

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detailo						
Product Status	Obsolete					
Core Processor	8051					
Core Size	8-Bit					
Speed	12MHz					
Connectivity	SIO, UART/USART					
Peripherals	Brown-out Detect/Reset, LCD, LVD, POR, PWM, WDT					
Number of I/O	70					
Program Memory Size	32KB (32K x 8)					
Program Memory Type	FLASH					
EEPROM Size	-					
RAM Size	1.25K x 8					
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V					
Data Converters	A/D 8x12b					
Oscillator Type	Internal					
Operating Temperature	-40°C ~ 85°C (TA)					
Mounting Type	Surface Mount					
Package / Case	80-LQFP					
Supplier Device Package	-					
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z51f3221atx					

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.3 A/D Converter Characteristics

Table 7-3 A/D Converter Characteristics

	Character	1151105	(T _A	= -40°C ~ +8	5°C, VDD= 1.	.8V ~ 5.5V, V	SS= 0V)
Parameter	Symbol	Co	onditions	MIN	TYP	MAX	Unit
Resolution			_		12	-	bit
Integral Linear Error	ILE			_	_	±2	
Differential Linearity Error	DLE	AVREF= 2.7V – 5.5V fx= 8MHz		_	_	±1	LSB
Zero Offset Error	ZOE			_	_	±3	
Full Scale Error	FSE			_	_	±3	
Conversion Time	t _{CON}	12bit resol	12bit resolution, 8MHz		_	_	μS
Analog Input Voltage	V _{AN}		_	AVSS	-	AVREF	
Analog Reference Voltage	AVREF		-	1.8	_	VDD	V
Analog Ground Voltage	AVSS		_	VSS	_	VSS+0.3	
Analog Input Leakage Current	I _{AN}	AVREF= 5.12V		_	_	10	μA
	_	Enable		_	1	2	mA
ADC Operating Current	ADC	Disable	VDD= 5.12V	-	_	0.1	μA

NOTES) 1. Zero offset error is the difference between 000000000 and the converted output for zero input voltage (VSS).

2. Full scale error is the difference between 1111111111 and the converted output for full-scale input voltage (AVREF).

7.4 Power-On Reset Characteristics

Table 7-4 Power-On Reset Characteristics

	(T _A = -40°C ~ +85°C, VDD= 1.8V ~ 5.5V, VSS= 0V)					
Parameter	Symbol	Conditions	MIN	TYP	MAX	Unit
RESET Release Level	V _{POR}	_	-	1.4	_	V
VDD Voltage Rising Time	t _R	-	0.05	-	-	V/mS
POR Current	IPOR	_	_	0.2	_	μA

7.19 Recommended Circuit and Layout

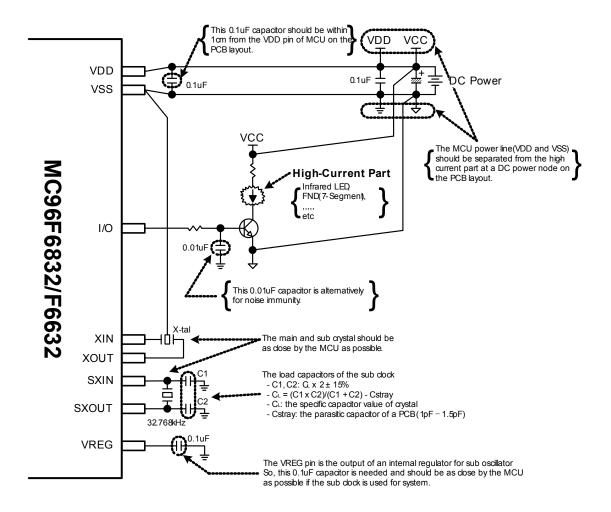


Figure 7.15 Recommended Circuit and Layout

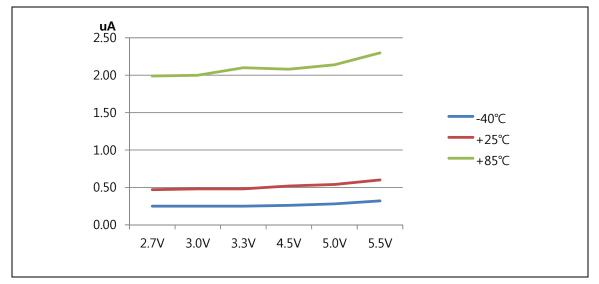


Figure 7.20 STOP (IDD5) Current

8. Memory

The Z51F3221 MCU addresses two separate address memory stores: Program memory and Data memory. The logical separation of Program and Data memory allows Data memory to be accessed by 8-bit addresses, which makes the 8-bit CPU access the data memory more rapidly. Nevertheless, 16-bit Data memory addresses can also be generated through the DPTR register.

The Z51F3221 MCU provides on-chip 32k bytes of the ISP type flash program memory, which can be read and written to. Internal data memory (IRAM) is 256 bytes and it includes the stack area. External data memory (XRAM) is 1k bytes and it includes 40 bytes of LCD display RAM.

8.1 Program Memory

A 16-bit program counter is capable of addressing up to 64k bytes, but this device has just 32k bytes program memory space.

Figure 8-1 shows the map of the lower part of the program memory. After reset, the CPU begins execution from location 0000H. Each interrupt is assigned a fixed location in program memory. The interrupt causes the CPU to jump to that location, where it commences execution of the service routine. External interrupt 10, for example, is assigned to location 000BH. If external interrupt 10 is going to be used, its service routine must begin at location 000BH. If the interrupt is not going to be used, its service location is available as general purpose program memory. If an interrupt service routine is short enough (as is often the case in control applications), it can reside entirely within that 8 byte interval. Longer service routines can use a jump instruction to skip over subsequent interrupt locations, if other interrupts are in use.

Name	Address	Dir	Default	Description
P7	C8H	R/W	00H	P7 Data Register
P7I0	С9Н	R/W	00H	P7 Direction Register
P7PU	DDH	R/W	00H	P7 Pull-up Resistor Selection Register
P7OD	CFH	R/W	00H	P7 Open-drain Selection Register
P8	D8H	R/W	FFH	P8 Data Register
P8IO	D1H	R/W	FFH	P8 Direction Register
P8PU	DEH	R/W	00H	P8 Pull-up Resistor Selection Register
P8OD	D2H	R/W	FFH	P8 Open-drain Selection Register
P9CDR	E8H	R/W	00H	P9 Control and Data Register
PFSR0	EDH	R/W	00H	Port Function Selection Register 0
PFSR1	EEH	R/W	00H	Port Function Selection Register 1
PFSR2	EFH	R/W	00H	Port Function Selection Register 2
PFSR3	F1H	R/W	00H	Port Function Selection Register 3
PFSR4	F2H	R/W	00H	Port Function Selection Register 4
PFSR5	F3H	R/W	00H	Port Function Selection Register 5
PFSR6	F4H	R/W	00H	Port Function Selection Register 6
PFSR7	F5H	R/W	00H	Port Function Selection Register 7
PFSR8	F6H	R/W	00H	Port Function Selection Register 8

Table 9-1 Register Map (Continued)

9.4 P1 Port

9.4.1 P1 Port Description

P1 is 7-bit I/O port. P1 control registers consist of P1 data register (P1), P1 direction register (P1IO), debounce enable register (P1DB), P1 pull-up resistor selection register (P1PU), and P1 open-drain selection register (P1OD). Refer to the port function selection registers for the P1 function selection.

9.4.2 Register description for P1

P1 (P1 Data I	Register) : 88	н					
7	6	5	4	3	2	1	0
_	P16	P15	P14	P13	P12	P11	P10
_	RW	RW	RW	RW	RW	RW	RW
							Initial value : 08
	P1[6:0]		I/O Data				
P1IO (P1 Dire	ection Registe	er) : 91H					
7	6	5	4	3	2	1	0
-	P1610	P1510	P14Ю	P1310	P1210	P1110	P10IO
-	RW	RW	RW	RW	RW	RW	RW
							Initial value : 08
	P11	O[6:0]	P1 Data I/O D	irection			
			0 Input				
			1 Outpu	ut			
					ssible when ir		

P1PU (P1 Pull-up Resistor Selection Register) : D5H

7	6	5	4	3	2	1	0	
-	P16PU	P15PU	P14PU	P13PU	P12PU	P11PU	P10PU	
_	RW							
						I	nitial value : 00	ЭН

Configure Pull-up Resistor of P1 Port

P1PU[6:0]

0 Disable

1 Enable

P1OD (P1 Open-drain Selection Register) : 93H

7	6	5	4	3	2	1	0	
-	P16OD	P15OD	P14OD	P13OD	P120D	P110D	P100D	
-	RW							
						I	nitial value : 08	ЗH

Configure Open-drain of P1 Port

P1OD[6:0]

0 Push-pull output

1 Open-drain output

9.9 P6 Port

9.9.1 P6 Port Description

P6 is 8-bit I/O port. P6 control registers consist of P6 data register (P6), P6 direction register (P6IO), P6 pull-up resistor selection register (P6PU) and P6 open-drain selection register (P6OD). Refer to the port function selection registers for the P6 function selection.

9.9.2 Register description for P6

7	6	5	4	3	2	1	0	
P67	P66	P65	P64	P63	P62	P61	P60	
RW	RW	RW	RW	RW	RW	RW	RW	
						I	Initial value : 00H	
	P6[7:0]	I/O Data					
96IO (P6 Dire	ection Regist	er) : C1H						
7	6	5	4	3	2	1	0	
P6710	P66IO	P6510	P64IO	P63IO	P6210	P611O	P60IO	
RW	RW	RW	RW	RW	RW	RW	RW	
						I	Initial value : 00H	
	P6l	O[7:0]	P6 Data I/O D	irection				
			0 Input					
			1 Output					
			·					
	II un Posisto	· Salaction I						
•	-		Register) : DCI		2	1	0	
7	6	5	4	3	2	1		
7 P67PU	6 P66PU	5 P65PU	4 P64PU	3 P63PU	P62PU	P61PU	P60PU	
7	6	5	4	3	r	P61PU RW	P60PU RW	
7 P67PU	6 P66PU RW	5 P65PU RW	4 P64PU RW	3 P63PU RW	P62PU RW	P61PU RW	P60PU	
7 P67PU	6 P66PU RW	5 P65PU	4 P64PU RW Configure Pull	3 P63PU RW -up Resistor c	P62PU RW	P61PU RW	P60PU RW	
7 P67PU	6 P66PU RW	5 P65PU RW	4 P64PU RW Configure Pull 0 Disab	3 P63PU RW -up Resistor c	P62PU RW	P61PU RW	P60PU RW	
7 P67PU	6 P66PU RW	5 P65PU RW	4 P64PU RW Configure Pull	3 P63PU RW -up Resistor c	P62PU RW	P61PU RW	P60PU RW	
7 P67PU	6 P66PU RW	5 P65PU RW	4 P64PU RW Configure Pull 0 Disab	3 P63PU RW -up Resistor c	P62PU RW	P61PU RW	P60PU RW	
7 P67PU RW	6 P66PU RW	5 P65PU RW PU[7:0]	4 P64PU RW Configure Pull 0 Disat 1 Enab	3 P63PU RW -up Resistor c	P62PU RW	P61PU RW	P60PU RW	
7 P67PU RW	6 P66PU RW P6F	5 P65PU RW PU[7:0]	4 P64PU RW Configure Pull 0 Disat 1 Enab	3 P63PU RW -up Resistor c	P62PU RW	P61PU RW	P60PU RW	
7 P67PU RW	6 P66PU RW P6F	5 P65PU RW PU[7:0]	4 P64PU RW Configure Pull 0 Disat 1 Enab	3 P63PU RW -up Resistor c ble le	P62PU RW of P6 Port	P61PU RW	P60PU RW Initial value : 00H	
7 P67PU RW P60D (P6 Op 7	6 P66PU RW P6F pen-drain Sele	5 P65PU RW PU[7:0] ection Regis	4 P64PU RW Configure Pull 0 Disat 1 Enab	3 P63PU RW -up Resistor c ble le 3	P62PU RW of P6 Port	P61PU RW	P60PU RW Initial value : 00H	
7 P67PU RW P60D (P6 Op 7 P670D	6 P66PU RW P6F pen-drain Sele 6 P66OD	5 P65PU RW PU[7:0] ection Regis 5 P65OD	4 P64PU RW Configure Pull 0 Disat 1 Enab ster) : BBH 4 P64OD	3 P63PU RW -up Resistor c ble le 3 P63OD	P62PU RW of P6 Port 2 P62OD	P61PU RW I P61OD RW	P60PU RW Initial value : 00H	
7 P67PU RW P60D (P6 Op 7 P670D	6 P66PU RW P6F P66OD RW	5 P65PU RW PU[7:0] ection Regis 5 P65OD	4 P64PU RW Configure Pull 0 Disat 1 Enab ster) : BBH 4 P64OD	3 P63PU RW -up Resistor c ble le 3 P63OD RW	P62PU RW of P6 Port P62OD RW	P61PU RW I P61OD RW	P60PU RW Initial value : 00H P60OD RW	

- 0 Push-pull output
 - 1 Open-drain output

Z51F3221 **Product Specification**

zilog

PFSR4 (Port Fu	unction Selection	Register 4) : F2H
----------------	-------------------	-------------------

7	6	5	4	3	2	1	0
PFSR47	PFSR46	PFSR45	PFSR44	PFSR43	PFSR42	PFSR41	PFSR40
RW	RW	RW	RW	RW	RW	RW	RW
							Initial value : 0
	PFS	SR47	P63 Function	select			
			0 Por	t			
			1 SE	G19 Function			
	PFS	SR46	P62 Function	Select			
			0 Por	t			
			1 SE	G18 Function			
	PFS	SR45	P61 Function	select			
			0 Por	t			
			1 SE	G17 Function			
	PFS	PFSR44		Select			
			0 Por	t			
			1 SE	G16 Function			
	PFS	SR43	P57 Function	select			
			0 Por	t			
			1 SE	G15 Function			
	PFS	SR42	P56 Function	Select			
			0 Por	t			
			1 SE	G14 Function			
	PFS	SR41	P55 Function	select			
			0 Por	t			
			1 SE	G13 Function			
	PFS	SR40	P54 Function	Select			
			0 Por	t			
			1 SE	G12 Function			

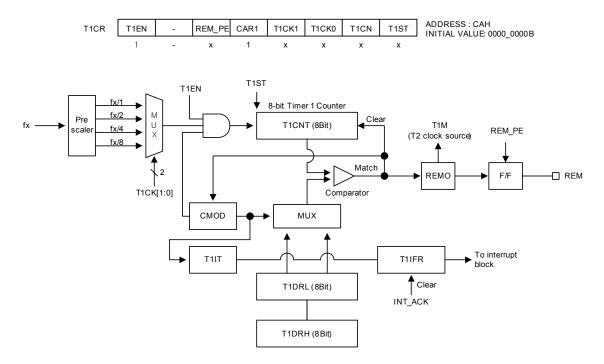
11.3.6 Register Description for Watch Dog Timer

WDTCNT (Wa	WDTCNT (Watch Dog Timer Counter Register: Read Case) : 8EH									
7	6	5	4	3	2	1	0			
WDTCNT7	WDTCNT6	WDTCNT 5	WDTCNT4	WDTCNT3	WDTCNT 2	WDTCNT 1	WDTCNT 0			
R	R	R	R	R	R	R	R			
	WD	TCNT[7:0]	WDT Counter			I	nitial value : 0			

WDTDR (Watch Dog Timer Data Register: Write Case) : 8EH

7	6	5	4	3	2	1	0	
WDTDR7	WDTDR6	WDTDR5	WDTDR4	WDTDR3	WDTDR2	WDTDR 1	WDTDR0	
W	W	W	W	W	W	W	W	
						I	nitial value : FF	Ή

WDTDR[7:0] Set a period


WDT Interrupt Interval=(BIT Interrupt Interval) x(WDTDR Value+1) NOTE) Do not write "0" in the WDTDR register.

WDTCR (Watch Dog Timer Control Register) : 8DH

7	6	5	4	3	2	1	0	
WDTEN	WDTRSON	WDTCL	-	-	-	-	WDTIFR	
RW	RW	RW	-	-	-	-	RW	
			Initial valu					
	WD	TEN	Control WDT	Operation				
			0 Disa	ble				
			1 Enat	le				
	WD	TRSON	Control WDT	RESET Operat	tion			
			0 Free	Running 8-bit ti	imer			
			1 Wate	h Dog Timer Rl	ESET ON			
	WD	TCL	Clear WDT C	ounter				
			0 Free	Run				
			1 Clea	WDT Counter	(auto clear aft	er 1 Cycle)		
	WD	TIFR	When WDT Interrupt occurs, this bit becomes '1'. For clearing bit, w '0' to this bit or auto clear by INT_ACK signal.					
			0 WDT Interrupt no generation					
			1 WDT	Interrupt gener	ration			

11.6.3 8-Bit Timer 1 Carrier Frequency Mode.

The carrier frequency and the pulse of data are calculated by the formula in the following sheet .The Figure 11.16 shows the block diagram of Timer 1 for carrier frequency mode.

Figure 11.17 Carrier Mode for Timer 1

NOTE) When one of T1DRH and T1DRL values is "00H", the carrier frequency generator (REM) output always becomes a "High" or "Low". At that time, Timer 1 Interrupt Flag Bit (T1IFR) is not set.

Z51F3221 Product Specification

11.10.3 SIO Pre-Scaler Register (SIOPS)

SIOPS contains the SIO pre-scaler value. The SIO clock rate (baud rate) is calculated by the following fomula. Baud rate = Input clock (fx/4)/(Pre-scaler value + 1) or SCK input clock, where the input clock is fx/4

Figure 11.27 SIO Pre-Scaler Register (SIOPS)

11.10.4 The usage of SIO

- 1. Select transmitter/receiver mode.
- 2. In transmitter mode, write data to be sent to SIODR.
- 3. Set CCLR to "1" to clear SIO counter and start shifting.
- 4. If Tx or Rx is completed, the SiO interrupt is generated and SIOIFR is set to "1".
- 5. In receiver mode, the received data can be acquired by reading SIODR.

11.12.8 UART Transmitter

The UART transmitter is enabled by setting the TXE bit in UARTCR2 register. When the Transmitter is enabled, the TXD pin should be set to TXD function for the serial output pin of UART by the PFSR6[7:6] or PFSR8[5:4]. The baud-rate, operation mode and frame format must be setup once before doing any transmission. In synchronous operation mode, the ACK pin is used as transmission clock, so it should be selected to do ACK function by PFSR6[5:4] or PFSR8[3:2].

11.12.8.1 Sending Tx data

A data transmission is initiated by loading the transmit buffer (UARTDR register I/O location) with the data to be transmitted. The data written in transmit buffer is moved to the shift register when the shift register is ready to send a new frame. The shift register is loaded with the new data if it is in idle state or immediately after the last stop bit of the previous frame is transmitted. When the shift register is loaded with new data, it will transfer one complete frame according to the settings of control registers. If the 9-bit characters are used in asynchronous or synchronous operation mode, the ninth bit must be written to the TX8 bit in UARTCR3 register before it is loaded to the transmit buffer (UARTDR register).

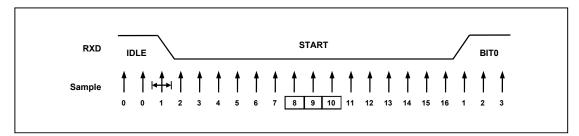
11.12.8.2 Transmitter flag and interrupt

The UART transmitter has 2 flags which indicate its state. One is UART data register empty flag (UDRE) and the other is transmit complete flag (TXC). Both flags can be interrupt sources.

UDRE flag indicates whether the transmit buffer is ready to receive new data. This bit is set when the transmit buffer is empty and cleared when the transmit buffer contains data to be transmitted but has not yet been moved into the shift register. And also this flag can be cleared by writing '0' to this bit position. Writing '1' to this bit position is prevented.

When the data register empty interrupt enable (UDRIE) bit in UARTCR2 register is set and the global interrupt is enabled, UARTST data register empty interrupt is generated while UDRE flag is set.

The transmit complete (TXC) flag bit is set when the entire frame in the transmit shift register has been shifted out and there is no more data in the transmit buffer. The TXC flag is automatically cleared when the transmit complete interrupt service routine is executed, or it can be cleared by writing '0' to TXC bit in UARTST register.


When the transmit complete interrupt enable (TXCIE) bit in UARTCR2 register is set and the global interrupt is enabled, UART transmit complete interrupt is generated while TXC flag is set.

11.12.9.5 Asynchronous Data Reception

To receive asynchronous data frame, the UART includes a clock and data recovery unit. The clock recovery logic is used for synchronizing the internally generated baud-rate clock to the incoming asynchronous serial frame on the RXD pin.

The data recovery logic samples and low pass filters the incoming bits, and this removes the noise of RXD pin.

The next figure illustrates the sampling process of the start bit of an incoming frame. The sampling rate is 16 times of the baud-rate in normal mode. The horizontal arrows show the synchronization variation due to the asynchronous sampling process.

Figure 11.39 Start Bit Sampling

When the receiver is enabled (RXE=1), the clock recovery logic tries to find a high-to-low transition on the RXD line, the start bit condition. After detecting high to low transition on RXD line, the clock recovery logic uses samples 8,9, and 10 for normal mode to decide if a valid start bit is received. If more than 2 samples have logical low level, it is considered that a valid start bit is detected and the internally generated clock is synchronized to the incoming data frame. And the data recovery can begin. The synchronization process is repeated for each start bit.

As described above, when the receiver clock is synchronized to the start bit, the data recovery can begin. Data recovery process is almost similar to the clock recovery process. The data recovery logic samples 16 times for each incoming bits, and uses sample 8, 9, and 10 to decide data value. If more than 2 samples have low levels, the received bit is considered to a logic '0' and if more than 2 samples have high levels, the received bit is considered to a logic '1'. The data recovery process is then repeated until a complete frame is received including the first stop bit. The decided bit value is stored in the receive shift register in order. Note that the Receiver only uses the first stop bit of a frame. Internally, after receiving the first stop bit, the Receiver is in idle state and waiting to find start bit.

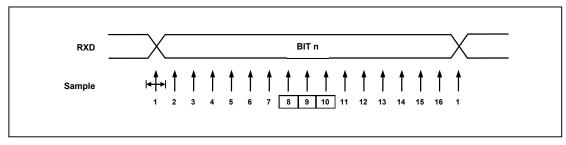


Figure 11.40 Sampling of Data and Parity Bit

11.12.13 Baud Rate setting (example)

Baud	fx=1.00MHz		fx=1.84	32MHz	fx=2.00MHz	
Rate	UARTBD	ERROR	UARTBD	ERROR	UARTBD	ERROR
2400	25	0.2%	47	0.0%	51	0.2%
4800	12	0.2%	23	0.0%	25	0.2%
9600	6	-7.0%	11	0.0%	12	0.2%
14.4k	3	8.5%	7	0.0%	8	-3.5%
19.2k	2	8.5%	5	0.0%	6	-7.0%
28.8k	1	8.5%	3	0.0%	3	8.5%
38.4k	1	-18.6%	2	0.0%	2	8.5%
57.6k	-	-	1	-25.0%	1	8.5%
76.8k	-	-	1	0.0%	1	-18.6%
115.2k	-	-	-	-	-	_
230.4k	-	-	-	-	_	-

Table 11-18 Examples of UARTBD Settings for Commonly Used Oscillator Frequencies

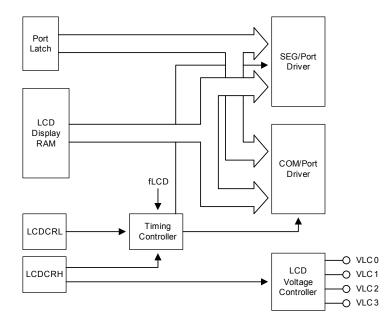
(continued)

Baud	fx=3.68	64MHz	fx=4.0	0MHz	fx=7.37	28MHz
Rate	UARTBD	ERROR	UARTBD	ERROR	UARTBD	ERROR
2400	95	0.0%	103	0.2%	191	0.0%
4800	47	0.0%	51	0.2%	95	0.0%
9600	23	0.0%	25	0.2%	47	0.0%
14.4k	15	0.0%	16	2.1%	31	0.0%
19.2k	11	0.0%	12	0.2%	23	0.0%
28.8k	7	0.0%	8	-3.5%	15	0.0%
38.4k	5	0.0%	6	-7.0%	11	0.0%
57.6k	3	0.0%	3	8.5%	7	0.0%
76.8k	2	0.0%	2	8.5%	5	0.0%
115.2k	1	0.0%	1	8.5%	3	0.0%
230.4k	-	-	-	-	1	0.0%
250k	-	-	-	-	1	-7.8%
0.5M	-	-	-	-	-	-

(continued)

Baud	fx=8.0	0MHz	fx=11.0	592MHz
Rate	UARTBD	ERROR	UARTBD	ERROR
2400	207	0.2%	-	-
4800	103	0.2%	143	0.0%
9600	51	0.2%	71	0.0%
14.4k	34	-0.8%	47	0.0%
19.2k	25	0.2%	35	0.0%
28.8k	16	2.1%	23	0.0%
38.4k	12	0.2%	17	0.0%
57.6k	8	-3.5%	11	0.0%
76.8k	6	-7.0%	8	0.0%
115.2k	3	8.5%	5	0.0%
230.4k	1	8.5%	2	0.0%
250k	1	0.0%	2	-7.8%
0.5M	-	-	-	-
1M	-	-	-	-

11.13 LCD Driver


11.13.1 Overview

The LCD driver is controlled by the LCD Control Register (LCDCRH/L). The LCLK[1:0] determines the frequency of COM signal scanning of each segment output. A RESET clears the LCD control register LCDCRH and LCDCRL values to logic '0'.

The LCD display can continue operating during IDLE and STOP modes if a sub-frequency clock is used as system clock source.

The clock and duty for LCD driver is automatically initialized by hardware, whenever LCDCRH register data value is rewritten. So, don't rewrite LCDCRH frequently.

11.13.5 Block Diagram

Figure 11.49 LCD Circuit Block Diagram

NOTE) The clock and duty for LCD driver is automatically initialized by hardware, whenever LCDCRH register data value is rewritten. So, don't rewrite LCDCRH frequently

11.13.6 Register Map

Table 11-19 LCD Register Map

Name	Address	Dir	Default	Description
LCDCRH	ECH	R/W	00H	LCD Driver Control High Register
LCDCRL	EBH	R/W	00H	LCD Driver Control Low Register

11.13.7 LCD Driver Register Description

LCD driver register has two control registers, LCD driver control high register (LCDCRH) and LCD driver control low register (LCDCRL).

Z51F3221 Product Specification

11.13.8 Register Description for LCD Driver

7	6	5	4	4	3		2	1	0
LCDDR	LD_B3	LD_B2	LD	_B1	LD_B0	LC	LK1	LCLK0	DISP
RW	RW	RW	R	W	RW	F	Ŵ	RW	RW
								I	nitial value : 00
	LCI	DDR	LCD Dri	ving Res	istor for E	Bias Seleo	ct		
			0 Internal LCD driving resistors for bias						
			1	Externa	al LCD dr	iving resis	stor for l	bias	
	LD	_B[3:0]	LCD Du	ty and Bi	as Selec	t (NOTE)			
	_		LD_B3	LD_B2	LD_B1	LD_B0	Descri	iption	
			0	0	0	0	1/2Du	ty, 1/2Bias (10)0k ohm)
			0	0	0	1	1/2Du	ty, 1/2Bias (50)k ohm)
			0	0	1	0	1/2Du	ty, 1/3Bias (50)k ohm)
			0	0	1	1	1/3Du	ty, 1/2Bias (10)0k ohm)
			0	1	0	0	1/3Du	ty, 1/2Bias (50)k ohm)
			0	1	0	1	1/3Du	ty, 1/3Bias (50)k ohm)
			0	1	1	0	1/4Du	ty, 1/2Bias (10)0k ohm)
			0	1	1	1	1/4Du	ty, 1/2Bias (50)k ohm)
			1	0	0	0	1/4Du	ty, 1/3Bias (50)k ohm)
			1	0	0	1	Not av	vailable	
			1	0	1	0	Not av	vailable	
			1	0	1	1	1/5Du	ty, 1/3Bias (50)k ohm)
			1	1	0	0	1/6Du	ty, 1/3Bias (50)k ohm)
			1	1	0	1	1/6Du	ty, 1/4Bias (50)k ohm)
			1	1	1	0	1/8Du	ty, 1/3Bias (50)k ohm)
			1	1	1	1	1/8Du	ty, 1/4Bias (50)k ohm)
	LCI	LK[1:0]	LCD Clo	ock Selec	t (When	f _{wcк} (Wate	ch timer	· clock)= 32.76	68 kHz)
			LCLK1	LCLK0	Descrip	otion			
			0	0	f _{LCD} = 1	28Hz			
			0	1	$f_{LCD} = 2$	256Hz			
			1	0	$f_{LCD} = 5$	512Hz			
			1	1	$f_{LCD} = 1$	024Hz			
			,			0			ock (f _{WCK}). So y is turned on.
	DIS	P	LCD Dis	splay Cor	ntrol				
			0	Display	off				
			1	Normal	display o	on			
TES) 1. W	/hen 1/2 bias is	s selected, t	he bias le	evels are	set as VI	_C0, VLC	2, and \	/SS	

LCDCRH (LCD Driver Control High Register) : ECH

2. When 1/3 bias is selected, the bias levels are set as VLC0, VLC1, VLC2 (=VLC3), and VSS

3. When 1/4 bias is selected, the bias levels are set as VLC0, VLC1, VLC2, VLC3, and VSS $\,$

4. The bias levels are automatically set with appropriate bias circuit when internal bias resistors are used.

5. A bias circuit is connected like the "11.13.4 LCD Voltage Dividing Resistor Connection" and should be selected as an appropriate value for "LD_B[3:0]".

12. Power Down Operation

12.1 Overview

The Z51F3221 MCU features two power-down modes to minimize the power consumption of the device. In power down mode, power consumption is reduced considerably. The device provides three kinds of power saving functions, Main-IDLE, Sub-IDLE and STOP mode. In three modes, program is stopped.

12.2 Peripheral Operation in IDLE/STOP Mode

Table 12-1 Peripheral Operation during Power Down Mode

Peripheral	IDLE Mode	STOP Mode		
CPU	ALL CPU Operation are Disable	ALL CPU Operation are Disable		
RAM	Retain	Retain		
Basic Interval Timer	Operates Continuously	Stop		
Watch Dog Timer	Operates Continuously	Stop (Can be operated with WDTRC OSC)		
Watch Timer	Operates Continuously	Stop (Can be operated with sub clock)		
Timer0~3	Operates Continuously	Halted (Only when the Event Counter Mode is Enabled, Timer operates Normally)		
ADC	Operates Continuously	Stop		
BUZ	Operates Continuously	Stop		
SIO	Operates Continuously	Only operate with external clock		
UART	Operates Continuously	Stop		
LCD Controller	Operates Continuously	Stop (Can be operated with sub clock)		
Internal OSC (8MHz)	Oscillation	Stop when the system clock (fx) is fire		
WDTRC OSC (6kHz)	Stop	Can be operated with setting value		
Main OSC (1~12MHz)	Oscillation	Stop when fx = fxiN		
Sub OSC (32.768kHz)	Oscillation	Stop when fx = fsuB		
I/O Port	Retain	Retain		
Control Register	Retain	Retain		
Address Data Bus	Retain	Retain		
Release Method	By RESET, all Interrupts	By RESET, Timer Interrupt (EC0,EC3), SIO (External clock), External Interrupt, UART by ACK, WT (sub clock), WDT		

12.5.1 Register Map

Table 12-2 Power Down	Operation Register Map
-----------------------	------------------------

Name	Address	Dir	Default	Description
PCON	87H	R/W	00H	Power Control Register

12.5.2 Power Down Operation Register Description

The power down operation register consists of the power control register (PCON).

12.5.3 Register Description for Power Down Operation

PCON	(Power C	Control Reg	jister) : 87H					
7	,	6	5	4	3	2	1	0
PCC	DN7	-	_	-	PCON3	PCON2	PCON1	PCON0
R	W	-	_	-	RW	RW	RW	RW
							I	nitial value : 00
		PCO	ON[7:0]	Power Control				
				01H IDLE r	node enable			
				03H STOP	mode enable			
NOTES	6) 1. To e	nter IDLE m	ode, PCON	must be set to	'01H'.			
	2. To e	nter STOP i	mode, PCON	I must be set to	ʻ03H'.			
	3. The	PCON regis	ter is autom	atically cleared	by a release s	ignal in STO	P/IDLE mode.	
				ons must imme he following exa		he instructior	n that make the	e device enter
Ex1)	MOV NOP NOP NOP	PCON, #0)1H ; IDI	.E mode	Ex2)	MOV F NOP NOP • •	PCON, #03H	; STOP moo

Process	Description	Remarks	
1	-No Operation		
2	-1st POR level Detection	-about 1.4V	
	- (INT-OSC 8MHz/8)x256x28h Delay section (=10ms)		
3	-VDD input voltage must rise over than flash operating voltage for Config read	-Slew Rate >= 0.15V/ms	
		-about 1.5V ~ 1.6V	
4	- Config read point	-Config Value is determined by Writing Option	
(5)	- Rising section to Reset Release Level	-16ms point after POR or Ext_reset release	
	- Reset Release section (BIT overflow)		
6	i) after16ms, after External Reset Release (External reset)	- BIT is used for Peripheral stability	
ļ	ii) 16ms point after POR (POR only)		
$\overline{\mathcal{O}}$	-Normal operation		

Table 13-2 Boot Process Description