

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	52
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af6289tcy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	10.2	13.2.1	STM8 toolset	ś
	13.2	Softwar	e tools	3
		13.1.1	STice key features	2
_	13.1	Emulati	on and in-circuit debugging tools	2
13	STM	8 develo	pment tools	2
12	Orde	ring info	ormation	
		11.6.2	Selecting the product temperature range)
		11.6.1	Reference document)
	11.6	Therma	Il characteristics)
	11.5	VFQFP	N32 package information 105	5
	11.4	LQFP3	2 package information	
	11.3	LQFP4	8 package information	7
	11.2	LQFP6	4 package information	ŀ
	11.1	LQFP8	0 package information)
11	Pack	age info	ormation)
		10.3.12	EMC characteristics	,
		10.3.11	10-bit ADC characteristics85	5
		10.3.10	I ² C interface characteristics	ŀ
		10.3.9	SPI interface	
		10.3.8	TIM 1, 2, 3, and 4 electrical specifications)
		10.3.7	Reset pin characteristics	3
		10.3.6	I/O port pin characteristics	ł
		10.3.5	Memory characteristics	2

1 Introduction

This datasheet refers to the STM8AF526x/8x/Ax and STM8AF6269/8x/Ax products with 32 to 128 Kbyte of program memory.

In the order code, the letter 'F' refers to product versions with Flash and data EEPROM and 'P' to product versions with FASTROM. The identifiers 'F' and 'P' do not coexist in a given order code.

The datasheet contains the description of family features, pinout, electrical characteristics, mechanical data and ordering information.

- For complete information on the STM8A microcontroller memory, registers and peripherals, please refer to STM8S series and STM8AF series 8-bit microcontrollers reference manual (RM0016).
- For information on programming, erasing and protection of the internal Flash memory please refer to the STM8S and STM8A Flash programming manual (PM0051).
- For information on the debug and SWIM (single wire interface module) refer to the STM8 SWIM communication protocol and debug module user manual (UM0470).
- For information on the STM8 core, please refer to the STM8 CPU programming manual (PM0044).

5.4.2 Write protection (WP)

Write protection in application mode is intended to avoid unintentional overwriting of the memory. The write protection can be removed temporarily by executing a specific sequence in the user software.

5.4.3 Protection of user boot code (UBC)

If the user chooses to update the Flash program memory using a specific boot code to perform in application programming (IAP), this boot code needs to be protected against unwanted modification.

In the STM8A a memory area of up to 128 Kbytes can be protected from overwriting at user option level. Other than the standard write protection, the UBC protection can exclusively be modified via the debug interface, the user software cannot modify the UBC protection status.

The UBC memory area contains the reset and interrupt vectors and its size can be adjusted in increments of 512 bytes by programming the UBC and NUBC option bytes (see *Section 9: Option bytes on page 54*).

Figure 2. Flash memory organization of STM8A products

5.4.4 Read-out protection (ROP)

The STM8A provides a read-out protection of the code and data memory which can be activated by an option byte setting (see the ROP option byte in section 10).

The read-out protection prevents reading and writing Flash program memory, data memory and option bytes via the debug module and SWIM interface. This protection is active in all device operation modes. Any attempt to remove the protection by overwriting the ROP option byte triggers a global erase of the program and data memory.

DocID14395 Rev 15

5.5.3 128 kHz low-speed internal RC oscillator (LSI)

The frequency of this clock is 128 kHz and it is independent from the main clock. It drives the independent watchdog or the AWU wakeup timer.

In systems which do not need independent clock sources for the watchdog counters, the 128 kHz signal can be used as the system clock. This configuration has to be enabled by setting an option byte (OPT3/OPT3N, bit LSI_EN).

5.5.4 24 MHz high-speed external crystal oscillator (HSE)

The external high-speed crystal oscillator can be selected to deliver the main clock in normal Run mode. It operates with quartz crystals and ceramic resonators.

- Frequency range: 1 MHz to 24 MHz
- Crystal oscillation mode: preferred fundamental
- I/Os: standard I/O pins multiplexed with OSCIN, OSCOUT

5.5.5 External clock input

An external clock signal can be applied to the OSCIN input pin of the crystal oscillator. The frequency range is 0 to 24 MHz.

5.5.6 Clock security system (CSS)

The clock security system protects against a system stall in case of an external crystal clock failure.

In case of a clock failure an interrupt is generated and the high-speed internal clock (HSI) is automatically selected with a frequency of 2 MHz (16 MHz/8).

•	
Control bit	Peripheral
PCKEN17	TIM1
PCKEN16	TIM3
PCKEN15	TIM2
PCKEN14	TIM4
PCKEN13	LINUART
PCKEN12	USART
PCKEN11	SPI
PCKEN10	l ² C

Table 4. Peripheral clock gating bits (CLK_PCKENR1)

Control bit	Peripheral
PCKEN27	CAN
PCKEN26	Reserved
PCKEN25	Reserved
PCKEN24	Reserved
PCKEN23	ADC
PCKEN22	AWU
PCKEN21	Reserved
PCKEN20	Reserved

Table 5. Peripheral clock gating bits (CLK PCKENR2)

5.6 Low-power operating modes

For efficient power management, the application can be put in one of four different lowpower modes. Users can configure each mode to obtain the best compromise between lowest power consumption, fastest start-up time and available wakeup sources.

- Wait mode
 In this mode, the CPU is stopped but peripherals are kept running. The wakeup is
 performed by an internal or external interrupt or reset.
- Active-halt mode with regulator on

In this mode, the CPU and peripheral clocks are stopped. An internal wakeup is generated at programmable intervals by the auto wake up unit (AWU). The main voltage regulator is kept powered on, so current consumption is higher than in Active-halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the internal AWU interrupt, external interrupt or reset.

• Active-halt mode with regulator off

This mode is the same as Active-halt with regulator on, except that the main voltage regulator is powered off, so the wake up time is slower.

Halt mode

CPU and peripheral clocks are stopped, the main voltage regulator is powered off. Wakeup is triggered by external event or reset.

In all modes the CPU and peripherals remain permanently powered on, the system clock is applied only to selected modules. The RAM content is preserved and the brown-out reset circuit remains activated.

	Table 0. Advanced control and general purpose timers											
Timer	Counter width	Counter type	Prescaler factor	Channels	Inverted outputs	Repetition counter	trigger unit	External trigger	Break input			
TIM1	16-bit	Up/down	1 to 65536	4	3	Yes	Yes	Yes	Yes			
TIM2	16-bit	Up	2 ⁿ n = 0 to 15	3	None	No	No	No	No			
TIM3	16-bit	Up	2 ⁿ n = 0 to 15	2	None	No	No	No	No			

Table 6. Advanced control and general purpose timers

TIM1 - advanced control timer

This is a high-end timer designed for a wide range of control applications. With its complementary outputs, dead-time control and center-aligned PWM capability, the field of applications is extended to motor control, lighting and bridge driver.

- 16-bit up, down and up/down AR (auto-reload) counter with 16-bit fractional prescaler.
- Four independent CAPCOM channels configurable as input capture, output compare, PWM generation (edge and center aligned mode) and single pulse mode output
- Trigger module which allows the interaction of TIM1 with other on-chip peripherals. In the present implementation it is possible to trigger the ADC upon a timer event.
- External trigger to change the timer behavior depending on external signals
- Break input to force the timer outputs into a defined state
- Three complementary outputs with adjustable dead time
- Interrupt sources: 4 x input capture/output compare, 1 x overflow/update, 1 x break

TIM2, TIM3 - 16-bit general purpose timers

- 16-bit auto-reload up-counter
- 15-bit prescaler adjustable to fixed power of two ratios 1...32768
- Timers with three or two individually configurable CAPCOM channels
- Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update

5.7.5 Basic timer

The typical usage of this timer (TIM4) is the generation of a clock tick.

Fable	7.	TIM4	

Timer	Counter width	Counter type	Prescaler factor	Channels	Inverted outputs	Repetition counter	trigger unit	External trigger	Break input
TIM4	8-bit	Up	2 ⁿ n = 0 to 7	0	None	No	No	No	No

- 8-bit auto-reload, adjustable prescaler ratio to any power of two from 1 to 128
- Clock source: master clock
- Interrupt source: 1 x overflow/update

	Pir	n nu	mber				lı	npu	t		Out	put				
LQFP80	LQFP64	LQFP48	STM8AF62xx LQFP32/VFQFPN32	STM8AF52x6 VFQFPN32	Pin name	Type	Floating	ndM	Ext. interrupt	High sink	Speed	QO	dd	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	1	1	1	NRST	I/O	-	Χ	-	-	-	-	-	R	eset	-
2	2	2	2	2	PA1/OSCIN ⁽¹⁾	I/O	x	х	-	-	01	х	х	Port A1	Resonator/ crystal in	-
3	3	3	3	3	PA2/OSCOUT	I/O	x	х	х	-	01	х	х	Port A2	Resonator/ crystal out	-
4	4	4	-	-	V _{SSIO_1}	S	-	-	-	-	-	-	-	I/O g	ground	-
5	5	5	4	4	V _{SS}	S	-	-	-	-	-	-	-	Digita	l ground	-
6	6	6	5	5	VCAP	s	-	-	-	-	-	-	-	ו 1.8 V cap	regulator acitor	-
7	7	7	6	6	V _{DD}	S	-	-	-	-	-	-	-	Digital po	Digital power supply	
8	8	8	7	7	V _{DDIO_1}	S	-	-	-	-	-	-	-	I/O power supply		-
9	9	9	-	-	PA3/TIM2_CH3	I/O	x	х	х	-	01	х	х	Port A3	Port A3 Timer 2 - channel 3	
10	10	10	-	-	PA4/USART_RX	I/O	x	х	х	-	O3	х	х	Port A4	USART receive	-
11	11	11	-	-	PA5/USART_TX	I/O	x	х	х	-	O3	х	х	Port A5	USART transmit	-
12	12	12	-	8	PA6/USART_CK	I/O	x	x	x	-	O3	х	x	Port A6	USART synchro nous clock	-
13	-	-	-	-	PH0	I/O	Х	Х	I	HS	O3	Х	Х	Port H0	-	-
14	-	-	-	-	PH1	I/O	Х	Х	-	HS	O3	Х	Х	Port H1	-	-
15	-	-	-	-	PH2	I/O	Х	Х	-	-	01	Х	Х	Port H2	-	-
16	-	-	-	-	PH3	I/O	Х	Х	-	-	01	Х	Х	Port H3	-	-
17	13	-	-	-	PF7/AIN15	I/O	X	х	-	-	01	х	х	Port F7	Analog input 15	-
18	14	-	-	-	PF6/AIN14	I/O	x	х	-	-	01	х	х	Port F6	Analog input 14	-
19	15	-	-	-	PF5/AIN13	I/O	x	х	-	-	01	х	х	Port F5	Analog input 13	-
20	16	-	8	-	PF4/AIN12	I/O	x	х	-	-	01	х	х	Port F4	Analog input 12	-
21	17	-	-	-	PF3/AIN11	I/O	x	х	-	-	01	х	х	Port F3	Analog input 11	-

	Pir	n nu	mber				h	npu	t		Out	put	-			
LQFP80	LQFP64	LQFP48	STM8AF62xx LQFP32/VFQFPN32	STM8AF52x6 VFQFPN32	Pin name	Type	Floating	Wpu	Ext. interrupt	High sink	Speed	QO	ЬР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
38	-	-	-	-	PH7/ TIM1_CH1N	I/O	x	х	-	-	O1	x	x	Port H7	Timer 1 - inverted channel 2	-
39	31	23	-	-	PE7/AIN8	I/O	x	х	-	-	01	х	х	Port E7	Analog input 8	-
40	32	24			PE6/AIN9	I/O	x	х	х	-	01	х	х	Port E6	Analog input 9	-
41	33	25	17	17	PE5/SPI_NSS ⁽²⁾	I/O	x	x	x	-	01	x	x	Port E5	SPI master/ slave select	-
42	-	-	-	-	PC0/ADC_ETR	I/O	x	x	x	-	01	x	x	Port C0	ADC trigger input	-
43	34	26	18	18	PC1/TIM1_CH1	I/O	x	х	х	HS	O3	х	x	Port C1	Timer 1 - channel 1	-
44	35	27	19	19	PC2/TIM1_CH2	I/O	x	х	х	HS	O3	х	х	Port C2	Timer 1- channel 2	-
45	36	28	20	20	PC3/TIM1_CH3	I/O	x	х	х	HS	O3	х	х	Port C3	Timer 1 - channel 3	-
46	37	29	21	21	PC4/TIM1_CH4	I/O	x	х	х	HS	O3	х	х	Port C4	Timer 1 - channel 4	-
47	38	30	22	22	PC5/SPI_SCK ⁽²⁾	I/O	Х	Х	Х	-	O3	Х	Х	Port C5	SPI clock	-
48	39	31	-	-	V _{SSIO_2}	S	-	-	-	-	-	-	-	I/O g	ground	-
49	40	32	-	-	V _{DDIO_2}	S	-	-	-	-	-	-	-	I/O pow	er supply	-
50	41	33	23	-	PC6/SPI_MOSI	I/O	x	х	х	-	O3	х	x	Port C6	out/ slave in	-
51	42	34	24	-	PC7/SPI_MISO	I/O	x	x	х	-	O3	х	x	Port C7	SPI master in/ slave out	-
52	43	35	-	23	PG0/CAN_TX	I/O	x	х	-	-	01	х	х	Port G0	CAN transmit	-
53	44	36	-	24	PG1/CAN_RX	I/O	x	х	-	-	01	х	х	Port G1	CAN receive	-
54	45	-	-	-	PG2	I/O	Х	Х	-	-	01	Х	Х	Port G2	-	-

Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pi	in description	(continued)
--	----------------	-------------

Address	Block	Register label	Register name	Reset status		
0x00 5230		UART1_SR	USART status register	0xC0		
0x00 5231		UART1_DR	USART data register	0xXX		
0x00 5232		UART1_BRR1	USART baud rate register 1	0x00		
0x00 5233		UART1_BRR2	USART baud rate register 2	0x00		
0x00 5234		UART1_CR1	USART control register 1	0x00		
0x00 5235	USART	UART1_CR2	USART control register 2	0x00		
0x00 5236		UART1_CR3	USART control register 3	0x00		
0x00 5237		UART1_CR4	USART control register 4	0x00		
0x00 5238		UART1_CR5 USART control register 5				
0x00 5239		UART1_GTR	USART guard time register	0x00		
0x00 523A		UART1_PSCR	USART prescaler register	0x00		
0x00 523B to 0x00 523F		R	eserved area (5 bytes)			
0x00 5240		UART3_SR	LINUART status register	0xC0		
0x00 5241		UART3_DR	LINUART data register	0xXX		
0x00 5242		UART3_BRR1	LINUART baud rate register 1	0x00		
0x00 5243		UART3_BRR2	LINUART baud rate register 2	0x00		
0x00 5244		UART3_CR1	LINUART control register 1	0x00		
0x00 5245	LINUART	UART3_CR2	LINUART control register 2	0x00		
0x00 5246		UART3_CR3	LINUART control register 3	0x00		
0x00 5247		UART3_CR4	LINUART control register 4	0x00		
0x00 5248			Reserved			
0x00 5249		UART3_CR6	LINUART control register 6	0x00		
0x00 524A to 0x00 524F		R	eserved area (6 bytes)			

Table 1	4 General	hardware	register	man	(continued)	
Table I		naiuwaie	register	map	continueu)	

10 Electrical characteristics

10.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

10.1.1 Minimum and maximum values

Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = -40$ °C, $T_A = 25$ °C, and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

10.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5.0$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.

10.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 9*.

10.3.4 Internal clock sources and timing characteristics

Subject to general operating conditions for V_{DD} and $T_{\text{A}}.$

High-speed internal RC oscillator (HSI)

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI}	Frequency	-	-	16	-	MHz
ACC _{HS}	HSI oscillator user trimming accuracy	Trimmed by the application for any V_{DD} and T_{A} conditions	-1	-	1	%
	HSI oscillator accuracy (factory calibrated)	$\label{eq:VDD} \begin{split} V_{DD} &= 3.0 \ V \leq V_{DD} \leq 5.5 \ V, \\ -40 \ ^{\circ}C \leq T_A \leq 150 \ ^{\circ}C \end{split}$	-5	-	5	
t _{su(HSI)}	HSI oscillator wakeup time	-	-	-	2 ⁽¹⁾	μs

Table 33. HSI oscillator characteristics

1. Guaranteed by characterization results, not tested in production.

Figure 21. Typical HSI frequency vs V_{DD}

10.3.9 SPI interface

Unless otherwise specified, the parameters given in *Table 41* are derived from tests performed under ambient temperature, f_{MASTER} frequency, and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions		Min	Мах	Unit
		Master mode		0	10	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	V _{DD} < 4.5 V	0	6 ⁽¹⁾	MHz
-C(SCR)		Slave mode	V _{DD} = 4.5 V to 5.5 V	0	8 ⁽¹⁾	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C =	= 30 pF	-	25 ⁽²⁾	
t _{su(NSS)} ⁽³⁾	NSS setup time	Slave mode		4 * t _{MASTER}	-	
t _{h(NSS)} ⁽³⁾	NSS hold time	Slave mode		70	-	
$\begin{array}{c}t_{w(SCKH)}^{(3)}\\t_{w(SCKL)}^{(3)}\end{array}$	SCK high and low time	Master mode t _{SCK} /2 - 15		t _{SCK} /2 + 15	t _{w(SCKH)} ⁽³⁾ t _{w(SCKL)} ⁽³⁾	
t _{su(MI)} (3)	Data input satup timo	Master mode		5	-	
t _{su(SI)} (3)	t _{su(SI)} Data input setup time	Slave mode	5	-		
t _{h(MI)} ⁽³⁾	Data input hold time	Master mode		7	-	ns
t _{h(SI)} (3)		Slave mode		10	-	
t _{a(SO)} (3)(4)	Data output access time	Slave mode		-	3* t _{MASTER}	
t _{dis(SO)} ⁽³⁾⁽⁵⁾	Data output disable time	Slave mode		25		
+ (3)	Data output valid timo	Slave mode	V _{DD} < 4.5 V	-	75	
t _{v(SO)} (s)		(after enable edge)	V_{DD} = 4.5 V to 5.5 V	-	53	
t _{v(MO)} ⁽³⁾	Data output valid time	Master mode (after	-	30		
t _{h(SO)} ⁽³⁾	Data output hold time	Slave mode (after e	nable edge)	31	-	
t _{h(MO)} ⁽³⁾		Master mode (after enable edge)		12	-	

Table 41. SPI ch	aracteristics
------------------	---------------

1. $f_{SCK} < f_{MASTER}/2$.

2. The pad has to be configured accordingly (fast mode).

3. Guaranteed by design or by characterization results, not tested in production.

4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

Electromagnetic interference (EMI)

Emission tests conform to the IEC 61967-2 standard for test software, board layout and pin loading.

			Conditions				
Symbol	Parameter	Conorol	Monitorod	Max f _{CPU} ⁽¹⁾			Unit
		conditions	frequency band	8 MHz	16 MHz	24 MHz	
		V _{DD} = 5 V,	0.1 MHz to 30 MHz	15	17	22	
S _{EMI} Peak EMI le	Peak level	$T_A = 25 ^{\circ}C,$	30 MHz to 130 MHz	18	22	16	dBuV
		conforming to IEC	130 MHz to 1 GHz	-1	3	5	ubμv
	EMI level	61967-2	-	2	2.5	2.5	

Table	46.	EMI	data

1. Guaranteed by characterization results, not tested in production.

Absolute maximum ratings (electrical sensitivity)

Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed to determine its performance in terms of electrical sensitivity. For more details, refer to the application note AN1181.

Electrostatic discharge (ESD)

Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test conforms to the JESD22-A114A/A115A standard. For more details, refer to the application note AN1181.

Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T _A = 25 °C, conforming to JESD22-A114	ЗA	4000	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = 25 °C, conforming to JESD22-C101	3	500	V
V _{ESD(MM)}	Electrostatic discharge voltage (charge device model)	$T_A = 25 \ ^{\circ}C$, conforming to JESD22-A115	В	200	

Table 47. ESD absolute maximum ratings

1. Guaranteed by characterization results, not tested in production

Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance.

- A supply overvoltage (applied to each power supply pin) and
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ⁽¹⁾	
	Static latch-up class	T _A = 25 °C		
LU		T _A = 85 °C		
		T _A = 125 °C	A	
		T _A = 150 °C		

Table 48. El	lectrical	sensitivities
--------------	-----------	---------------

1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 47. LQFP80 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

Gumbal	Symbol					
Зутвої	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

Table 51. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat packagemechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 53. LQFP48 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

11.5 VFQFPN32 package information

Figure 57. VFQFPN32 - 32-pin, 5x5 mm, 0.5 mm pitch very thin profile fine pitch quad flat package outline

1. Drawing is not to scale.

57

Date	Revision	Changes
13-Apr-2010	6	Updated title on cover page. Modified cover page header to clarify the part numbers covered by the datasheets. Updated footnote on <i>Table 1: Device summary</i> to add 'P' order codes. Changed definition of 'P' order codes. 'Q' order codes (FASTROM and EEPROM) removed. Reorganized the content of <i>Section 5: Product overview</i> . <i>Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin</i> <i>description</i> updated PD7/TLI alternate function, removed caution note for PD6/ LINUART_RX, and added note to PA1/OSCIN. Renamed <i>Section 7: Memory and register map</i> , and merged content with <i>Section: Register map</i> . Updated <i>Figure 8: Register and memory</i> <i>map</i> . Renamed BL_EN and NBL_EN, BL and NBL, respectively, in <i>Table 18: Option bytes</i> . Updated AFR4 definition in <i>Table 19: Option byte description</i> . Added C _{EXT} in <i>Table 24: General operating conditions</i> , and <i>Section 10.3.1: VCAP external capacitor</i> . Updated t _{VDD} in <i>Table 25: Operating conditions at power-up/power- down</i> . Moved <i>Table 30: Typical peripheral current consumption VDD = 5.0</i> V to <i>Section 1: Current consumption for on-chip peripherals</i> . Removed V _{ESD(MM)} from <i>Table 47: ESD absolute maximum ratings</i> . Updated <i>Section 12: Ordering information</i> to the devices supported by the datasheet. Updated <i>Section 13: STM8 development tools</i> .
08-Jul-2010	7	Added STM8AF5168 and STM8AF518A part number in <i>Figure 4</i> , and STM8AF618A in <i>Figure 5</i> . Added STM8AF52xx, STM8AF6269, STM8AF628x, and STM8AF62Ax. Updated D temperature range to -40 to 150°C. Updated number of I/Os on cover page. Added <i>Table 23: Operating lifetime</i> . Restored V _{ESD(MM)} from <i>Table 47: ESD absolute maximum ratings</i> . <i>Table 24: General operating conditions</i> : updated V _{CAP} information. ESL parameter, and range D maximum junction temperature (T _J). Added STM8AF52xx and STM8AF62xx, and footnote in <i>Section 12:</i> <i>Ordering information</i> . Updated <i>Section 13: STM8 development tools</i> : added <i>Table: Product evolution summary</i> , and split the beCAN time triggered communication mode limitation in two sections.

Table 55. Document revision history (continued)

Date	Revision	Changes
13-Oct-2016	14	 Updated: Title of <i>Figure 7: STM8AF52x6 VFQFPN32 32-pin pinout</i>, (previously STM8AF5286UC VFQFPN32 32-pin pinout) Footnotes of <i>Figure 60: STM8AF526x/8x/Ax and</i> <i>STM8AF6269/8x/Ax ordering information scheme1</i> <i>Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin</i> <i>description</i> replaced "STM8AF5286UC VQFPN32" with "STM8AF52x6 VQFPN32" at header row Section 10.2: Absolute maximum ratings Section : Device marking on page 93 Section : Device marking on page 96 Section : Device marking on page 104 Section : Device marking on page 108 Added: Footnote on <i>Figure 47: LQFP80 marking example (package top</i> <i>view)</i>, <i>Figure 50: LQFP64 marking example (package top view)</i>, <i>Figure 56: LQFP32 marking example (package top view)</i>, <i>Figure 59: VFQFPN32 marking example (package top view)</i>.
10-Nov-2016	15	Updated header row and PA6/USART_CK pin row on <i>Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description.</i>

|--|

