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	38
Program Memory Size	64KB (64K × 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6288tdy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 48. Figure 49.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline
	recommended footprint
Figure 50.	LQFP64 marking example (package top view)96
Figure 51.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package outline
Figure 52.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
-	recommended footprint
Figure 53.	LQFP48 marking example (package top view)
Figure 54.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline
Figure 55.	LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package
U	recommended footprint
Figure 56.	LQFP32 marking example (package top view)
Figure 57.	VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad
0	flat package outline
Figure 58.	VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch very thin profile fine pitch quad
U	flat package recommended footprint
Figure 59.	VFQFPN32 marking example (package top view)
Figure 60.	STM8AF526x/8x/Ax and STM8AF6269/8x/Ax ordering information scheme ¹

2 Description

The STM8AF526x/8x/Ax and STM8AF6269/8x/Ax automotive 8-bit microcontrollers described in this datasheet offer from 32 Kbyte to 128 Kbyte of non volatile memory and integrated true data EEPROM. They are referred to as high density STM8A devices in STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).

The STM8AF52 series features a CAN interface.

All devices of the STM8A product line provide the following benefits: reduced system cost, performance and robustness, short development cycles, and product longevity.

The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k write/erase cycles and a high system integration level with internal clock oscillators, wtachdog, and brown-out reset.

Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced characteristics which include robust I/O, independent watchdogs (with a separate clock source), and a clock security system.

Short development cycles are guaranteed due to application scalability across a common family product architecture with compatible pinout, memory map, and modular peripherals. Full documentation is offered with a wide choice of development tools.

Product longevity is ensured in the STM8A family thanks to their advanced core which is made in a state-of-the art technology for automotive applications with 3.3 V to 5.5 V operating supply.

All STM8A and ST7 microcontrollers are supported by the same tools including STVD/STVP development environment, the STice emulator and a low-cost, third party incircuit debugging tool.

3 Product line-up

Order code	Package	High density Flash program memory (bytes)	RAM (bytes)	Data EEPROM (bytes)	10-bit A/D chan.	Timers (IC/OC/PWM)	Serial interfaces	l/0 wakeup pins	
STM8AF/P52AA	LQFP80	128 K						68/37	
STM8AF/P528A	(14x14)	64 K		2 K		1x8-bit: TIM4 3x16-bit: TIM1, TIM2, TIM3 (9/9/9)	CAN, LIN(UART), SPI, USART, I²C	00/37	
STM8AF/P52A9		128 K			16				
STM8AF/P5289	LQFP64 (10x10)	64 K						52/36	
STM8AF/P5269	()	32 K		1 K					
STM8AF/P52A8		128 K	6 K	2 1					
STM8AF/P5288	LQFP48 (7x7)	64 K		2 K	10			38/35	
STM8AF/P5268	(17.17)	32 K		1K					
STM8AF/P5286		64 K				1x8-bit: TIM4	CAN,		
STM8AF/P52A6	VFQFPN32 (5x5)	128 K		2 K	6	3x16-bit: TIM1, TIM2, TIM3 (8/8/8)	LIN(UART), I ² C	25/24	

Table 2. STM8AF526x/8x/Ax product line-up with CAN

Table 3. STM8AF6269/8x/Ax product line-up without CAN

Order code	Package	High density Flash program memory (bytes)	RAM (bytes)	Data EEPROM (bytes)	10-bit A/D chan.	Timers (IC/OC/PWM)	Serial interfaces	l/0 wakeup pins	
STM8AF/P62AA	LQFP80	128 K						68/37	
STM8AF/P628A	(14x14)	64 K		2 K		1x8-bit: TIM4 3x16-bit: TIM1, TIM2, TIM3 (9/9/9)	LIN(UART), SPI, USART, I²C	00/37	
STM8AF/P62A9		128 K			16				
STM8AF/P6289	LQFP64 (10x10)	64 K		2 K				52/36	
STM8AF/P6269	()	32 K		1 K					
STM8AF/P62A8	LQFP48	128 K	6 K		10			38/35	
STM8AF/P6288	(7x7)				10			30/35	
STM8AF/P6286	LQFP32 (7x7)	64 K		2 K	7	1x8-bit: TIM4 3x16-bit: TIM1,	LIN(UART),	25/22	
STM8AF/P62A6	VFQFPN32 (5x5)	128 K			1	TIM2, TIM3 (8/8/8)	SPI, I²C	25/23	

 Legend: ADC: Analog-to-digital converter beCAN: Controller area network BOR: Brownout reset I²C: Inter-integrated circuit multimaster interface IWDG: Independent window watchdog LINUART: Local interconnect network universal asynchronous receiver transmitter POR: Power on reset SPI: Serial peripheral interface SWIM: Single wire interface module USART: Universal synchronous asynchronous receiver transmitter Window WDG: Window watchdog

5.5.3 128 kHz low-speed internal RC oscillator (LSI)

The frequency of this clock is 128 kHz and it is independent from the main clock. It drives the independent watchdog or the AWU wakeup timer.

In systems which do not need independent clock sources for the watchdog counters, the 128 kHz signal can be used as the system clock. This configuration has to be enabled by setting an option byte (OPT3/OPT3N, bit LSI_EN).

5.5.4 24 MHz high-speed external crystal oscillator (HSE)

The external high-speed crystal oscillator can be selected to deliver the main clock in normal Run mode. It operates with quartz crystals and ceramic resonators.

- Frequency range: 1 MHz to 24 MHz
- Crystal oscillation mode: preferred fundamental
- I/Os: standard I/O pins multiplexed with OSCIN, OSCOUT

5.5.5 External clock input

An external clock signal can be applied to the OSCIN input pin of the crystal oscillator. The frequency range is 0 to 24 MHz.

5.5.6 Clock security system (CSS)

The clock security system protects against a system stall in case of an external crystal clock failure.

In case of a clock failure an interrupt is generated and the high-speed internal clock (HSI) is automatically selected with a frequency of 2 MHz (16 MHz/8).

	J
Control bit	Peripheral
PCKEN17	TIM1
PCKEN16	TIM3
PCKEN15	TIM2
PCKEN14	TIM4
PCKEN13	LINUART
PCKEN12	USART
PCKEN11	SPI
PCKEN10	l ² C

Table 4. Peripheral clock gating bits (CLK_PCKENR1)

5.8 Analog to digital converter (ADC)

The STM8A products described in this datasheet contain a 10-bit successive approximation ADC with up to 16 multiplexed input channels, depending on the package.

The ADC name differs between the datasheet and the STM8A/S reference manual (see *Table 8*).

Table	8.	ADC	naming
-------	----	-----	--------

Peripheral name in datasheet	Peripheral name in reference manual (RM0016)
ADC	ADC2

ADC features

- 10-bit resolution
- Single and continuous conversion modes
- Programmable prescaler: f_{MASTER} divided by 2 to 18
- Conversion trigger on timer events, and external events
- Interrupt generation at end of conversion
- Selectable alignment of 10-bit data in 2 x 8 bit result registers
- Shadow registers for data consistency
- ADC input range: V_{SSA} ≤V_{IN} ≤V_{DDA}
- Schmitt-trigger on analog inputs can be disabled to reduce power consumption

5.9 Communication interfaces

The following sections give a brief overview of the communication peripheral. Some peripheral names differ between the datasheet and STM8S series and STM8AF series 8-bit microcontrollers reference manual (see *Table 9*).

Peripheral name in datasheet	Peripheral name in reference manual (RM0016)
USART	UART1
LINUART	UART3

Table 9. Communication peripheral naming correspondence

5.9.1 Universal synchronous/asynchronous receiver transmitter (USART)

The devices covered by this datasheet contain one USART interface. The USART can operate in standard SCI mode (serial communication interface, asynchronous) or in SPI emulation mode. It is equipped with a 16 bit fractional prescaler. It features LIN master support.

	Pir	n nu	mber		TT. STWOAF520			npu			Out					
LQFP80	LQFP64	LQFP48	STM8AF62xx LQFP32/VFQFPN32	STM8AF52x6 VFQFPN32	Pin name	Type	Floating	Wpu	Ext. interrupt	High sink	Speed	QO	Ъ	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	1	1	1	NRST	I/O	-	Х	-	-	-	-	-	R	eset	-
2	2	2	2	2	PA1/OSCIN ⁽¹⁾	I/O	x	х	-	-	01	х	х	Port A1	Resonator/ crystal in	-
3	3	3	3	3	PA2/OSCOUT	I/O	x	х	х	-	01	х	х	Port A2	Resonator/ crystal out	-
4	4	4	-	1	V _{SSIO_1}	S	I	-	I	-	-	-	-	I/O ground		-
5	5	5	4	4	V _{SS}	S	-	-	I	-	I	-	-	Digital	l ground	-
6	6	6	5	5	VCAP	S	-	-	-	-	-	-	-	1.8 V regulator capacitor		-
7	7	7	6	6	V _{DD}	S	-	-	-	-	-	-	-	Digital po	wer supply	-
8	8	8	7	7	V _{DDIO_1}	S	I	-	I	-	-	-	-	I/O power supply		-
9	9	9	-	-	PA3/TIM2_CH3	I/O	x	х	х	-	01	х	х	Port A3	Timer 2 - channel 3	TIM3_CH1 [AFR1]
10	10	10	-	-	PA4/USART_RX	I/O	x	х	х	-	O3	х	х	Port A4	USART receive	-
11	11	11	-	-	PA5/USART_TX	I/O	x	х	х	-	O3	х	х	Port A5	USART transmit	-
12	12	12	-	8	PA6/USART_CK	I/O	x	х	х	-	O3	х	х	Port A6	USART synchro nous clock	-
13	-	-	-	-	PH0	I/O	Х	Х	-	HS	O3	Х	Х	Port H0	-	-
14	-	-	-	-	PH1	I/O	Х	Х	-	HS	O3	Х	Х	Port H1	-	-
15	-	-	-	-	PH2	I/O	X	Х	1	-	01	Х	Х	Port H2	-	-
16	-	-	-	1	PH3	I/O	X	Х	I	-	01	Х	Х	Port H3	-	-
17	13	-	-	-	PF7/AIN15	I/O	x	х	-	-	01	х	х	Port F7	Analog input 15	-
18	14	-	-	-	PF6/AIN14	I/O	x	х	-	-	01	х	х	Port F6	Analog input 14	-
19	15	-	-	-	PF5/AIN13	I/O	x	х	-	-	01	х	х	Port F5	Analog input 13	-
20	16	-	8	-	PF4/AIN12	I/O	x	х	-	-	01	х	х	Port F4	Analog input 12	-
21	17	-	-	-	PF3/AIN11	I/O	x	х	-	-	01	х	х	Port F3	Analog input 11	-

Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description

	Pir		mber		M8AF526x/8x/A			npu			Out		P	descript		
								.pu	•		Jud		1			
LQFP80	LQFP64	LQFP48	STM8AF62xx LQFP32/VFQFPN32	STM8AF52x6 VFQFPN32	Pin name	Type	Floating	Mpu	Ext. interrupt	High sink	Speed	OD	Ч	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
38	-	-	-	-	PH7/ TIM1_CH1N	I/O	x	х	-	-	O1	х	х	Port H7	Timer 1 - inverted channel 2	-
39	31	23	-	-	PE7/AIN8	I/O	X	Х	I	-	01	х	х	Port E7	Analog input 8	-
40	32	24			PE6/AIN9	I/O	x	х	х	-	01	х	х	Port E6	Analog input 9	-
41	33	25	17	17	PE5/SPI_NSS ⁽²⁾	I/O	x	х	х	-	01	х	x	Port E5	SPI master/ slave select	-
42	-	-	-	-	PC0/ADC_ETR	I/O	x	х	х	-	01	х	х	Port C0	ADC trigger input	-
43	34	26	18	18	PC1/TIM1_CH1	I/O	Х	Х	Х	HS	O3	х	х	Port C1	Timer 1 - channel 1	-
44	35	27	19	19	PC2/TIM1_CH2	I/O	x	х	х	HS	O3	х	х	Port C2	Timer 1- channel 2	-
45	36	28	20	20	PC3/TIM1_CH3	I/O	x	х	х	HS	O3	х	х	Port C3	Timer 1 - channel 3	-
46	37	29	21	21	PC4/TIM1_CH4	I/O	X	х	х	HS	O3	х	х	Port C4	Timer 1 - channel 4	-
47	38	30	22	22	PC5/SPI_SCK ⁽²⁾	I/O	Х	Х	Х	-	O3	Х	Х	Port C5 SPI clock		-
48	39	31	-	I	V _{SSIO_2}	S	-	-	-	-	-	-	-		ground	-
49	40	32	-	I	V _{DDIO_2}	S	-	-	-	I	-	-	-	I/O pow	er supply	-
50	41	33	23	-	PC6/SPI_MOSI	I/O	x	х	х	-	O3	х	x	Port C6	SPI master out/ slave in	-
51	42	34	24	-	PC7/SPI_MISO	I/O	x	х	х	-	O3	х	x	Port C7	SPI master in/ slave out	-
52	43	35	-	23	PG0/CAN_TX	I/O	x	х	-	-	01	х	х	Port G0	CAN transmit	-
53	44	36	-	24	PG1/CAN_RX	I/O	X	х	-	-	01	х	х	Port G1	CAN receive	-
54	45	-	-	-	PG2	I/O	X	Х	-	-	01	Х	Х	Port G2	-	-

Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description	(continued)

6.2 Alternate function remapping

As shown in the rightmost column of *Table 11*, some alternate functions can be remapped at different I/O ports by programming one of eight AFR (alternate function remap) option bits. Refer to *Section 9: Option bytes on page 54*. When the remapping option is active, the default alternate function is no longer available.

To use an alternate function, the corresponding peripheral must be enabled in the peripheral registers.

Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the GPIO section of STM8S series and STM8AF series 8-bit microcontrollers reference manual, RM0016).

Table 14. General hardware register map (continued)				
Address	Block	Register label	Register name	Reset status
0x00 5400		ADC _CSR	ADC control/status register	0x00
0x00 5401		ADC_CR1 ADC configuration register 1		0x00
0x00 5402		ADC_CR2 ADC configuration register		0x00
0x00 5403		ADC_CR3 ADC configuration register 3		0x00
0x00 5404	ADC	ADC_DRH ADC data register high		0xXX
0x00 5405		ADC_DRL	ADC data register low	0xXX
0x00 5406		ADC_TDRH	ADC Schmitt trigger disable register high	0x00
0x00 5407		ADC_TDRL	ADC Schmitt trigger disable register low	0x00
0x00 5408 to 0x00 541F		Reserved area (24 bytes)		
0x00 5420		CAN_MCR	CAN master control register	0x02
0x00 5421		CAN_MSR	CAN master status register	0x02
0x00 5422		CAN_TSR	CAN transmit status register	0x00
0x00 5423		CAN_TPR	CAN transmit priority register	0x0C
0x00 5424	CAN_RFR CAN receive FIFO register		CAN receive FIFO register	0x00
0x00 5425		CAN_IER CAN interrupt enable register		0x00
0x00 5426		CAN_DGR	CAN diagnosis register	0x0C
0x00 5427		CAN_FPSR CAN page selection register		0x00
0x00 5428		CAN_P0	CAN paged register 0	0xXX ⁽³⁾
0x00 5429		CAN_P1	CAN paged register 1	0xXX ⁽³⁾
0x00 542A		CAN_P2	CAN paged register 2	0xXX ⁽³⁾
0x00 542B	beCAN	CAN_P3	CAN paged register 3	0xXX ⁽³⁾
0x00 542C		CAN_P4	CAN paged register 4	0xXX ⁽³⁾
0x00 542D		CAN_P5 CAN paged register 5		0xXX ⁽³⁾
0x00 542E		CAN_P6	CAN paged register 6	0xXX ⁽³⁾
0x00 542F	CAN_P7 CAN paged register 7		0xXX ⁽³⁾	
0x00 5430		CAN_P8 CAN paged register 8		0xXX ⁽³⁾
0x00 5431		CAN_P9	CAN paged register 9	0xXX ⁽³⁾
0x00 5432		CAN_PA	CAN paged register A	0xXX ⁽³⁾
0x00 5433		CAN_PB	CAN paged register B	0xXX ⁽³⁾
0x00 5434		CAN_PC	CAN paged register C	0xXX ⁽³⁾
0x00 5435		CAN_PD	CAN paged register D	0xXX ⁽³⁾
0x00 5436		CAN_PE	CAN paged register E	0xXX ⁽³⁾

 Table 14. General hardware register map (continued)

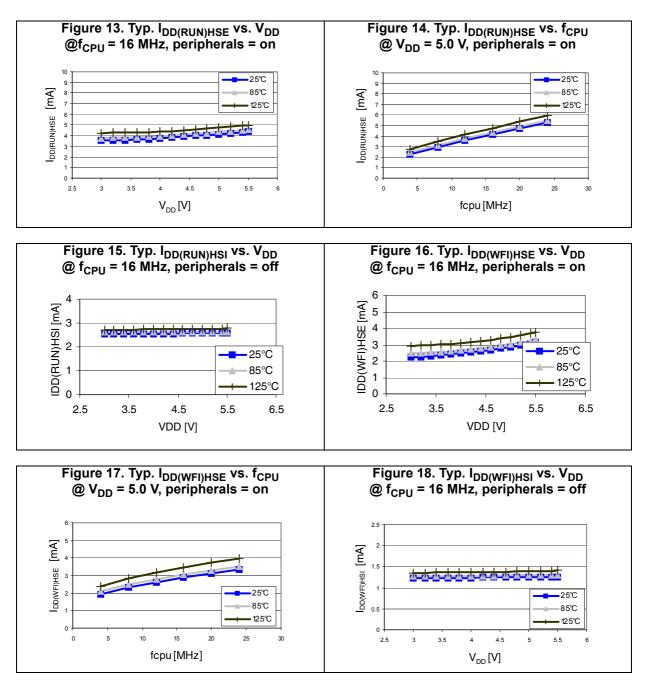

Option byte no.	Description		
OPT12	TMU_KEY 5 [7:0]: Temporary unprotection key 4 Temporary unprotection key: Must be different from 0x00 or 0xFF		
OPT13	TMU_KEY 6 [7:0]: Temporary unprotection key 5 Temporary unprotection key: Must be different from 0x00 or 0xFF		
OPT14	TMU_KEY 7 [7:0]: Temporary unprotection key 6 Temporary unprotection key: Must be different from 0x00 or 0xFF		
OPT15	TMU_KEY 8 [7:0]: Temporary unprotection key 7 Temporary unprotection key: Must be different from 0x00 or 0xFF		
OPT16	 TMU_MAXATT [7:0]: TMU access failure counter TMU_MAXATT can be initialized with the desired value only if TMU is disabled (TMU[3:0]=0101 in OPT6 option byte). When TMU is enabled, any attempt to temporary remove the readout protection by using wrong key values increments the counter. When the option byte value reaches 0x08, the Flash memory and data EEPROM are erased. 		
OPT17	BL[7:0]: Bootloader enable If this option byte is set to 0x55 (complementary value 0xAA) the bootloader program is activated also in case of a programmed code memory (for more details, see the bootloader user manual, UM0560).		

Table 19. Option byte description (continued)

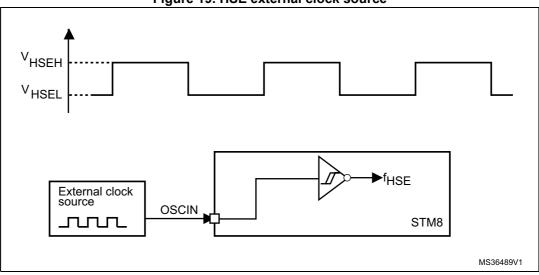
Current consumption curves

Figure 13 to *Figure 18* show typical current consumption measured with code executing in RAM.

DocID14395 Rev 15

10.3.3 External clock sources and timing characteristics

HSE external clock


An HSE clock can be generated by feeding an external clock signal of up to 24 MHz to the OSCIN pin.

Clock characteristics are subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE_ext}	User external clock source frequency	T _A = -40 °C to 150 °C	0 ⁽¹⁾	-	24	MHz
V _{HSEdHL}	Comparator hysteresis	-	0.1 x V _{DD}	-	-	
V _{HSEH}	OSCIN high-level input pin voltage	-	0.7 x V _{DD}	-	V _{DD}	V
V _{HSEL}	OSCIN low-level input pin voltage	-	V _{SS}	-	0.3 x V _{DD}	
I _{LEAK_HSE}	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1	-	+1	μA

 Table 31. HSE external clock characteristics

1. If CSS is used, the external clock must have a frequency above 500 kHz.

Figure 19. HSE external clock source

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied using a crystal/ceramic resonator oscillator of up to 24 MHz. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

10.3.4 Internal clock sources and timing characteristics

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

High-speed internal RC oscillator (HSI)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{HSI}	Frequency	-	-	16	-	MHz	
ACC _{HS}	HSI oscillator user trimming accuracy	Trimmed by the application for any V_{DD} and T_{A} conditions	-1	-	1	5	
	HSI oscillator accuracy (factory calibrated)	$\label{eq:V_DD} \begin{split} V_{DD} &= 3.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ -40 \ ^{\circ}C \leq T_A \leq 150 \ ^{\circ}C \end{split}$	-5	-	5		
t _{su(HSI)}	HSI oscillator wakeup time	-	-	-	2 ⁽¹⁾	μs	

Table 33. HSI oscillator characteristics

1. Guaranteed by characterization results, not tested in production.

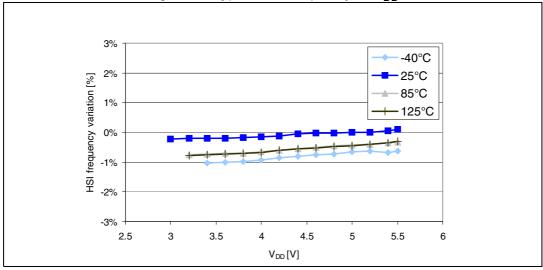
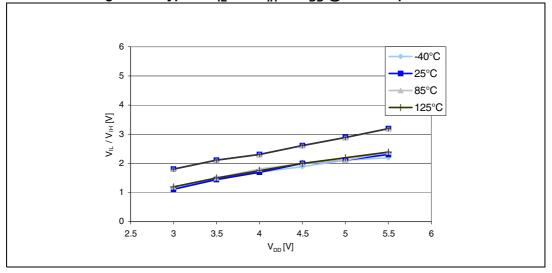
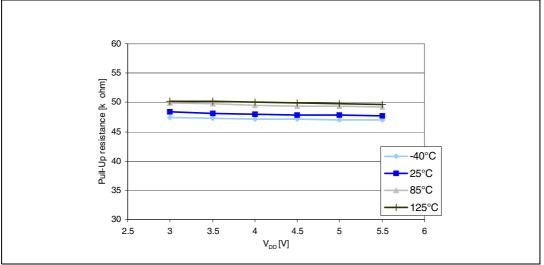



Figure 21. Typical HSI frequency vs V_{DD}



- 2. Guaranteed by design.
- 3. Guaranteed by characterization results, not tested in production.

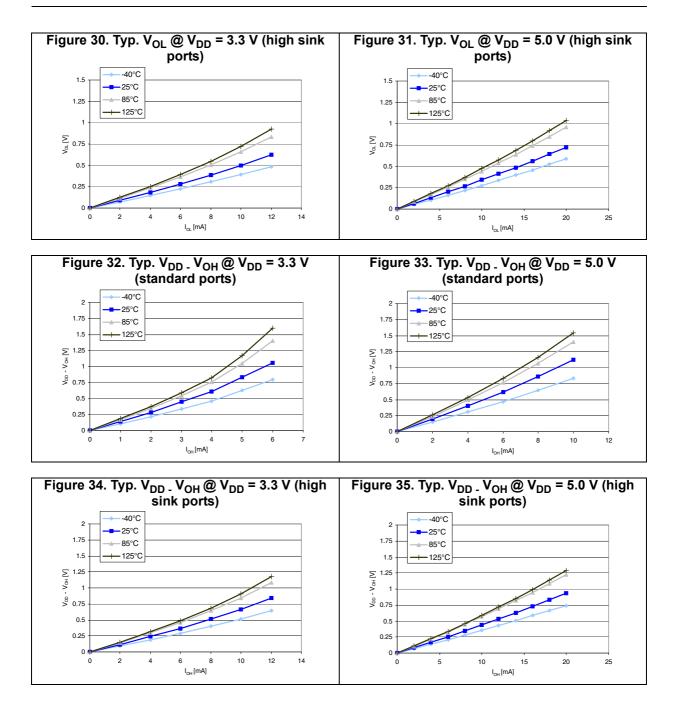
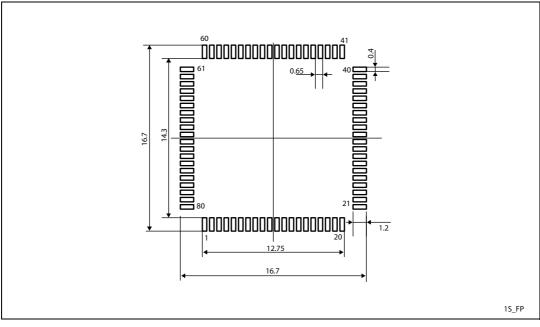
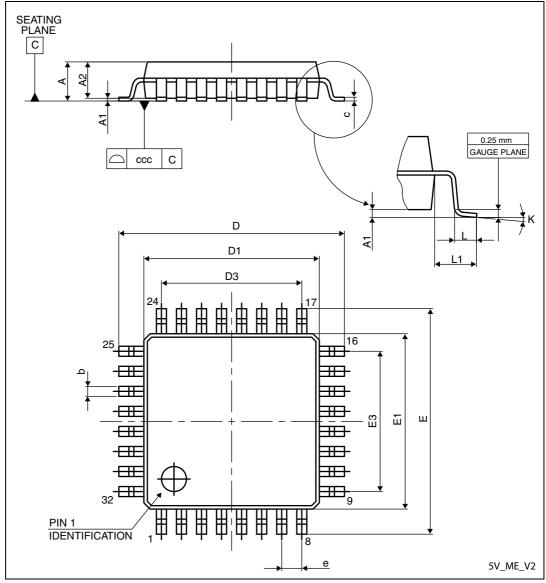


Figure 24. Typical pull-up resistance R_{PU} vs V_{DD} @ four temperatures





DocID14395 Rev 15



1. Dimensions are expressed in millimeters.

11.4 LQFP32 package information

Figure 54. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package outline

1. Drawing is not to scale.

Date	Revision	Changes	
13-Oct-2016	14	 Updated: Title of <i>Figure 7: STM8AF52x6 VFQFPN32 32-pin pinout</i>, (previously STM8AF5286UC VFQFPN32 32-pin pinout) Footnotes of <i>Figure 60: STM8AF526x/8x/Ax and</i> <i>STM8AF6269/8x/Ax ordering information scheme1</i> <i>Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin</i> <i>description</i> replaced "STM8AF5286UC VQFPN32" with "STM8AF52x6 VQFPN32" at header row Section 10.2: Absolute maximum ratings Section : Device marking on page 93 Section : Device marking on page 96 Section : Device marking on page 104 Section : Device marking on page 108 Added: Footnote on <i>Figure 47: LQFP80 marking example (package top</i> <i>view)</i>, <i>Figure 50: LQFP64 marking example (package top view)</i>, <i>Figure 56: LQFP32 marking example (package top view)</i>, <i>Figure 59: VFQFPN32 marking example (package top view)</i>. 	
10-Nov-2016	15	Updated header row and PA6/USART_CK pin row on <i>Table 11:</i> STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description.	

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID14395 Rev 15