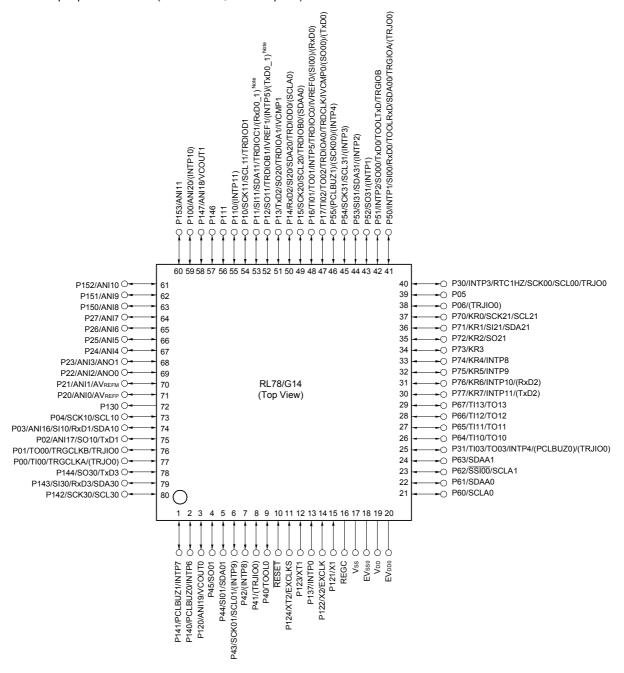


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

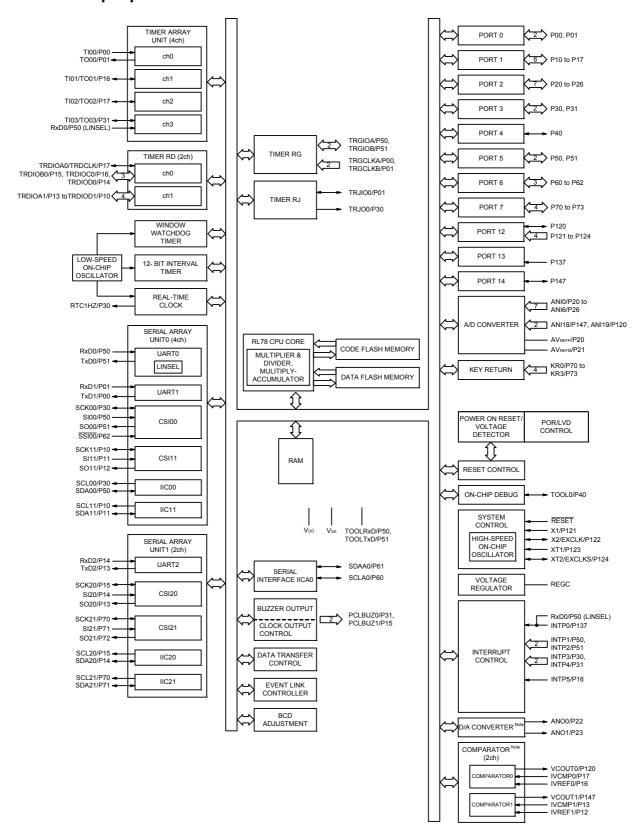

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104acasp-x0

RL78/G14 1. OUTLINE

1.3.9 80-pin products

- 80-pin plastic LQFP (14 × 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 × 12 mm, 0.5 mm pitch)



Note Mounted on the 384 KB or more code flash memory products.

- Caution 1. Make EVsso pin the same potential as Vss pin.
- Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
- Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RL78/G14 1. OUTLINE

1.5.4 40-pin products

Note Mounted on the 96 KB or more code flash memory products.

RL78/G14 1. OUTLINE

[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 16 KB to 64 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

					(1/2				
		44-pin	48-pin	52-pin	64-pin				
	Item	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx				
		(x = A, C to E)	(x = A, C to E)	(x = C to E)	(x = C to E)				
Code flash me	mory (KB)	16 to 64	16 to 64	32 to 64	32 to 64				
Data flash men	nory (KB)	4	4	4	4				
RAM (KB)		2.5 to 5.5 Note 2.5 to 5.5 Note 4 to 5.5 Note 4 to 5.5 Note							
Address space		1 MB							
Main system clock	High-speed system clock	HS (high-speed main) HS (high-speed main) LS (low-speed main) n	scillation, external main mode: 1 to 20 MHz (V mode: 1 to 16 MHz (V node: 1 to 8 MHz (VD mode: 1 to 4 MHz (VD	DD = 2.7 to 5.5 V), DD = 2.4 to 5.5 V), D = 1.8 to 5.5 V),	(CLK)				
	High-speed on-chip oscillator clock (fін)	HS (high-speed main)	mode: 1 to 32 MHz (V mode: 1 to 16 MHz (V node: 1 to 8 MHz (VD mode: 1 to 4 MHz (VD	DD = 2.4 to 5.5 V), D = 1.8 to 5.5 V),					
Subsystem clo	ck	XT1 (crystal) oscillation	n, external subsystem o	lock input (EXCLKS) 3	2.768 kHz				
Low-speed on-	chip oscillator clock	15 kHz (TYP.): VDD = 1	I.6 to 5.5 V						
General-purpos	se register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)							
Minimum instru	uction execution time	0.03125 μs (High-spee	ed on-chip oscillator clo	ck: fін = 32 MHz operat	ion)				
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)							
		30.5 μs (Subsystem cl	ock: fsuв = 32.768 kHz	operation)					
Instruction set		Multiplication (8 bits : Multiplication and Ac	its) /logical operation (8/16 < 8 bits, 16 bits × 16 bits cumulation (16 bits × 16 nd bit manipulation (Se	s), Division (16 bits ÷ 16 6 bits + 32 bits)					
I/O port	Total	40	44	48	58				
	CMOS I/O	31	34	38	48				
	CMOS input	5	5	5	5				
	CMOS output	_	1	1	1				
	N-ch open-drain I/O (6 V tolerance)	4	4	4	4				
Timer	16-bit timer	8 channels (TAU: 4 channels, Tim	er RJ: 1 channel, Timer	RD: 2 channels, Timer	RG: 1 channel)				
	Watchdog timer	1 channel							
	Real-time clock (RTC)	1 channel							
	12-bit interval timer	1 channel							
	Timer output	Timer outputs: 13 channels PWM outputs: 9 channels							
	RTC output	1 • 1 Hz (subsystem clock: fsuB = 32.768 kHz)							

(Note is listed on the next page.)

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	1.0		20.0	MHz
	crystal resonator	2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	
		1.8 V ≤ V _{DD} < 2.4 V	1.0		8.0	
		1.6 V ≤ V _{DD} < 1.8 V	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

2.2.2 On-chip oscillator characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = 0 \text{ V})$

Oscillators	Parameters	C	conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fı⊢			1		32	MHz
High-speed on-chip oscillator clock frequency		-20 to +85°C	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	-1.0		+1.0	%
accuracy			1.6 V ≤ V _{DD} < 1.8 V	-5.0		+5.0	%
		-40 to -20°C	1.8 V ≤ VDD < 5.5 V	-1.5		+1.5	%
			1.6 V ≤ VDD < 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(3/5)

Items	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVDD0		EV _{DD0}	V
	VIH2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	2.2		EV _{DD0}	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	2.0		EV _{DD0}	V
			TTL input buffer 1.6 V ≤ EVDD0 < 3.3 V	1.5		EV _{DD0}	V
	VIH3	P20 to P27, P150 to P156		0.7 Vdd		VDD	V
	VIH4	P60 to P63		0.7 EVDD0		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0.8 Vdd		VDD	V
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	0		0.5	V
			TTL input buffer 1.6 V ≤ EVDD0 < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156				0.3 VDD	V
	VIL4	P60 to P63		0		0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0		0.2 Vdd	V

Caution The maximum value of ViH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

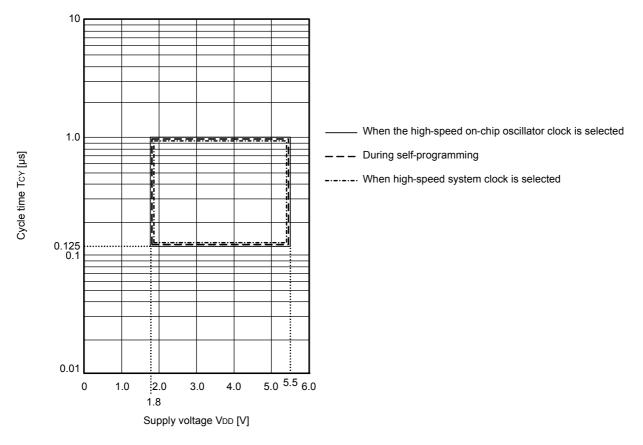
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

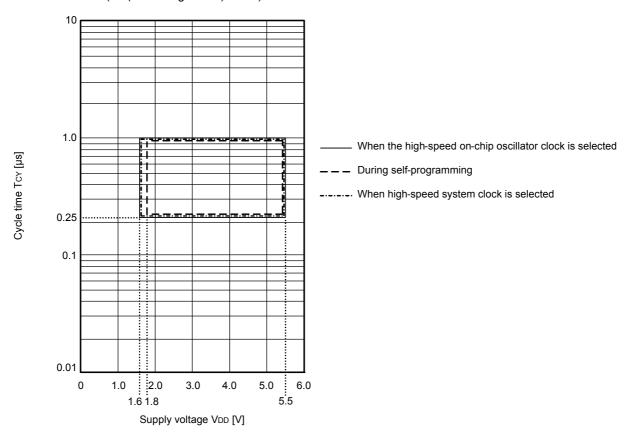
(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply cur-	IDD2	HALT mode	HS (high-speed main)	fHOCO = 64 MHz,	V _{DD} = 5.0 V		0.93	3.32	mA
rent Note 1	Note 2		mode Note 7	fih = 32 MHz Note 4	V _{DD} = 3.0 V		0.93	3.32	
				fHOCO = 32 MHz,	V _{DD} = 5.0 V		0.5	2.63	
				fih = 32 MHz Note 4	V _{DD} = 3.0 V		0.5	2.63	
				fносо = 48 MHz,	V _{DD} = 5.0 V		0.72	2.60	
				fiH = 24 MHz Note 4	V _{DD} = 3.0 V		0.72	2.60	
				fHOCO = 24 MHz,	V _{DD} = 5.0 V		0.42	2.03	
				fih = 24 MHz Note 4	V _{DD} = 3.0 V		0.42	2.03	
				fHOCO = 16 MHz,	V _{DD} = 5.0 V		0.39	1.50	
				fih = 16 MHz Note 4	V _{DD} = 3.0 V		0.39	1.50	
			LS (low-speed main)	fносо = 8 MHz,	V _{DD} = 3.0 V		270	800	μΑ
			mode Note 7	fih = 8 MHz Note 4	V _{DD} = 2.0 V		270	800	
			LV (low-voltage main)	fHOCO = 4 MHz,	V _{DD} = 3.0 V		450	755	μΑ
			mode Note 7	fih = 4 MHz Note 4	V _{DD} = 2.0 V		450	755	
			HS (high-speed main)	f _{MX} = 20 MHz Note 3,	Square wave input		0.31	1.69	mA
			mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.41	1.91	
				f _{MX} = 20 MHz Note 3,	Square wave input		0.31	1.69	
				V _{DD} = 3.0 V	Resonator connection		0.41	1.91	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.21	0.94	
				V _{DD} = 5.0 V	Resonator connection		0.26	1.02	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.21	0.94	
				V _{DD} = 3.0 V	Resonator connection		0.26	1.02	
			LS (low-speed main)	fmx = 8 MHz Note 3,	Square wave input		110	610	μΑ
			mode Note 7	V _{DD} = 3.0 V	Resonator connection		150	660	
				f _{MX} = 8 MHz Note 3,	Square wave input		110	610	
				V _{DD} = 2.0 V	Resonator connection		150	660	
			Subsystem clock oper-	fsuB = 32.768 kHz Note 5,	Square wave input		0.31		μΑ
			ation	TA = -40°C	Resonator connection		0.50		
				fsuB = 32.768 kHz Note 5,	Square wave input		0.38	0.76	
				TA = +25°C	Resonator connection		0.57	0.95	
				fsuB = 32.768 kHz Note 5,	Square wave input		0.47	3.59	
				TA = +50°C	Resonator connection		0.70	3.78	
				fsuB = 32.768 kHz Note 5,	Square wave input		0.80	6.20	
				T _A = +70°C	Resonator connection		1.00	6.39	
				fsuB = 32.768 kHz Note 5,	Square wave input		1.65	10.56	
				T _A = +85°C	Resonator connection		1.84	10.75	
	IDD3	STOP mode	TA = -40°C				0.19		μА
	Note 6	Note 8	T _A = +25°C				0.30	0.59	
			TA = +50°C				0.41	3.42	
			T _A = +70°C				0.80	6.03	
			T _A = +85°C				1.53	10.39	

(Notes and Remarks are listed on the next page.)


(4) Peripheral Functions (Common to all products)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)


Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscilla- tor operating current	IFIL Note 1				0.20		μΑ
RTC operating current	I _{RTC} Notes 1, 2, 3				0.02		μΑ
12-bit interval timer operat- ing current	IT Notes 1, 2, 4				0.02		μΑ
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fi∟ = 15 kHz			0.22		μΑ
A/D converter operating current	I _{ADC} Notes 1, 6	When conversion at maximum speed	Normal mode, AVREFP = VDD = 5.0 V		1.3	1.7	mA
			Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μА
Temperature sensor operating current	ITMPS Note 1				75.0		μА
D/A converter operating current	IDAC Notes 1, 11, 13	Per D/A converter channel				1.5	mA
Comparator operating cur-	ICMP Notes 1, 12, 13	V _{DD} = 5.0 V,	Window mode		12.5		μА
rent		Regulator output voltage = 2.1 V	Comparator high-speed mode		6.5		μΑ
			Comparator low-speed mode		1.7		μΑ
		V _{DD} = 5.0 V,	Window mode		8.0		μΑ
		Regulator output voltage = 1.8 V	Comparator high-speed mode		4.0		μΑ
			Comparator low-speed mode		1.3		μΑ
LVD operating current	I _{LVD} Notes 1, 7				0.08		μΑ
Self-programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	I _{BGO} Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	I _{SNOZ} Note 1	ADC operation	The mode is performed Note 10		0.50	0.60	mA
			The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V		1.20	1.44	
		CSI/UART operation			0.70	0.84	
		DTC operation			3.10		

- Note 1. Current flowing to VDD.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

Tcy vs Vdd (LS (low-speed main) mode)

TCY vs VDD (LV (low-voltage main) mode)

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed mode	d main)	LV (low-vol	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	2.7 V ≤ EVDD0 ≤ 5.5 V	125		500		1000		ns
			2.4 V ≤ EVDD0 ≤ 5.5 V	250		500		1000		ns
			1.8 V ≤ EV _{DD0} ≤ 5.5 V	500		500		1000		ns
			1.7 V ≤ EV _{DD0} ≤ 5.5 V	1000		1000		1000		ns
			1.6 V ≤ EV _{DD0} ≤ 5.5 V	_		1000		1000		ns
SCKp high-/low-level	tĸнı,	4.0 V ≤ EVDD0	≤ 5.5 V	tkcy1/2 - 12		tkcy1/2 - 50		tkcy1/2 - 50		ns
width	tKL1	2.7 V ≤ EVDD0	≤ 5.5 V	tkcy1/2 - 18		tkcy1/2 - 50		tkcy1/2 - 50		ns
		2.4 V ≤ EVDD0	≤ 5.5 V	tkcy1/2 - 38		tkcy1/2 - 50		tkcy1/2 - 50		ns
		1.8 V ≤ EVDD0	≤ 5.5 V	tkcy1/2 - 50		tkcy1/2 - 50		tkcy1/2 - 50		ns
		1.7 V ≤ EVDD0	≤ 5.5 V	tkcy1/2 - 100		tkcy1/2 - 100		tkcy1/2 - 100		ns
		1.6 V ≤ EVDD0	≤ 5.5 V	_		tkcy1/2 - 100		tkcy1/2 - 100		ns
SIp setup time	tsıĸ1	4.0 V ≤ EVDD0	≤ 5.5 V	44		110		110		ns
(to SCKp↑) Note 1		2.7 V ≤ EVDD0	≤ 5.5 V	44		110		110		ns
		2.4 V ≤ EVDD0	≤ 5.5 V	75		110		110		ns
		1.8 V ≤ EVDD0	≤ 5.5 V	110		110		110		ns
		1.7 V ≤ EVDD0	≤ 5.5 V	220		220		220		ns
		1.6 V ≤ EVDD0	≤ 5.5 V	_		220		220		ns
SIp hold time	tksıı	1.7 V ≤ EVDD0	≤ 5.5 V	19		19		19		ns
(from SCKp↑) Note 2		1.6 V ≤ EVDD0	≤ 5.5 V	_		19		19		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	1.7 V ≤ EV _{DD0} C = 30 pF Note			25		25		25	ns
I NOTE 3		1.6 V ≤ EVDD0 C = 30 pF Note			_		25		25	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

- $\textbf{Remark 1.} \ \ p: CSI \ number \ (p = 00, \, 01, \, 10, \, 11, \, 20, \, 21, \, 30, \, 31), \ m: \ Unit \ number \ (m = 0, \, 1), \\$
 - n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 - n: Channel number (mn = 00 to 03, 10 to 13))

(5) During communication at same potential (simplified I²C mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions	HS (high-speed mode	main)	LS (low-speed m	nain)	LV (low-voltage r mode	main)	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V,$ $C_b = 50~pF,~R_b = 2.7~k\Omega$	1/fmcK + 85 Note 2		1/fmck + 145 Note 2		1/fmck + 145 Note 2		ns
		1.8 V \leq EV _{DD0} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	1/fmck + 145 Note 2		1/fmck + 145 Note 2		1/fmck + 145 Note 2		ns
		$1.8~V \leq EV_{DD0} < 2.7~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	1/fmck + 230 Note 2		1/fmck + 230 Note 2		1/fmck + 230 Note 2		ns
		$1.7~V \leq EV_{DD0} < 1.8~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	1/fmck + 290 Note 2		1/fmck + 290 Note 2		1/fmck + 290 Note 2		ns
		$1.6 \ V \leq EV_{DD0} < 1.8 \ V,$ $C_b = 100 \ pF, \ R_b = 5 \ k\Omega$	_		1/fmck + 290 Note 2		1/fmck + 290 Note 2		ns
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	0	305	0	305	0	305	ns
		1.8 V \leq EV _{DD0} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	0	355	0	355	0	355	ns
		$1.8~V \leq EV_{DD0} < 2.7~V,$ $C_b = 100~pF,~R_b = 5~k\Omega$	0	405	0	405	0	405	ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V},$ $C_b = 100 \text{ pF}, R_b = 5 \text{ k}\Omega$	0	405	0	405	0	405	ns
		$1.6 \ V \leq EV_{DD0} < 1.8 \ V,$ $C_b = 100 \ pF, \ R_b = 5 \ k\Omega$	_		0	405	0	405	ns

Note 1. The value must also be equal to or less than fmck/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Remarks are listed on the next page.)

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

$$(TA = -40 \text{ to } +85^{\circ}C, 2.7 \text{ V} \le EVDD0 = EVDD1 \le VDD \le 5.5 \text{ V}, VSS = EVSS0 = EVSS1 = 0 \text{ V})$$

(2/2)

Parameter	Symbol	Conditions		peed main) ode	,	peed main) ode	`	ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) Note 2	tsıĸ1	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 20 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	23		110		110		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 20 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	33		110		110		ns
SIp hold time (from SCKp↓) Note 2	tksı1	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 20 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	10		10		10		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 20 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	10		10		10		ns
Delay time from SCKp↑ to SOp output Note 2	tkso1	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 20 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $		10		10		10	ns
		$ \begin{aligned} 2.7 & \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $		10		10		10	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.
- Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

- Remark 1. $Rb[\Omega]$: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)
- Remark 3. fmck: Serial array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number

 (mn = 00))
- Remark 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$ (2/3)

Parameter	Symbol	Conditions	, ,	speed main)	,	peed main) ode	,	oltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) Note 1	tsıĸı	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	81		479		479		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega $	177		479		479		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V Note 2}, \\ &C_{\text{b}} = 30 \text{ pF, } R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	479		479		479		ns
SIp hold time (from SCKp↑) Note 1	tksi1	$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 1.4 \text{ k}\Omega \end{aligned} $	19		19		19		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega $	19		19		19		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note 2}, \\ &C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	19		19		19		ns
Delay time from SCKp↓ to SOp output Note 1	tkso1	$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega \end{aligned} $		100		100		100	ns
				195		195		195	ns
		$\begin{array}{c} 1.8 \; \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \; \text{V}, \\ 1.6 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \; \text{V} \; \text{Note 2}, \\ \text{Cb} = 30 \; \text{pF}, \; \text{Rb} = 5.5 \; \text{k}\Omega \end{array}$		483		483		483	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)

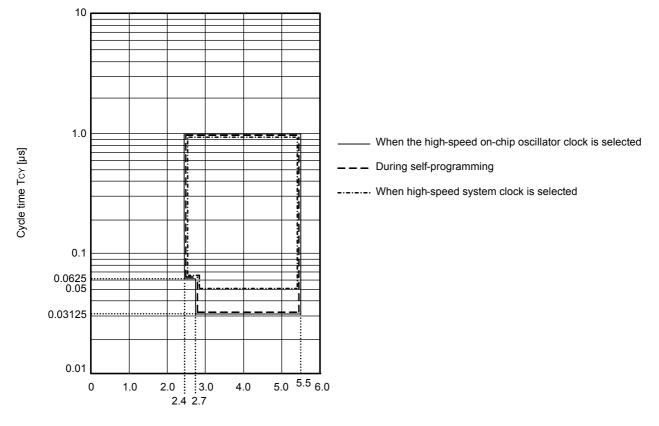
Note 2. Use it with $EV_{DD0} \ge V_b$.

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **Note 7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz to } 16 \text{ MHz}$

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fil: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C


(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

•		•		•			•
Items	Symbol	Condition	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdiн, tтdil	TRDIOA0, TRDIOA1, TRDIOE TRDIOC0, TRDIOC1, TRDIO	3/fclk			ns	
Timer RD forced cutoff signal	ttdsil	P130/INTP0	130/INTP0 2MHz < fclk ≤ 32 MHz				μs
input low-level width			fclk ≤ 2 MHz	1/fcLK + 1			
Timer RG input high-level width, low-level width	tтgін, tтgіL	TRGIOA, TRGIOB		2.5/fcLK			ns
TO00 to TO03,	fто	HS (high-speed main) mode	4.0 V ≤ EVDD0 ≤ 5.5 V			16	MHz
TO10 to TO13,			2.7 V ≤ EV _{DD0} < 4.0 V			8	MHz
TRJIO0, TRJO0, TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB output frequency			2.4 V ≤ EVDD0 < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	fPCL	HS (high-speed main) mode	4.0 V ≤ EVDD0 ≤ 5.5 V			16	MHz
frequency			2.7 V ≤ EVDD0 < 4.0 V			8	MHz
			2.4 V ≤ EVDD0 < 2.7 V			4	MHz
Interrupt input high-level	tinth,	INTP0	$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	1			μs
width, low-level width	tintl	INTP1 to INTP11	2.4 V ≤ EVDD0 ≤ 5.5 V	1			μs
Key interrupt input low-level width	tkr	KR0 to KR7	2.4 V ≤ EVDD0 ≤ 5.5 V	250			ns
RESET low-level width	trsl			10			μs

Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol		Conditions		HS (high-speed main) mode	
				MIN.	MAX.	
Transfer rate		2 2 2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.6 Note 2	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		Note 3	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 4	Mbps
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		Note 5	bps
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF, } R_b = 5.5 \text{ k}\Omega,$ $V_b = 1.6 \text{ V}$		0.43 Note 6	Mbps

Note 1. The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when $4.0~\text{V} \le \text{EV}_{\text{DD0}} \le 5.5~\text{V}$ and $2.7~\text{V} \le \text{V}_{\text{b}} \le 4.0~\text{V}$

Maximum transfer rate =
$$\frac{1}{ \{ -C_b \times R_b \times ln \ (1 - \frac{2.2}{V_b} \) \} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides
- Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met.

 Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** The smaller maximum transfer rate derived by using fmck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{ \left\{ -C_b \times R_b \times \ln \left(1 - \frac{2.0}{V_b} \right) \right\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln \left(1 - \frac{2.0}{V_b}\right)\}}{\left(\frac{1}{\text{Transfer rate}}\right) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

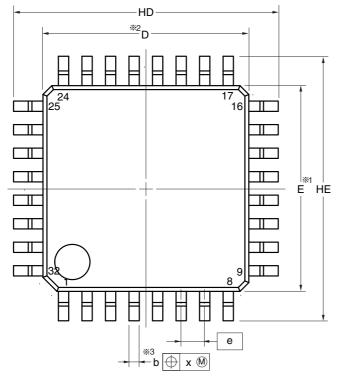
- * This value is the theoretical value of the relative difference between the transmission and reception sides
- Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met.

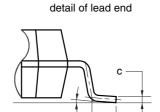
 Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.

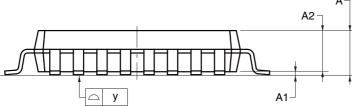
(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI0 to ANI14, ANI16 to ANI20	3.6 V ≤ V _{DD} ≤ 5.5 V	2.125		39	μs
			$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	3.1875		39	μs
			2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
		10-bit resolution	$3.6 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	2.375		39	μs
		Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	3.5625		39	μs
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Analog input voltage	Vain	ANI0 to ANI14		0		VDD	V
		ANI16 to ANI20		0		EV _{DD0}	٧
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 3		V	
		Temperature sensor output voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) r	mode)	VT	MPS25 Not	te 3	V


Note 1. Excludes quantization error (±1/2 LSB).


Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.


Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

R5F104BAAFP, R5F104BCAFP, R5F104BDAFP, R5F104BEAFP, R5F104BFAFP, R5F104BGAFP R5F104BADFP, R5F104BCDFP, R5F104BDDFP, R5F104BEDFP, R5F104BFDFP, R5F104BGDFP R5F104BAGFP, R5F104BCGFP, R5F104BDGFP, R5F104BEGFP, R5F104BFGFP, R5F104BGGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP32-7x7-0.80	PLQP0032GB-A	P32GA-80-GBT-1	0.2

(UNIT:mm)

	(-
ITEM	DIMENSIONS
D	7.00±0.10
Е	7.00±0.10
HD	9.00±0.20
HE	9.00±0.20
Α	1.70 MAX.
A1	0.10±0.10
A2	1.40
b	$0.37{\pm}0.05$
С	0.145 ± 0.055
L	0.50±0.20
θ	0° to 8°
е	0.80
х	0.20
v	0.10

NOTE

- 1. Dimensions "%1" and "%2" do not include mold flash.
- 2.Dimension "%3" does not include trim offset.

© 2012 Renesas Electronics Corporation. All rights reserved.

RL78/G14 4. PACKAGE DRAWINGS

R5F104LCALA, R5F104LDALA, R5F104LEALA, R5F104LFALA, R5F104LGALA, R5F104LHALA, R5F104LJALA R5F104LKALA, R5F104LLALA

R5F104LCGLA,R5F104LDGLA, R5F104LEGLA, R5F104LFGLA, R5F104LGGLA, R5F104LHGLA, R5F104LHGLA, R5F104LLGLA

 $\ensuremath{\mathbb{O}}$ 2011 Renesas Electronics Corporation. All rights reserved.