

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Coro Processor	CTMOA
Core Processor	STM8A
Core Size	8-Bit
Speed	24MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	38
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	2K x 8
RAM Size	6K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 5.5V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm8af62a8tcy

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.7 Timers

5.7.1 Watchdog timers

The watchdog system is based on two independent timers providing maximum security to the applications. The watchdog timer activity is controlled by the application program or option bytes. Once the watchdog is activated, it cannot be disabled by the user program without going through reset.

Window watchdog timer

The window watchdog is used to detect the occurrence of a software fault, usually generated by external interferences or by unexpected logical conditions, which cause the application program to abandon its normal sequence.

The window function can be used to trim the watchdog behavior to match the application timing perfectly. The application software must refresh the counter before time-out and during a limited time window. If the counter is refreshed outside this time window, a reset is issued.

Independent watchdog timer

The independent watchdog peripheral can be used to resolve malfunctions due to hardware or software failures.

It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case of a CPU clock failure. If the hardware watchdog feature is enabled through the device option bits, the watchdog is automatically enabled at power-on, and generates a reset unless the key register is written by software before the counter reaches the end of count.

5.7.2 Auto-wakeup counter

This counter is used to cyclically wakeup the device in Active-halt mode. It can be clocked by the internal 128 kHz internal low-frequency RC oscillator or external clock.

LSI clock can be internally connected to TIM3 input capture channel 1 for calibration.

5.7.3 Beeper

This function generates a rectangular signal in the range of 1, 2 or 4 kHz which can be output on a pin. This is useful when audible sounds without interference need to be generated for use in the application.

5.7.4 Advanced control and general purpose timers

STM8A devices described in this datasheet, contain up to three 16-bit advanced control and general purpose timers providing nine CAPCOM channels in total. A CAPCOM channel can be used either as input compare, output compare or PWM channel. These timers are named TIM1, TIM2 and TIM3.

5.9.2 Universal asynchronous receiver/transmitter with LIN support (LINUART)

The devices covered by this datasheet contain one LINUART interface. The interface is available on all the supported packages. The LINUART is an asynchronous serial communication interface which supports extensive LIN functions tailored for LIN slave applications. In LIN mode it is compliant to the LIN standards rev 1.2 to rev 2.2.

Detailed feature list:

LIN mode

Master mode

- LIN break and delimiter generation
- LIN break and delimiter detection with separate flag and interrupt source for read back checking.

Slave mode

- Autonomous header handling one single interrupt per valid header
- Mute mode to filter responses
- Identifier parity error checking
- LIN automatic resynchronization, allowing operation with internal RC oscillator (HSI) clock source
- Break detection at any time, even during a byte reception
- Header errors detection:
 - Delimiter too short
 - Synch field error
 - Deviation error (if automatic resynchronization is enabled)
 - Framing error in synch field or identifier field
 - Header time-out

UART mode

- Full duplex, asynchronous communications NRZ standard format (mark/space)
- High-precision baud rate generator
 - A common programmable transmit and receive baud rates up to f_{MASTER}/16
- Programmable data word length (8 or 9 bits) 1 or 2 stop bits parity control
- Separate enable bits for transmitter and receiver
- Error detection flags
- Reduced power consumption mode
- Multi-processor communication enter mute mode if address match does not occur
- Wakeup from mute mode (by idle line detection or address mark detection)
- Two receiver wakeup modes:
 - Address bit (MSB)
 - Idle line

Pin number					lı	npu	t		Out	put						
LQFP80	LQFP64	LQFP48	STM8AF62xx LQFP32/VFQFPN32	STM8AF52x6 VFQFPN32	Pin name	Type	Floating	ndM	Ext. interrupt	High sink	Speed	QO	dd	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
1	1	1	1	1	NRST	I/O	-	Χ	-	-	-	-	-	R	eset	-
2	2	2	2	2	PA1/OSCIN ⁽¹⁾	I/O	x	х	-	-	01	х	х	Port A1	Resonator/ crystal in	-
3	3	3	3	3	PA2/OSCOUT	I/O	x	х	х	-	01	х	х	Port A2	Resonator/ crystal out	-
4	4	4	-	-	V _{SSIO_1}	S	-	-	-	-	-	-	-	I/O ground		-
5	5	5	4	4	V _{SS}	S	-	-	-	-	-	-	-	Digita	l ground	-
6	6	6	5	5	VCAP	s	-	-	-	-	-	-	-	1.8 V regulator capacitor		-
7	7	7	6	6	V _{DD}	S	-	-	-	-	-	-	-	Digital power supply		-
8	8	8	7	7	V _{DDIO_1}	S	-	-	-	-	-	-	-	I/O power supply		-
9	9	9	-	-	PA3/TIM2_CH3	I/O	x	х	х	-	01	х	х	Port A3 Timer 2 - channel 3		TIM3_CH1 [AFR1]
10	10	10	-	-	PA4/USART_RX	I/O	x	х	х	-	O3	х	х	Port A4	USART receive	-
11	11	11	-	-	PA5/USART_TX	I/O	x	х	х	-	O3	х	х	Port A5	USART transmit	-
12	12	12	-	8	PA6/USART_CK	I/O	x	x	x	-	O3	х	x	Port A6	USART synchro nous clock	-
13	-	-	-	-	PH0	I/O	Х	Х	I	HS	O3	Х	Х	Port H0	-	-
14	-	-	-	-	PH1	I/O	Χ	Х	-	HS	O3	Х	Х	Port H1	-	-
15	-	-	-	-	PH2	I/O	Х	Х	-	-	01	Х	Х	Port H2	-	-
16	-	-	-	-	PH3	I/O	Х	Х	-	-	01	Х	Х	Port H3	-	-
17	13	-	-	-	PF7/AIN15	I/O	X	х	-	-	01	х	х	Port F7	Analog input 15	-
18	14	-	-	-	PF6/AIN14	I/O	x	х	-	-	01	х	х	Port F6	Analog input 14	-
19	15	-	-	-	PF5/AIN13	I/O	x	х	-	-	01	х	х	Port F5	Analog input 13	-
20	16	-	8	-	PF4/AIN12	I/O	x	х	-	-	01	х	х	Port F4	Analog input 12	-
21	17	-	-	-	PF3/AIN11	I/O	x	х	-	-	01	х	х	Port F3	Analog input 11	-

Pin number					h	npu	t		Out	put						
LQFP80	LQFP64	LQFP48	STM8AF62xx LQFP32/VFQFPN32	STM8AF52x6 VFQFPN32	Pin name	Type	Floating	Mpu	Ext. interrupt	High sink	Speed	QO	ЬР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
22	18	-	-	-	V _{REF+}	s	-	-	-	-	-	-	-	ADC positive reference voltage		-
23	19	13	9	9	V _{DDA}	S	-	-	-	-	-	-	-	Analog po	ower supply	-
24	20	14	10	10	V _{SSA}	S	-	-	-	-	-	-	-	Analog	g ground	-
25	21	-	-	-	V _{REF-}	S	-	-	-	-	-	-	-	ADC r referenc	negative ce voltage	-
26	22	-	-	-	PF0/AIN10	I/O	x	х	-	-	01	х	х	Port F0	Analog input 10	-
27	23	15	-	-	PB7/AIN7	I/O	x	х	х	-	01	х	х	Port B7	Analog input 7	-
28	24	16	-	-	PB6/AIN6	I/O	x	х	х	-	01	х	х	Port B6	Analog input 6	-
29	25	17	11	11	PB5/AIN5	I/O	x	х	х	-	01	х	х	Port B5	Analog input 5	I ² C_SDA [AFR6]
30	26	18	12	12	PB4/AIN4	I/O	x	х	х	-	01	х	х	Port B4	Analog input 4	I ² C_SCL [AFR6]
31	27	19	13	13	PB3/AIN3	I/O	x	х	х	-	01	х	х	Port B3	Analog input 3	TIM1_ETR [AFR5]
32	28	20	14	14	PB2/AIN2	I/O	x	х	х	-	01	х	x	Port B2	Analog input	TIM1_CH3N [AFR5]
33	29	21	15	15	PB1/AIN1	I/O	x	х	х	-	01	х	х	Port B1	Analog input 1	TIM1_CH2N [AFR5]
34	30	22	16	16	PB0/AIN0	I/O	x	х	х	-	01	х	х	Port B0	Analog input 0	TIM1_CH1N [AFR5]
35	-	-	-	-	PH4/TIM1_ETR	I/O	x	x	-	-	01	x	x	Port H4	Timer 1 - trigger input	-
36	-	-	-	-	PH5/ TIM1_CH3N	I/O	x	x	-	-	01	х	х	Port H5	Timer 1 - inverted channel 3	-
37	-	-	-	-	PH6/ TIM1_CH2N	I/O	x	x	-	-	01	x	x	Port H6	Timer 1 - inverted channel 2	-

Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax	pin descri	ption (continued)
---	------------	---------	------------

	Pir	n nu	mber				h	npu	t		Out	put	-			
LQFP80	LQFP64	LQFP48	STM8AF62xx LQFP32/VFQFPN32	STM8AF52x6 VFQFPN32	Pin name	Type	Floating	Wpu	Ext. interrupt	High sink	Speed	QO	ЬР	Main function (after reset)	Default alternate function	Alternate function after remap [option bit]
38	-	-	-	-	PH7/ TIM1_CH1N	I/O	x	х	-	-	O1	x	x	Port H7	Timer 1 - inverted channel 2	-
39	31	23	-	-	PE7/AIN8	I/O	x	х	-	-	01	х	х	Port E7	Analog input 8	-
40	32	24			PE6/AIN9	I/O	x	х	х	-	01	х	х	Port E6	Analog input 9	-
41	33	25	17	17	PE5/SPI_NSS ⁽²⁾	I/O	x	x	x	-	01	x	x	Port E5	SPI master/ slave select	-
42	-	-	-	-	PC0/ADC_ETR	I/O	x	x	x	-	01	x	x	Port C0	ADC trigger input	-
43	34	26	18	18	PC1/TIM1_CH1	I/O	x	х	х	HS	O3	х	x	Port C1	Timer 1 - channel 1	-
44	35	27	19	19	PC2/TIM1_CH2	I/O	x	х	х	HS	O3	х	х	Port C2	Timer 1- channel 2	-
45	36	28	20	20	PC3/TIM1_CH3	I/O	x	х	х	HS	O3	х	х	Port C3	Timer 1 - channel 3	-
46	37	29	21	21	PC4/TIM1_CH4	I/O	x	х	х	HS	O3	х	х	Port C4	Timer 1 - channel 4	-
47	38	30	22	22	PC5/SPI_SCK ⁽²⁾	I/O	Х	Х	Х	-	O3	Х	Х	Port C5	SPI clock	-
48	39	31	-	-	V _{SSIO_2}	S	-	-	-	-	-	-	-	I/O g	ground	-
49	40	32	-	-	V _{DDIO_2}	S	-	-	-	-	-	-	-	I/O pow	er supply	-
50	41	33	23	-	PC6/SPI_MOSI	I/O	x	х	х	-	O3	х	x	Port C6	out/ slave in	-
51	42	34	24	-	PC7/SPI_MISO	I/O	x	x	х	-	O3	х	x	Port C7	SPI master in/ slave out	-
52	43	35	-	23	PG0/CAN_TX	I/O	x	х	-	-	01	х	х	Port G0	CAN transmit	-
53	44	36	-	24	PG1/CAN_RX	I/O	x	х	-	-	01	х	х	Port G1	CAN receive	-
54	45	-	-	-	PG2	I/O	Х	Х	-	-	01	Х	Х	Port G2	-	-

Table 11. STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pi	in description	(continued)
--	----------------	-------------

Address	Block	Register label	Register name	Reset status
0x00 50C3		CLK_CMSR	Clock master status register	0xE1
0x00 50C4		CLK_SWR	Clock master switch register	0xE1
0x00 50C5		CLK_SWCR	Clock switch control register	0xXX
0x00 50C6		CLK_CKDIVR	Clock divider register	0x18
0x00 50C7	CLK	CLK_PCKENR1	Peripheral clock gating register 1	0xFF
0x00 50C8		CLK_CSSR	Clock security system register	0x00
0x00 50C9		CLK_CCOR	Configurable clock control register	0x00
0x00 50CA		CLK_PCKENR2	Peripheral clock gating register 2	0xFF
0x00 50CB			Reserved area (1 byte)	
0x00 50CC		CLK_HSITRIMR	HSI clock calibration trimming register	0x00
0x00 50CD		CLK_SWIMCCR	SWIM clock control register	0bXXXX XXX0
0x00 50CE to 0x00 50D0		Re	eserved area (3 bytes)	
0x00 50D1		WWDG_CR	WWDG control register	0x7F
0x00 50D2	WWDG	WWDG_WR	WWDR window register	0x7F
0x00 50D3 to 0x00 50DF		Re	eserved area (13 bytes)	
0x00 50E0		IWDG_KR	IWDG key register	0xXX ⁽²⁾
0x00 50E1	IWDG	IWDG_PR	IWDG prescaler register	0x00
0x00 50E2		IWDG_RLR	IWDG reload register	0xFF
0x00 50E3 to 0x00 50EF		Re	eserved area (13 bytes)	
0x00 50F0		AWU_CSR1	AWU control/status register 1	0x00
0x00 50F1	AWU	AWU_APR	AWU asynchronous prescaler buffer register	0x3F
0x00 50F2		AWU_TBR	AWU timebase selection register	0x00
0x00 50F3	BEEP	BEEP_CSR	BEEP control/status register	0x1F
0x00 50F4 to 0x00 50FF		Re	eserved area (12 bytes)	

 Table 14. General hardware register map (continued)

Address	Block	Register label	Register name	Reset status
0x00 5200		SPI_CR1	SPI control register 1	0x00
0x00 5201		SPI_CR2	SPI control register 2	0x00
0x00 5202		SPI_ICR	SPI interrupt control register	0x00
0x00 5203	6 DI	SPI_SR	SPI status register	0x02
0x00 5204	SPI	SPI_DR	SPI data register	0x00
0x00 5205		SPI_CRCPR	SPI CRC polynomial register	0x07
0x00 5206		SPI_RXCRCR	SPI Rx CRC register	0xFF
0x00 5207		SPI_TXCRCR	SPI Tx CRC register	0xFF
0x00 5208 to 0x00 520F		R	eserved area (8 bytes)	
0x00 5210		I2C_CR1	I2C control register 1	0x00
0x00 5211		I2C_CR2	I2C control register 2	0x00
0x00 5212		I2C_FREQR	I2C frequency register	0x00
0x00 5213		I2C_OARL	I2C own address register low	0x00
0x00 5214		I2C_OARH	I2C own address register high	0x00
0x00 5215				
0x00 5216	120	I2C_DR	I2C data register	0x00
0x00 5217	120	I2C_SR1	I2C status register 1	0x00
0x00 5218		I2C_SR2	I2C status register 2	0x00
0x00 5219		I2C_SR3	I2C status register 3	0x00
0x00 521A		I2C_ITR	I2C interrupt control register	0x00
0x00 521B		I2C_CCRL	I2C clock control register low	0x00
0x00 521C		I2C_CCRH	I2C clock control register high	0x00
0x00 521D		I2C_TRISER	I2C TRISE register	0x02
0x00 521E to 0x00 522F		Re	eserved area (18 bytes)	

 Table 14. General hardware register map (continued)

9 Option bytes

Option bytes contain configurations for device hardware features as well as the memory protection of the device. They are stored in a dedicated block of the memory. Each option byte has to be stored twice, for redundancy, in a regular form (OPTx) and a complemented one (NOPTx), except for the ROP (read-out protection) option byte and option bytes 8 to 16.

Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address shown in *Table 18: Option bytes* below.

Option bytes can also be modified 'on the fly' by the application in IAP mode, except the ROP and UBC options that can only be changed in ICP mode (via SWIM).

Refer to the STM8 Flash programming manual (PM0047) and STM8 SWIM communication protocol and debug module user manual (UM0470) for information on SWIM programming procedures.

Addr	Option	Option				Opt	ion bits				Factory		
Addr.	name	no.	7	6	5	4	3	2	1	0	setting		
0x00 4800	Read-out protection (ROP)	OPT0				RC)P[7:0]				0x00		
0x00 4801	User boot OPT1 UBC[7:0]									0x00			
0x00 4802	(UBC)	NOPT1		NUBC[7:0]									
0x00 4803	Alternate function	OPT2	AFR7	AFR6	AFR5	AFR4	AFR3	AFR2	AFR1	AFR0	0x00		
0x00 4804	remapping (AFR)	NOPT2	NAFR7	NAFR6	NAFR5	NAFR4	NAFR3	NAFR2	NAFR1	NAFR0	0xFF		
0x00 4805	Watchdog	OPT3		Reserved LSI_ EN IWDG WWD WWDG HW G_HW HALT									
0x00 4806	option	NOPT3		Rese	erved		NLSI_ EN	NIWD G_HW	NWWD G_HW	NWWG _HALT	0xFF		
0x00 4807	Clock	OPT4		Rese	erved		EXT CLK	CKAW USEL	PRSC1	PRSC0	0x00		
0x00 4808	option	NOPT4		Rese	erved		NEXT CLK	NCKAW USEL	NPRSC1	NPRSC 0	0xFF		
0x00 4809	HSE clock	OPT5		HSECNT[7:0]									
0x00 480A	startup	NOPT5				NHSE	ECNT[7:0]			0xFF		

Table 18. Option bytes

10.3.3 External clock sources and timing characteristics

HSE external clock

An HSE clock can be generated by feeding an external clock signal of up to 24 MHz to the OSCIN pin.

Clock characteristics are subject to general operating conditions for V_{DD} and T_A .

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSE_ext}	User external clock source frequency	T _A = -40 °C to 150 °C	0 ⁽¹⁾	-	24	MHz
V _{HSEdHL}	Comparator hysteresis	-	0.1 x V _{DD}	-	-	
V _{HSEH}	OSCIN high-level input pin voltage	-	0.7 x V _{DD}	-	V _{DD}	V
V _{HSEL}	OSCIN low-level input pin voltage	-	V _{SS}	-	0.3 x V _{DD}	
I _{LEAK_HSE}	OSCIN input leakage current	$V_{SS} < V_{IN} < V_{DD}$	-1	-	+1	μA

Table 31. HSE external clock characteristics

1. If CSS is used, the external clock must have a frequency above 500 kHz.

Figure 19. HSE external clock source

HSE crystal/ceramic resonator oscillator

The HSE clock can be supplied using a crystal/ceramic resonator oscillator of up to 24 MHz. All the information given in this paragraph is based on characterization results with specified typical external components. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details (frequency, package, accuracy...).

10.3.7 Reset pin characteristics

Subject to general operating conditions for V_{DD} and T_{A} unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{IL(NRST)}	NRST low-level input voltage ⁽¹⁾	-	V _{SS}	-	$0.3 \times V_{DD}$	
V _{IH(NRST)}	NRST high-level input voltage ⁽¹⁾	-	$0.7 \times V_{DD}$	-	V_{DD}	V
V _{OL(NRST)}	NRST low-level output voltage ⁽¹⁾	I _{OL} = 3 mA	-	-	0.6	
R _{PU(NRST)}	NRST pull-up resistor	-	30	40	60	kΩ
t _{IFP}	NRST input filtered pulse ⁽¹⁾	-	85	-	315	
t _{INFP(NRST)}	NRST Input not filtered pulse duration ⁽²⁾	-	500	-	-	ns

Table 39. NRST pin characteristics	Table 39.	NRST	pin	characteristics
------------------------------------	-----------	------	-----	-----------------

1. Guaranteed by characterization results, not tested in production.

2. Guaranteed by design, not tested in production.

Figure 36. Typical NRST $V_{\rm IL}$ and $V_{\rm IH}$ vs $V_{\rm DD}$ @ four temperatures

Figure 37. Typical NRST pull-up resistance R_{PU} vs V_{DD}

The reset network shown in *Figure 39* protects the device against parasitic resets. The user must ensure that the level on the NRST pin can go below $V_{IL(NRST)}$ max (see *Table 39: NRST pin characteristics*), otherwise the reset is not taken into account internally.

For power consumption sensitive applications, the external reset capacitor value can be reduced to limit the charge/discharge current. If NRST signal is used to reset external circuitry, attention must be taken to the charge/discharge time of the external capacitor to fulfill the external devices reset timing conditions. Minimum recommended capacity is 10 nF.

10.3.9 SPI interface

Unless otherwise specified, the parameters given in *Table 41* are derived from tests performed under ambient temperature, f_{MASTER} frequency, and V_{DD} supply voltage conditions. $t_{MASTER} = 1/f_{MASTER}$.

Refer to I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO).

Symbol	Parameter	Conditions		Min	Мах	Unit
		Master mode		0	10	
f _{SCK} 1/t _{c(SCK)}	SPI clock frequency	Slave mode	V _{DD} < 4.5 V	0	6 ⁽¹⁾	MHz
-C(SCR)		Slave mode	V _{DD} = 4.5 V to 5.5 V	0	8 ⁽¹⁾	
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C =	= 30 pF	-	25 ⁽²⁾	
t _{su(NSS)} ⁽³⁾	NSS setup time	Slave mode		4 * t _{MASTER}	-	
t _{h(NSS)} ⁽³⁾	NSS hold time	Slave mode		70	-	
$\begin{array}{c}t_{w(SCKH)}^{(3)}\\t_{w(SCKL)}^{(3)}\end{array}$	SCK high and low time	Master mode t _{SCK} /2 - 15		t _{SCK} /2 + 15	t _{w(SCKH)} ⁽³⁾ t _{w(SCKL)} ⁽³⁾	
t _{su(MI)} (3)	Data input satup timo	Master mode		5	-	
t _{su(SI)} (3) Data		Slave mode	5	-		
t _{h(MI)} ⁽³⁾	Data input hold time	Master mode		7	-	ns
t _{h(SI)} (3)		Slave mode		10	-	
t _{a(SO)} (3)(4)	Data output access time	Slave mode		-	3* t _{MASTER}	
t _{dis(SO)} ⁽³⁾⁽⁵⁾	Data output disable time	Slave mode		25		
+ (3)	Data output valid timo	Slave mode	V _{DD} < 4.5 V	-	75	
^L v(SO) ^(*)		(after enable edge)	V_{DD} = 4.5 V to 5.5 V	-	53	
t _{v(MO)} ⁽³⁾	Data output valid time	Master mode (after	-	30		
t _{h(SO)} ⁽³⁾	Data output hold time	Slave mode (after enable edge)		31	-	
t _{h(MO)} ⁽³⁾		Master mode (after	enable edge)	12	-	

Table 41. SPI ch	aracteristics
------------------	---------------

1. $f_{SCK} < f_{MASTER}/2$.

2. The pad has to be configured accordingly (fast mode).

3. Guaranteed by design or by characterization results, not tested in production.

4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

10.3.10 I²C interface characteristics

Symbol	Devenueter	Standard	mode I ² C	Fast mode I ² C ⁽¹⁾		Unit
	Parameter	Min ⁽²⁾	Max ⁽²⁾	Min ⁽²⁾	Max ⁽²⁾	Unit
t _{w(SCLL)}	SCL clock low time	4.7	-	1.3	-	110
t _{w(SCLH)}	SCL clock high time	4.0	-	0.6	-	μs
t _{su(SDA)}	SDA setup time	250	-	100	-	
t _{h(SDA)}	SDA data hold time	0 ⁽³⁾	-	0 ⁽⁴⁾	900 ⁽³⁾	
t _{r(SDA)} t _{r(SCL)}	SDA and SCL rise time (V _{DD} 3 V to 5.5 V)	-	1000	-	300	ns
t _{f(SDA)} t _{f(SCL)}	SDA and SCL fall time (V _{DD} 3 V to 5.5 V)	-	300	-	300	
t _{h(STA)}	START condition hold time	4.0	-	0.6	-	
t _{su(STA)}	Repeated START condition setup time	4.7	-	0.6	-	μs
t _{su(STO)}	STOP condition setup time	4.0	-	0.6	-	μs
t _{w(STO:STA)}	STOP to START condition time (bus free)	4.7	-	1.3	-	μs
Cb	Capacitive load for each bus line	-	400	-	400	pF

Table 42. I²C characteristics

1. $f_{MASTER},$ must be at least 8 MHz to achieve max fast I^2C speed (400 kHz) $\,$

2. Data based on standard I²C protocol requirement, not tested in production

3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low time

4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL

10.3.12 EMC characteristics

Susceptibility tests are performed on a sample basis during product characterization.

Functional EMS (electromagnetic susceptibility)

While executing a simple application (toggling 2 LEDs through I/O ports), the product is stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).

- **ESD**: Electrostatic discharge (positive and negative) is applied on all pins of the device until a functional disturbance occurs. This test conforms with the IEC 1000-4-2 standard.
- FTB: A burst of fast transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test conforms with the IEC 1000-4-4 standard.

A device reset allows normal operations to be resumed. The test results are given in the table below based on the EMS levels and classes defined in application note AN1709.

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Symbol	Parameter	Conditions	Level/class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	$\label{eq:VDD} \begin{array}{l} V_{DD} = 3.3 \text{ V}, T_{A} = 25 \ ^{\circ}\text{C}, \\ f_{MASTER} = 16 \ \text{MHz} \ (\text{HSI clock}), \\ \text{Conforms to IEC 1000-4-2} \end{array}$	3/B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, T _A = 25 °C, f _{MASTER} = 16 MHz (HSI clock), Conforms to IEC 1000-4-4	4/A

Table 45. EMS data

Static latch-up

Two complementary static tests are required on 10 parts to assess the latch-up performance.

- A supply overvoltage (applied to each power supply pin) and
- A current injection (applied to each input, output and configurable I/O pin) are performed on each sample.

This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the application note AN1181.

Symbol	Parameter	Conditions	Class ⁽¹⁾	
		T _A = 25 °C		
LU Stat	Static latch-up class	T _A = 85 °C		
		T _A = 125 °C	A	
		T _A = 150 °C		

Table 48. El	lectrical	sensitivities
--------------	-----------	---------------

1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B class strictly covers all the JEDEC criteria (international standard).

Cumhal	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.300	0.370	0.450	0.0118	0.0146	0.0177	
С	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.600	-	-	0.2205	-	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.600	-	-	0.2205	-	
е	-	0.800	-	-	0.0315	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
CCC	-	-	0.100	-	-	0.0039	

Table 52. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat packagemechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 55. LQFP32 - 32-pin, 7 x 7 mm low-profile quad flat package recommended footprint

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's quality department must be contacted to run a qualification activity prior to any decision to use these engineering samples.

Date	Revision	Changes		
13-Apr-2010	6	Updated title on cover page. Modified cover page header to clarify the part numbers covered by the datasheets. Updated footnote on <i>Table 1: Device summary</i> to add 'P' order codes. Changed definition of 'P' order codes. 'Q' order codes (FASTROM and EEPROM) removed. Reorganized the content of <i>Section 5: Product overview</i> . <i>Table 11: STM8AF526x/8x/Ax and STM8AF6269/8x/Ax pin</i> <i>description</i> updated PD7/TLI alternate function, removed caution note for PD6/ LINUART_RX, and added note to PA1/OSCIN. Renamed <i>Section 7: Memory and register map</i> , and merged content with <i>Section: Register map</i> . Updated <i>Figure 8: Register and memory</i> <i>map</i> . Renamed BL_EN and NBL_EN, BL and NBL, respectively, in <i>Table 18: Option bytes</i> . Updated AFR4 definition in <i>Table 19: Option byte description</i> . Added C _{EXT} in <i>Table 24: General operating conditions</i> , and <i>Section 10.3.1: VCAP external capacitor</i> . Updated t _{VDD} in <i>Table 25: Operating conditions at power-up/power- down</i> . Moved <i>Table 30: Typical peripheral current consumption VDD = 5.0</i> V to <i>Section 1: Current consumption for on-chip peripherals</i> . Removed V _{ESD(MM)} from <i>Table 47: ESD absolute maximum ratings</i> . Updated <i>Section 12: Ordering information</i> to the devices supported by the datasheet. Updated <i>Section 13: STM8 development tools</i> .		
08-Jul-2010	7	Added STM8AF5168 and STM8AF518A part number in <i>Figure 4</i> , and STM8AF618A in <i>Figure 5</i> . Added STM8AF52xx, STM8AF6269, STM8AF628x, and STM8AF62Ax. Updated D temperature range to -40 to 150°C. Updated number of I/Os on cover page. Added <i>Table 23: Operating lifetime</i> . Restored V _{ESD(MM)} from <i>Table 47: ESD absolute maximum ratings</i> . <i>Table 24: General operating conditions</i> : updated V _{CAP} information. ESL parameter, and range D maximum junction temperature (T _J). Added STM8AF52xx and STM8AF62xx, and footnote in <i>Section 12:</i> <i>Ordering information</i> . Updated <i>Section 13: STM8 development tools</i> : added <i>Table: Product evolution summary</i> , and split the beCAN time triggered communication mode limitation in two sections.		

Table 55. Document revision history (continued)

Date	Revision	Changes
Date	Revision	Changes Modified references to reference manual, and Flash programming manual in the whole document. Added reference to AEC Q100 standard on cover page. Renamed timer types as follows: - Auto-reload timer to general purpose timer - Multipurpose timer to advanced control timer - System timer to basic timer Introduced concept of high density Flash program memory. Updated the number of I/Os for devices in 80-, 64-, and 48-pin packages in Table: STM8AF52xx product line-up with CAN, Table: STM8AF/H/P51xx product line-up with CAN, and Table: STM8AF/H/P61xx product line-up with CAN, and Table: STM8AF/H/P61xx product line-up with CAN. Added TMU brief description in Section 5.4: Flash program and data EEPROM, updated TMU_MAXATT description in Table 19: Option byte description, and TMU_MAWATT reset value in Table 18: Option bytes. Updated clock sources in Section 5.5.1: Features. Added Table 4: Peripheral clock gating bits (CLK_PCKENR1). Added calibration using TIM3 in Section 5.7.2: Auto-wakeup counter. Added Table 8: ADC naming and Table 9: Communication peripheral naming correspondence. Updated SPI data rate to f _{MASTER} /2 in Section 5.9.3: Serial peripheral interface (SPI). Added reset state in Table 10: Legend/abbreviation for the pin description table. Table: STM8A microcontroller family pin description: modified footnotes related to PD1/SWIM, corrected wpu input for PE1 and PE2, and renamed TIM_CCx and TIMn_NCCx to TIMn_CHx an

Table 55.	Document	revision	history	(continued)
-----------	----------	----------	---------	-------------

