

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	STM8A
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	68
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 16x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af628atcy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

The ROP circuit may provide a temporary access for debugging or failure analysis. The temporary read access is protected by a user defined, 8-byte keyword stored in the option byte area. This keyword must be entered via the SWIM interface to temporarily unlock the device.

If desired, the temporary unlock mechanism can be permanently disabled by the user through OPT6/NOPT6 option bytes.

5.5 Clock controller

The clock controller distributes the system clock coming from different oscillators to the core and the peripherals. It also manages clock gating for low-power modes and ensures clock robustness.

5.5.1 Features

- Clock sources
 - 16 MHz high-speed internal RC oscillator (HSI)
 - 128 kHz low-speed internal RC (LSI)
 - 1-24 MHz high-speed external crystal (HSE)
 - Up to 24 MHz high-speed user-external clock (HSE user-ext)
- **Reset**: After reset the microcontroller restarts by default with an internal 2-MHz clock (16 MHz/8). The clock source and speed can be changed by the application program as soon as the code execution starts.
- **Safe clock switching**: Clock sources can be changed safely on the fly in Run mode through a configuration register. The clock signal is not switched until the new clock source is ready. The design guarantees glitch-free switching.
- **Clock management**: To reduce power consumption, the clock controller can stop the clock to the core, individual peripherals or memory.
- **Wakeup**: In case the device wakes up from low-power modes, the internal RC oscillator (16 MHz/8) is used for quick startup. After a stabilization time, the device switches to the clock source that was selected before Halt mode was entered.
- **Clock security system (CSS)**: The CSS permits monitoring of external clock sources and automatic switching to the internal RC (16 MHz/8) in case of a clock failure.
- **Configurable main clock output (CCO)**: This feature permits to output a clock signal for use by the application.

5.5.2 16 MHz high-speed internal RC oscillator (HSI)

- Default clock after reset 2 MHz (16 MHz/8)
- Fast wakeup time

User trimming

The register CLK_HSITRIMR with two trimming bits plus one additional bit for the sign permits frequency tuning by the application program. The adjustment range covers all possible frequency variations versus supply voltage and temperature. This trimming does not change the initial production setting.

DocID14395 Rev 15

	Pir		mber		WOAF 5202/02/A		1	npu			Out		<u>.</u>			,
LQFP80	LQFP64	LQFP48	STM8AF62xx LQFP32/VFQFPN32	STM8AF52x6 VFQFPN32	Pin name	Type	Floating	Wpu	Ext. interrupt	High sink	Speed	OD	Ъ	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
55	46	-	-	-	PG3	I/O	Х	Х	-	-	01	Х	Х	Port G3	-	-
56	47	-	-	-	PG4	I/O	Х	Х	-	-	01	Х	Х	Port G4	-	-
57	48	-	-	-	PI0	I/O	Х	Х	1	-	01	Х	Х	Port I0	-	-
58	-	-	-	-	PI1	I/O	Х	Х	-	-	01	Х	Х	Port I1	-	-
59	-	-	-	-	Pl2	I/O	Х	Х	1	-	01	Х	Х	Port I2	-	-
60	-	-	-	-	PI3	I/O	Х	Х	-	-	01	Х	Х	Port I3	-	-
61	-	-	-	-	PI4	I/O	Х	Х	-	-	01	Х	Х	Port I4	-	-
62	-	-	-	-	PI5	I/O	Х	Х	-	-	01	Х	Х	Port I5	-	-
63	49	-	-	-	PG5	I/O	Х	Х	-	-	01	Х	Х	Port G5	-	-
64	50	-	-	-	PG6	I/O	Х	Х	-	-	01	Х	Х	Port G6	-	-
65	51	-	-	-	PG7	I/O	Х	Х	-	-	01	Х	Х	Port G7	-	-
66	52	-	-	-	PE4	I/O	Х	Х	Х	-	01	Х	Х	Port E4	-	-
67	53	37	-	-	PE3/TIM1_BKIN	I/O	Х	х	х	-	01	х	х	Port E3	Timer 1 - break input	-
68	54	38	-	-	PE2/I ² C_SDA	I/O	Х	-	Х	-	01	T ⁽³⁾	-	Port E2	l ² C data	-
69	55	39	-	-	PE1/I ² C_SCL	I/O	Х	-	Х	-	01	T ⁽³⁾	-	Port E1	I ² C clock	-
70	56	40	-	-	PE0/CLK_CCO	I/O	X	х	х	-	O3	х	x	Port E0	Configurab le clock output	-
71	-	-	-	-	Pl6	I/O	Х	Х	-	-	01	Х	Х	Port I6	-	-
72	-	-	-	-	PI7	I/O	X	Х	-	-	01	Х	Х	Port I7	-	-
73	57	41	25	25	PD0/TIM3_CH2	I/O	x	x	х	HS	O3	х	x	Port D0	Timer 3 - channel 2	TIM1_BKIN [AFR3]/ CLK_CCO [AFR2]
74	58	42	26	26	PD1/SWIM ⁽⁴⁾	I/O	х	x	х	HS	04	х	х	Port D1	SWIM data interface	-
75	59	43	27	27	PD2/TIM3_CH1	I/O	x	х	х	HS	O3	х	х	Port D2	Timer 3 - channel 1	TIM2_CH3 [AFR1]
76	60	44	28	28	PD3/TIM2_CH2	I/O	x	х	х	HS	O3	х	х	Port D3	Timer 2 - channel 2	ADC_ETR [AFR0]
77	61	45	29	29	PD4/TIM2_CH1/ BEEP	I/O	x	х	х	HS	O3	х	х	Port D4	Timer 2 - channel 1	BEEP output [AFR7]

Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description (continued)

7 Memory and register map

7.1 Memory map

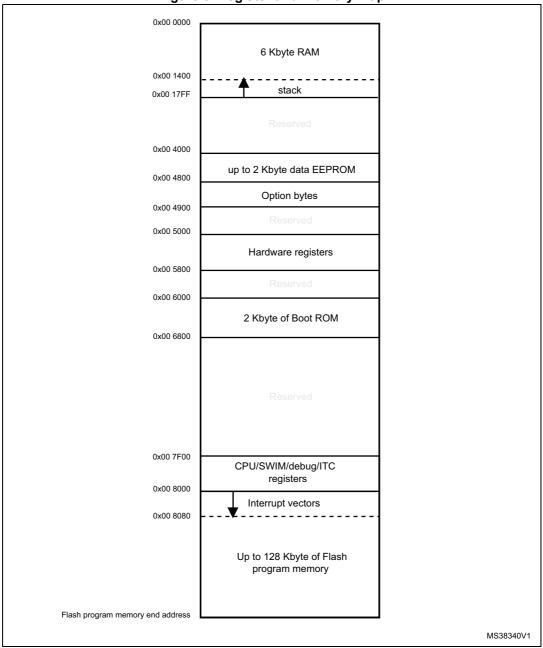


Figure 8. Register and memory map

Address	Block	Register label	Register name	Reset
		-	-	status
0x00 5014		PE_ODR	Port E data output latch register	0x00
0x00 5015		PE_IDR	Port E input pin value register	0xXX ⁽¹⁾
0x00 5016	Port E	PE_DDR	Port E data direction register	0x00
0x00 5017		PE_CR1	Port E control register 1	0x00
0x00 5018		PE_CR2	Port E control register 2	0x00
0x00 5019		PF_ODR	Port F data output latch register	0x00
0x00 501A		PF_IDR	Port F input pin value register	0xXX ⁽¹⁾
0x00 501B	Port F	PF_DDR	Port F data direction register	0x00
0x00 501C		PF_CR1	Port F control register 1	0x00
0x00 501D		PF_CR2	Port F control register 2	0x00
0x00 501E		PG_ODR	Port G data output latch register	0x00
0x00 501F		PG_IDR	Port G input pin value register	0xXX ⁽¹⁾
0x00 5020	Port G	PG_DDR	Port G data direction register	0x00
0x00 5021		PG_CR1	Port G control register 1	0x00
0x00 5022		PG_CR2	Port G control register 2	0x00
0x00 5023		PH_ODR	Port H data output latch register	0x00
0x00 5024		PH_IDR	Port H input pin value register	0xXX ⁽¹⁾
0x00 5025	Port H	PH_DDR	Port H data direction register	0x00
0x00 5026		PH_CR1	Port H control register 1	0x00
0x00 5027		PH_CR2	Port H control register 2	0x00
0x00 5028		PI_ODR	Port I data output latch register	0x00
0x00 5029		PI_IDR	Port I input pin value register	0xXX ⁽¹⁾
0x00 502A	Port I	PI_DDR	Port I data direction register	0x00
0x00 502B		PI_CR1	Port I control register 1	0x00
0x00 502C		PI_CR2	Port I control register 2	0x00

Table 13 I/O	port hardware register map (continued)	
	port naruware register map (continueu)	,

1. Depends on the external circuitry.

Address	Block	Register label	Register name	Reset status
0x00 5250		TIM1_CR1	TIM1 control register 1	0x00
0x00 5251		TIM1 CR2	TIM1 control register 2	0x00
0x00 5252		 TIM1_SMCR	TIM1 slave mode control register	0x00
0x00 5253		 TIM1_ETR	TIM1 external trigger register	0x00
0x00 5254		 TIM1_IER	TIM1 Interrupt enable register	0x00
0x00 5255		TIM1_SR1	TIM1 status register 1	0x00
0x00 5256		TIM1_SR2	TIM1 status register 2	0x00
0x00 5257		TIM1_EGR	TIM1 event generation register	0x00
0x00 5258		TIM1_CCMR1	TIM1 capture/compare mode register 1	0x00
0x00 5259		TIM1_CCMR2	TIM1 capture/compare mode register 2	0x00
0x00 525A		TIM1_CCMR3	TIM1 capture/compare mode register 3	0x00
0x00 525B		TIM1_CCMR4	TIM1 capture/compare mode register 4	0x00
0x00 525C		TIM1_CCER1	TIM1 capture/compare enable register 1	0x00
0x00 525D		TIM1_CCER2	TIM1 capture/compare enable register 2	0x00
0x00 525E		TIM1_CNTRH	TIM1 counter high	0x00
0x00 525F	TIN 44	TIM1_CNTRL	TIM1 counter low	0x00
0x00 5260	TIM1	TIM1_PSCRH	TIM1 prescaler register high	0x00
0x00 5261		TIM1_PSCRL	TIM1 prescaler register low	0x00
0x00 5262		TIM1_ARRH	TIM1 auto-reload register high	0xFF
0x00 5263		TIM1_ARRL	TIM1 auto-reload register low	0xFF
0x00 5264		TIM1_RCR	TIM1 repetition counter register	0x00
0x00 5265		TIM1_CCR1H	TIM1 capture/compare register 1 high	0x00
0x00 5266		TIM1_CCR1L	TIM1 capture/compare register 1 low	0x00
0x00 5267		TIM1_CCR2H	TIM1 capture/compare register 2 high	0x00
0x00 5268		TIM1_CCR2L	TIM1 capture/compare register 2 low	0x00
0x00 5269		TIM1_CCR3H	TIM1 capture/compare register 3 high	0x00
0x00 526A		TIM1_CCR3L	TIM1 capture/compare register 3 low	0x00
0x00 526B		TIM1_CCR4H	TIM1 capture/compare register 4 high	0x00
0x00 526C		TIM1_CCR4L	TIM1 capture/compare register 4 low	0x00
0x00 526D		TIM1_BKR	TIM1 break register	0x00
0x00 526E		TIM1_DTR	TIM1 dead-time register	0x00
0x00 526F		TIM1_OISR	TIM1 output idle state register	0x00
0x00 5270 to 0x00 52FF		Re	served area (147 bytes)	

 Table 14. General hardware register map (continued)

	Table 14. General hardware register map (continued)								
Address	Block	Register label	Register name	Reset status					
0x00 5400		ADC _CSR	ADC control/status register	0x00					
0x00 5401		ADC_CR1	ADC configuration register 1	0x00					
0x00 5402		ADC_CR2	ADC configuration register 2	0x00					
0x00 5403	ADC	ADC_CR3	ADC configuration register 3	0x00					
0x00 5404	ADC	ADC_DRH	ADC data register high	0xXX					
0x00 5405		ADC_DRL	ADC data register low	0xXX					
0x00 5406		ADC_TDRH	ADC Schmitt trigger disable register high	0x00					
0x00 5407		ADC_TDRL	ADC Schmitt trigger disable register low	0x00					
0x00 5408 to 0x00 541F		Re	Reserved area (24 bytes)						
0x00 5420		CAN_MCR	CAN master control register	0x02					
0x00 5421		CAN_MSR	CAN master status register	0x02					
0x00 5422		CAN_TSR	CAN transmit status register	0x00					
0x00 5423		CAN_TPR	CAN transmit priority register	0x0C					
0x00 5424		CAN_RFR	CAN receive FIFO register	0x00					
0x00 5425		CAN_IER	CAN interrupt enable register	0x00					
0x00 5426		CAN_DGR	CAN diagnosis register	0x0C					
0x00 5427		CAN_FPSR	CAN page selection register	0x00					
0x00 5428		CAN_P0	CAN paged register 0	0xXX ⁽³⁾					
0x00 5429		CAN_P1	CAN paged register 1	0xXX ⁽³⁾					
0x00 542A		CAN_P2	CAN paged register 2	0xXX ⁽³⁾					
0x00 542B	beCAN	CAN_P3	CAN paged register 3	0xXX ⁽³⁾					
0x00 542C		CAN_P4	CAN paged register 4	0xXX ⁽³⁾					
0x00 542D		CAN_P5	CAN paged register 5	0xXX ⁽³⁾					
0x00 542E		CAN_P6	CAN paged register 6	0xXX ⁽³⁾					
0x00 542F		CAN_P7	CAN paged register 7	0xXX ⁽³⁾					
0x00 5430		CAN_P8	CAN paged register 8	0xXX ⁽³⁾					
0x00 5431		CAN_P9	CAN paged register 9	0xXX ⁽³⁾					
0x00 5432		CAN_PA	CAN paged register A	0xXX ⁽³⁾					
0x00 5433		CAN_PB	CAN paged register B	0xXX ⁽³⁾					
0x00 5434		CAN_PC	CAN paged register C	0xXX ⁽³⁾					
0x00 5435		CAN_PD	CAN paged register D	0xXX ⁽³⁾					
0x00 5436		CAN_PE	CAN paged register E	0xXX ⁽³⁾					

 Table 14. General hardware register map (continued)

9 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated block of the memory. Each option byte has to be stored twice, for redundancy, in a regular form (OPTx) and a complemented one (NOPTx), except for the ROP (read-out protection) option byte and option bytes 8 to 16.

Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address shown in *Table 18: Option bytes* below.

Option bytes can also be modified 'on the fly' by the application in IAP mode, except the ROP and UBC options that can only be changed in ICP mode (via SWIM).

Refer to the STM8 Flash programming manual (PM0047) and STM8 SWIM communication protocol and debug module user manual (UM0470) for information on SWIM programming procedures.

Addr.	Option	Option byte				Opt	ion bits				Factory default
Auur.	name	no.	7	6	5	4	3	2	1	0	setting
0x00 4800	Read-out protection (ROP)	OPT0				RC)P[7:0]				0x00
0x00 4801	User boot code	OPT1		UBC[7:0]							0x00
0x00 4802	(UBC)	NOPT1				NU	BC[7:0]				0xFF
0x00 4803	Alternate function	OPT2	AFR7	AFR6	AFR5	AFR4	AFR3	AFR2	AFR1	AFR0	0x00
0x00 4804	remapping (AFR)	NOPT2	NAFR7	NAFR6	NAFR5	NAFR4	NAFR3	NAFR2	NAFR1	NAFR0	0xFF
0x00 4805	Watchdog	OPT3		Reserved LSI_ EN IWDG WWD WWD HWL HALT						0x00	
0x00 4806	option	NOPT3		Reserved				NIWD G_HW	NWWD G_HW	NWWG _HALT	0xFF
0x00 4807	Clock	OPT4		Rese	erved		EXT CLK	CKAW USEL	PRSC1	PRSC0	0x00
0x00 4808	option	NOPT4		Rese	erved		NEXT CLK	NCKAW USEL	NPRSC1	NPRSC 0	0xFF
0x00 4809	HSE clock	OPT5		HSECNT[7:0]						0x00	
0x00 480A	startup	NOPT5				NHSE	ECNT[7:0]			0xFF

Table 18. Option bytes

10 Electrical characteristics

10.1 Parameter conditions

Unless otherwise specified, all voltages are referred to V_{SS}.

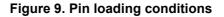
10.1.1 Minimum and maximum values

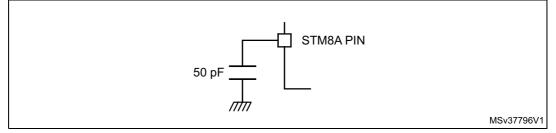
Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = -40$ °C, $T_A = 25$ °C, and $T_A = T_{Amax}$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production.

10.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = 5.0$ V. They are given only as design guidelines and are not tested.

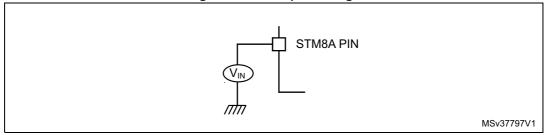

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range.


10.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

10.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 9*.



10.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 10*.

10.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 20: Voltage characteristics*, *Table 21: Current characteristics* and *Table 22: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect the device's reliability. The device's mission profile (application conditions) is compliant with the JEDEC JESD47 qualification standard, extended mission profiles are available on demand.

Symbol	Ratings	Min	Мах	Unit
V _{DDx} - V _{SS}	Supply voltage (including $V_{DDA and} V_{DDIO}$) ⁽¹⁾	-0.3	6.5	
V _{IN}	Input voltage on true open drain pins (PE1, PE2) ⁽²⁾	V _{SS} - 0.3	6.5	V
V IN	Input voltage on any other pin ⁽²⁾	V _{SS} - 0.3	V _{DD} + 0.3	
V _{DDx} - V _{DD}	Variations between different power pins	-	50	mV
$ V_{SSx} - V_{SS} $	Variations between all the different ground pins	-	50	IIIV
V _{ESD}	Electrostatic discharge voltage		ite maximum cal sensitivity) page 88	-

Table 20. Voltage characteristics

1. All power (V_{DD}, V_{DDIO}, V_{DDA}) and ground (V_{SS}, V_{SSIO}, V_{SSA}) pins must always be connected to the external power supply

2. I_{INJ(PIN)} must never be exceeded. This is implicitly insured if V_{IN} maximum is respected. If V_{IN} maximum cannot be respected, the injection current must be limited externally to the I_{INJ(PIN)} value. A positive injection is induced by V_{IN} > V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. For true open-drain pads, there is no positive injection current, and the corresponding V_{IN} maximum must always be respected

Operating conditions 10.3

	Table 24. Gener	al operating condition	13	1	
Symbol	Parameter	Conditions	Min	Max	Unit
£	Internal CBL clock fraguancy	1 wait state T _A = -40 °C to 150 °C	16	24	MHz
f _{CPU}	Internal CPU clock frequency	0 wait state T _A = -40 °C to 150 °C	0	16	
$V_{DD/}V_{DDIO}$	Standard operating voltage	-	3.0	5.5	V
(1)	C _{EXT} : capacitance of external capacitor	-	470	3300	nF
$V_{CAP}^{(1)}$	ESR of external capacitor	at 1 MHz ⁽²⁾	-	0.3	Ω
	ESL of external capacitor		-	0.3	nH
		Suffix A		85	°C
T _A	Ambient temperature	Suffix C	- 40	125	
		Suffix D		150	
		Suffix A		90	
TJ	Junction temperature range	Suffix C	- 40	130	
		Suffix D		155	

Table	24.	General	operating	conditions
labic	<u> </u>	General	operating	contaitions

Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum value must be respected for the full application range.

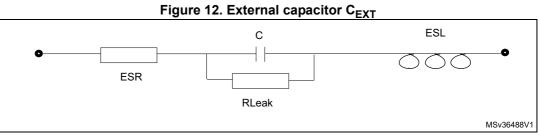
2. This frequency of 1 MHz as a condition for V_{CAP} parameters is given by design of internal regulator.

fcpu [MHz] 24 Functionality guaranteed @TA -40 to 150 °C at 1 waitstate Functionality. not guaranteed 16 in this area 12 Functionality guaranteed @TA -40 to 150 °C at 0 waitstate 8 4 0 3.0 4.0 5.0 5.5 Supply voltage [V] MSv44121V1

Figure 11. f_{CPUmax} versus V_{DD}

		••••••		P • • • • • • • • • • • • • • • • • • •	-		
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
	V _{DD} rise time rate	-	2 ⁽¹⁾	-	8		
t _{VDD}	V _{DD} fall time rate	-	2 ⁽¹⁾	-	∞	μs/V	
+	Reset release delay	V _{DD} rising	-	1	1.7	ms	
t _{TEMP}	Reset generation delay	V _{DD} falling	-	3	-	μs	
V _{IT+}	Power-on reset threshold ^{(2) (3)}	-	2.65	2.8	2.95	v	
V _{IT-}	Brown-out reset threshold	-	2.58	2.73	2.88	v	
V _{HYS(BOR)}	Brown-out reset hysteresis	-	-	70 ⁽¹⁾	-	mV	

Table 25. Operating conditions at power-up/power-down


1. Guaranteed by design, not tested in production.

2. If V_{DD} is below 3 V, the code execution is guaranteed above the V_{IT-} and V_{IT+} thresholds. RAM content is kept. The EEPROM programming sequence must not be initiated.

3. There is inrush current into V_{DD} present after device power on to charge C_{EXT} capacitor. This inrush energy depends from C_{EXT} capacitor value. For example, a C_{EXT} of 1 μ F requires Q=1 μ F x 1.8 V = 1.8 μ C.

10.3.1 VCAP external capacitor

Stabilization for the main regulator is achieved connecting an external capacitor C_{EXT} to the V_{CAP} pin. C_{EXT} is specified in *Table 24*. Care should be taken to limit the series inductance to less than 15 nH.

1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.

10.3.2 Supply current characteristics

The current consumption is measured as described in *Figure 9 on page 59* and *Figure 10 on page 60*.

If not explicitly stated, general conditions of temperature and voltage apply.

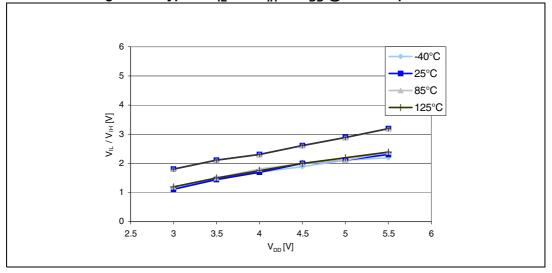
		r rogramming current consumpt			
Symbol	Parameter	Conditions	Тур	Max	Unit
I _{DD(PROG)}	Programming current	V _{DD} = 5 V, -40 °C to 150 °C, erasing and programming data or Flash program memory	1.0	1.7	mA

Table 29. Programming current consumption

Table 30. Typical peripheral current consumption $V_{DD} = 5.0 V^{(1)}$

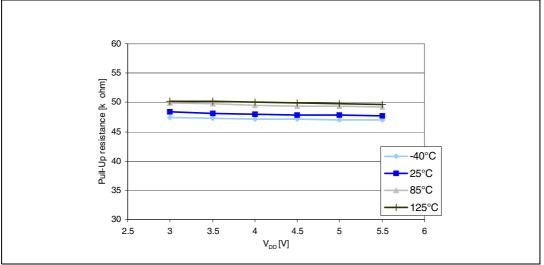
Symbol	Parameter	Typ. f _{master} = 2 MHz	Typ. f _{master} = 16 MHz	Typ. f _{master} =24 MHz	Unit
I _{DD(TIM1)}	TIM1 supply current ⁽²⁾	0.03	0.23	0.34	
I _{DD(TIM2)}	TIM2 supply current ⁽²⁾	0.02	0.12	0.19	
I _{DD(TIM3)}	TIM3 supply current ⁽²⁾	0.01	0.1	0.16	
I _{DD(TIM4)}	TIM4 supply current ⁽²⁾	0.004	0.03	0.05	
I _{DD(USART)}	USART supply current ⁽²⁾	0.03	0.09	0.15	
I _{DD(LINUART)}	LINUART supply current ⁽²⁾	0.03	0.11	0.18	
I _{DD(SPI)}	SPI supply current ⁽²⁾	0.01	0.04	0.07	mA
I _{DD(I²C)}	I ² C supply current ⁽²⁾	0.02	0.06	0.91	
I _{DD(CAN)}	CAN supply current ⁽³⁾	0.06	0.30	0.40	
I _{DD(AWU)}	AWU supply current ⁽²⁾	0.003	0.02	0.05	
I _{DD(TOT_DIG)}	All digital peripherals on	0.22	1	2.4	
I _{DD(ADC)}	ADC supply current when converting ⁽⁴⁾	0.93	0.95	0.96	

1. Typical values not tested in production. Since the peripherals are powered by an internally regulated, constant digital supply voltage, the values are similar in the full supply voltage range.

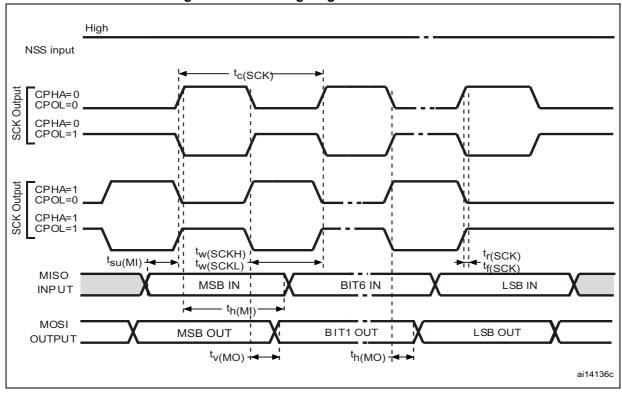

2. Data based on a differential I_{DD} measurement between no peripheral clocked and a single active peripheral. This measurement does not include the pad toggling consumption.

3. Data based on a differential IDD measurement between reset configuration (CAN disabled) and a permanent CAN data transmit sequence in loopback mode at 1 MHz. This measurement does not include the pad toggling consumption.

4. Data based on a differential I_{DD} measurement between reset configuration and continuous A/D conversions.



- 2. Guaranteed by design.
- 3. Guaranteed by characterization results, not tested in production.



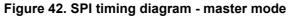
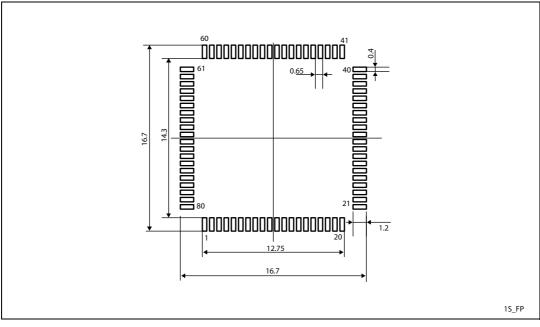


Figure 24. Typical pull-up resistance R_{PU} vs V_{DD} @ four temperatures

1. Measurement points are at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD} .




	millimeters			inches			
Symbol							
	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.220	0.320	0.380	0.0087	0.0126	0.0150	
С	0.090	-	0.200	0.0035	-	0.0079	
D	15.800	16.000	16.200	0.6220	0.6299	0.6378	
D1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
D3	-	12.350	-	-	0.4862	-	
E	15.800	16.000	16.200	0.6220	0.6299	0.6378	
E1	13.800	14.000	14.200	0.5433	0.5512	0.5591	
E3	-	12.350	-	-	0.4862	-	
е	-	0.650	-	-	0.0256	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.100	-	-	0.0039	

Table 49. LQFP80 - 80-pin, 14 x 14 mm low-profile quad flat package mechanical data⁽¹⁾

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

	nat package mechanical data					
Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Мах
А	0.800	0.900	1.000	0.0315	0.0354	0.0394
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.200	-	-	0.0079	-
b	0.180	0.250	0.300	0.0071	0.0098	0.0118
D	4.850	5.000	5.150	0.1909	0.1969	0.2028
D2	3.500	3.600	3.700	0.1378	0.1417	0.1457
E	4.850	5.000	5.150	0.1909	0.1969	0.2028
E2	3.500	3.600	3.700	0.1378	0.1417	0.1457
е	-	0.500	-	-	0.0197	-
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	-	0.050	-	-	0.0020

Table 53. VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mm pitch very thin profile fine pitch quadflat package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

13.3 Programming tools

During the development cycle, STice provides in-circuit programming of the STM8A Flash microcontroller on the application board via the SWIM protocol. Additional tools are to include a low-cost in-circuit programmer as well as ST socket boards, which provide dedicated programming platforms with sockets for programming the STM8A.

For production environments, programmers will include a complete range of gang and automated programming solutions from third-party tool developers already supplying programmers for the STM8 family.

Table 55. Document revision history (continued)				
Date	Revision	Changes		
18-Jul-2012	9 (continued)	Table 26: Total current consumption in Run, Wait and Slow mode.General conditions for VDD apply, TA = -40 °C to 150 °C: updatedconditions for I _{DD(RUN)} :Table 38: I/O static characteristics: added new condition and newmax values for rise and fall time; updated footnote 2.Section 10.3.7: Reset pin characteristics: updated text belowFigure 38: Typical NRST pull-up current Ipu vs VDDFigure 39: Recommended reset pin protection: updated unit ofcapacitor.Table 41: SPI characteristics: updated SCK high and low timeconditions and values.Figure 42: SPI timing diagram - master mode: replaced 'SCK input'signals with 'SCK output' signals.Updated Table 49: LQFP80 - 80-pin, 14 x 14 mm low-profile quad flatpackage mechanical data, Table 50: LQFP64 - 64-pin, 10 x 10 mmlow-profile quad flat package mechanical data, Table 52: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package mechanical data,Table 52: LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat packagemechanical data, Table 53: VFQFPN32 - 32-pin, 5 x 5 mm, 0.5 mmpitch very thin profile fine pitch quad flat package mechanical dataReplaced Figure 48: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage outline, Figure 51: LQFP48 - 48-pin, 7 x 7 mm low-rom low-profile quad flat package outlineAdded Figure 49: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage outline, Figure 51: LQFP48 - 48-pin, 7 x 7 mm low-rom low-profile quad flat package outlineAdded Figure 49: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flatpackage recommended footprint, Figure 52: LQFP48 - 48-pin, 7 x 7 mm low-		
31-Mar-2014	10	 Updated: Table 1: Device summary, Table: STM8AF52xx product line-up with CAN, Table: STM8AF/H/P51xx product line-up with CAN, Table: STM8AF/H/P61xx product line-up without CAN, Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin description, The maximum speed in Section 5.9.3: Serial peripheral interface (SPI), t_{TEMP} Reset release delay /VDD rising typical and max values in Table 25: Operating conditions at power-up/power-down, The symbol t_{IFP(NRST)} with t_{INFP(NRST)} in Table 39: NRST pin characteristics, The address and comment for Reset in Table 17: STM8A interrupt table. 		

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID14395 Rev 15