

#### Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                        |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 21                                                                              |
| Program Memory Size        | 48KB (48K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 4K x 8                                                                          |
| RAM Size                   | 5.5K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V                                                                     |
| Data Converters            | A/D 8x8/10b                                                                     |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 30-LSSOP (0.240", 6.10mm Width)                                                 |
| Supplier Device Package    | 30-LSSOP                                                                        |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104adasp-v0 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(2/5)

| Pin<br>count | Package                                                    | Fields of<br>Application<br>Note | Ordering Part Number                                                                                                              |
|--------------|------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 40 pins      | 40-pin plastic HWQFN<br>(6 × 6 mm, 0.5 mm pitch)           | A                                | R5F104EAANA#U0, R5F104ECANA#U0, R5F104EDANA#U0, R5F104EEANA#U0,<br>R5F104EFANA#U0, R5F104EGANA#U0, R5F104EHANA#U0                 |
|              |                                                            |                                  | R5F104EAANA#W0, R5F104ECANA#W0, R5F104EDANA#W0, R5F104EEANA#W0, R5F104EEANA#W0, R5F104EFANA#W0, R5F104EHANA#W0                    |
|              |                                                            | D                                | R5F104EADNA#U0, R5F104ECDNA#U0, R5F104EDDNA#U0, R5F104EEDNA#U0, R5F104EEDNA#U0, R5F104EFDNA#U0, R5F104EFDNA#U0                    |
|              |                                                            |                                  | R5F104EADNA#W0, R5F104ECDNA#W0, R5F104EDDNA#W0, R5F104EEDNA#W0, R5F104EEDNA#W0, R5F104EFDNA#W0, R5F104EHDNA#W0                    |
|              |                                                            | G                                | R5F104EAGNA#U0, R5F104ECGNA#U0, R5F104EDGNA#U0, R5F104EEGNA#U0, R5F104EEGNA#U0, R5F104EFGNA#U0, R5F104EGGNA#U0, R5F104EHGNA#U0    |
|              |                                                            |                                  | R5F104EAGNA#W0, R5F104ECGNA#W0, R5F104EDGNA#W0, R5F104EEGNA#W0, R5F104EFGNA#W0, R5F104EGGNA#W0, R5F104EHGNA#W0                    |
| 44 pins      | 44-pin plastic LQFP $(10 \times 10, 0.8 \text{ mm pitch})$ | A                                | R5F104FAAFP#V0, R5F104FCAFP#V0, R5F104FDAFP#V0, R5F104FEAFP#V0,<br>R5F104FFAFP#V0, R5F104FGAFP#V0, R5F104FHAFP#V0, R5F104FJAFP#V0 |
|              |                                                            |                                  | R5F104FAAFP#X0, R5F104FCAFP#X0, R5F104FDAFP#X0, R5F104FEAFP#X0,<br>R5F104FFAFP#X0, R5F104FGAFP#X0, R5F104FHAFP#X0, R5F104FJAFP#X0 |
|              |                                                            | D                                | R5F104FADFP#V0, R5F104FCDFP#V0, R5F104FDDFP#V0, R5F104FEDFP#V0,<br>R5F104FFDFP#V0, R5F104FGDFP#V0, R5F104FHDFP#V0, R5F104FJDFP#V0 |
|              |                                                            |                                  | R5F104FADFP#X0, R5F104FCDFP#X0, R5F104FDDFP#X0, R5F104FEDFP#X0,<br>R5F104FFDFP#X0, R5F104FGDFP#X0, R5F104FHDFP#X0, R5F104FJDFP#X0 |
|              |                                                            | G                                | R5F104FAGFP#V0, R5F104FCGFP#V0, R5F104FDGFP#V0, R5F104FEGFP#V0,<br>R5F104FFGFP#V0, R5F104FGGFP#V0, R5F104FHGFP#V0, R5F104FJGFP#V0 |
|              |                                                            |                                  | R5F104FAGFP#X0, R5F104FCGFP#X0, R5F104FDGFP#X0, R5F104FEGFP#X0,<br>R5F104FFGFP#X0, R5F104FGGFP#X0, R5F104FHGFP#X0, R5F104FJGFP#X0 |

Note For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.



(R20UT2944).

 Note
 The flash library uses RAM in self-programming and rewriting of the data flash memory.

 The target products and start address of the RAM areas used by the flash library are shown below.

 R5F104xL (x = G, L, M, P): Start address F3F00H

 For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family



## 2.3 DC Characteristics

## 2.3.1 Pin characteristics

#### (TA = -40 to +85°C, 1.6 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

| Items                       | Symbol | Conditions                                                                                                                                                                      |                                                              | MIN. | TYP. | MAX.             | Unit |
|-----------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------|------|------------------|------|
| Output current, high Note 1 | Іон1   | Per pin for P00 to P06,<br>P10 to P17, P30, P31,<br>P40 to P47, P50 to P57,<br>P64 to P67, P70 to P77,<br>P80 to P87, P100 to P102, P110,<br>P111, P120, P130, P140 to P147     | $1.6 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$         |      |      | -10.0<br>Note 2  | mA   |
|                             |        | Total of P00 to P04, P40 to P47,                                                                                                                                                | $4.0~V \leq EV_{DD0} \leq 5.5~V$                             |      |      | -55.0            | mA   |
|                             |        | P102, P120, P130, P140 to P145                                                                                                                                                  | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$  |      |      | -10.0            | mA   |
|                             |        | (When duty $\leq 70\%$ Note 3)                                                                                                                                                  | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$  |      |      | -5.0             | mA   |
|                             |        |                                                                                                                                                                                 | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$   |      |      | -2.5             | mA   |
|                             |        | Total of P05, P06, P10 to P17,<br>P30, P31, P50 to P57,<br>P64 to P67, P70 to P77,<br>P80 to P87, P100, P101, P110,<br>P111, P146, P147<br>(When duty ≤ 70% <sup>Note 3</sup> ) | $4.0~V \leq EV_{DD0} \leq 5.5~V$                             |      |      | -80.0            | mA   |
|                             |        |                                                                                                                                                                                 | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$ |      |      | -19.0            | mA   |
|                             |        |                                                                                                                                                                                 | $1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$   |      |      | -10.0            | mA   |
|                             |        |                                                                                                                                                                                 | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$   |      |      | -5.0             | mA   |
|                             |        | Total of all pins<br>(When duty $\leq$ 70% <sup>Note 3</sup> )                                                                                                                  | $1.6 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V}$           |      |      | -135.0<br>Note 4 | mA   |
|                             | Іон2   | Per pin for P20 to P27,<br>P150 to P156                                                                                                                                         | $1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$           |      |      | -0.1<br>Note 2   | mA   |
|                             |        | Total of all pins (When duty $\leq$ 70% <sup>Note 3</sup> )                                                                                                                     | $1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$             |      |      | -1.5             | mA   |

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

**Note 2.** Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins =  $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IOH = -10.0 mA Total output current of pins =  $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$  mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Note 4. -100 mA for industrial applications (R5F104xxDxx, R5F104xxGxx).

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.



**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
   Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:  $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\text{@1}} \text{ MHz to } 32 \text{ MHz}$ 

2.4 V  $\leq$  VDD  $\leq$  5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode:  $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{0}}1~\mbox{MHz}$ to 8 MHz}$$ 

LV (low-voltage main) mode:  $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$  to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C







## (2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

| Parameter                                             | Symbol | Conditions                                                     |                                  | HS (high-s<br>main) mo | peed<br>ode | LS (low-s)<br>main) me | peed<br>ode | LV (low-vo<br>main) me | ltage<br>ode | Unit |
|-------------------------------------------------------|--------|----------------------------------------------------------------|----------------------------------|------------------------|-------------|------------------------|-------------|------------------------|--------------|------|
|                                                       |        |                                                                |                                  | MIN.                   | MAX.        | MIN.                   | MAX.        | MIN.                   | MAX.         |      |
| SCKp cycle time                                       | tkcy1  | tkcy1 ≥ 2/fclk                                                 | $4.0~V \leq EV_{DD0} \leq 5.5~V$ | 62.5                   |             | 250                    |             | 500                    |              | ns   |
|                                                       |        |                                                                | $2.7~V \leq EV_{DD0} \leq 5.5~V$ | 83.3                   |             | 250                    |             | 500                    |              | ns   |
| SCKp high-/low-level                                  | tкнı,  | $4.0 \; V \leq EV_{\text{DD0}}$                                | ≤ 5.5 V                          | tксү1/2 - 7            |             | tксү1/2 - 50           |             | tксү1/2 - 50           |              | ns   |
| width                                                 | tĸ∟1   | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ |                                  | tксү1/2 - 10           |             | tксү1/2 <b>-</b> 50    |             | tксү1/2 <b>-</b> 50    |              | ns   |
| SIp setup time (to SCKp $\uparrow$ )                  | tsik1  | $4.0 \; V \leq EV_{\text{DD0}}$                                | ≤ 5.5 V                          | 23                     |             | 110                    |             | 110                    |              | ns   |
| Note 1                                                |        | $2.7 \; V \leq EV_{\text{DD0}}$                                | ≤ 5.5 V                          | 33                     |             | 110                    |             | 110                    |              | ns   |
| SIp hold time (from<br>SCKp↑) <sup>Note 2</sup>       | tksi1  | $2.7 \text{ V} \leq EV_{\text{DD0}}$                           | ≤ 5.5 V                          | 10                     |             | 10                     |             | 10                     |              | ns   |
| Delay time from SCKp↓ to SOp output <sup>Note 3</sup> | tkso1  | C = 20 pF Note                                                 | 4                                |                        | 10          |                        | 10          |                        | 10           | ns   |

(TA = -40 to +85°C, 2.7 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),

g: PIM and POM numbers (g = 1)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))



Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

| Parameter                              | Symbol |                                             | Conditions                                                     | HS (high-s<br>main) mo | peed<br>ode | LS (low-speed<br>mode | d main) | LV (low-vo<br>main) mo | ltage<br>ode | Unit |
|----------------------------------------|--------|---------------------------------------------|----------------------------------------------------------------|------------------------|-------------|-----------------------|---------|------------------------|--------------|------|
|                                        |        |                                             |                                                                | MIN.                   | MAX.        | MIN.                  | MAX.    | MIN.                   | MAX.         |      |
| SCKp cycle time                        | tkCY1  | tксү1 ≥ 4/fcLк                              | $2.7~V \leq E_{VDD0} \leq 5.5~V$                               | 125                    |             | 500                   |         | 1000                   |              | ns   |
|                                        |        |                                             | $2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$   | 250                    |             | 500                   |         | 1000                   |              | ns   |
|                                        |        |                                             | $1.8~V \leq EV_{DD0} \leq 5.5~V$                               | 500                    |             | 500                   |         | 1000                   |              | ns   |
|                                        |        |                                             | $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ | 1000                   |             | 1000                  |         | 1000                   |              | ns   |
|                                        |        |                                             | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$   | —                      |             | 1000                  |         | 1000                   |              | ns   |
| SCKp high-/low-level                   | tĸнı,  | $4.0 \text{ V} \leq \text{EV}_{\text{DDO}}$ | 0 ≤ 5.5 V                                                      | tксү1/2 - 12           |             | tксү1/2 - 50          |         | tксү1/2 - 50           |              | ns   |
| width                                  | tKL1   | $2.7 \text{ V} \leq \text{EV}_{\text{DDO}}$ | $\leq 5.5 V$                                                   | tксү1/2 - 18           |             | tксү1/2 - 50          |         | tксү1/2 - 50           |              | ns   |
|                                        |        | $2.4 \text{ V} \leq \text{EV}_{\text{DDO}}$ | $0 \leq 5.5 \text{ V}$                                         | tксү1/2 - 38           |             | tксү1/2 - 50          |         | tксү1/2 - 50           |              | ns   |
|                                        |        | $1.8 \text{ V} \leq \text{EV}_{\text{DDO}}$ | $\leq 5.5 V$                                                   | tксү1/2 - 50           |             | tксү1/2 - 50          |         | tксү1/2 - 50           |              | ns   |
|                                        |        | $1.7 \text{ V} \leq \text{EV}_{\text{DDO}}$ | $\leq 5.5 V$                                                   | tксү1/2 - 100          |             | tксү1/2 - 100         |         | tксү1/2 - 100          |              | ns   |
|                                        |        | $1.6 \text{ V} \leq \text{EV}_{\text{DDO}}$ | $\leq 5.5 V$                                                   | —                      |             | tксү1/2 - 100         |         | tксү1/2 - 100          |              | ns   |
| SIp setup time                         | tsik1  | $4.0 \text{ V} \leq \text{EV}_{\text{DDO}}$ | $\leq 5.5 V$                                                   | 44                     |             | 110                   |         | 110                    |              | ns   |
| (to SCKp↑) <sup>Note 1</sup>           |        | $2.7 \text{ V} \leq \text{EV}_{\text{DDO}}$ | $\leq 5.5 V$                                                   | 44                     |             | 110                   |         | 110                    |              | ns   |
|                                        |        | $2.4 \text{ V} \leq \text{EV}_{\text{DDO}}$ | $\leq 5.5 V$                                                   | 75                     |             | 110                   |         | 110                    |              | ns   |
|                                        |        | $1.8 \text{ V} \leq \text{EV}_{\text{DDO}}$ | $\leq 5.5 V$                                                   | 110                    |             | 110                   |         | 110                    |              | ns   |
|                                        |        | $1.7 \text{ V} \leq \text{EV}_{\text{DDO}}$ | $\leq 5.5 V$                                                   | 220                    |             | 220                   |         | 220                    |              | ns   |
|                                        |        | $1.6 \text{ V} \leq \text{EV}_{\text{DDO}}$ | $\leq 5.5 V$                                                   | —                      |             | 220                   |         | 220                    |              | ns   |
| SIp hold time                          | tksi1  | $1.7 \text{ V} \leq \text{EV}_{\text{DDC}}$ | $\leq 5.5 V$                                                   | 19                     |             | 19                    |         | 19                     |              | ns   |
| (from SCKp↑) Note 2                    |        | $1.6 \text{ V} \leq \text{EV}_{\text{DDO}}$ | $\leq 5.5 V$                                                   | —                      |             | 19                    |         | 19                     |              | ns   |
| Delay time from<br>SCKp↓ to SOp output | tkso1  | $1.7 V \le EV_{DDC}$<br>C = 30 pF Note      | o ≤ 5.5 V<br>e 4                                               |                        | 25          |                       | 25      |                        | 25           | ns   |
|                                        |        | $1.6 V \le EV_{DDC}$<br>C = 30 pF Note      | o ≤ 5.5 V<br>e 4                                               |                        | _           |                       | 25      |                        | 25           | ns   |

# (3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85°C, 1.6 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)

Remark 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))



## (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

#### (TA = -40 to +85°C, 1.6 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

| Parameter        | Symbol | Conditions                                                                                                                                                                               |                                                                                                                                                                                          | HS (high<br>r | HS (high-speed main)<br>mode |            | LS (low-speed main)<br>mode |            | LV (low-voltage main)<br>mode |      |
|------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|------------------------------|------------|-----------------------------|------------|-------------------------------|------|
|                  |        |                                                                                                                                                                                          |                                                                                                                                                                                          | MIN.          | MAX.                         | MIN.       | MAX.                        | MIN.       | MAX.                          |      |
| Transfer<br>rate |        | transmission                                                                                                                                                                             | $\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$                                                                                  |               | Note 1                       |            | Note 1                      |            | Note 1                        | bps  |
|                  |        |                                                                                                                                                                                          | $\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 1.4 \mbox{ k}\Omega, \\ V_b = 2.7 \mbox{ V} \end{array}$ |               | 2.8 Note 2                   |            | 2.8 Note 2                  |            | 2.8 Note 2                    | Mbps |
|                  |        |                                                                                                                                                                                          | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$<br>$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$                                                                 |               | Note 3                       |            | Note 3                      |            | Note 3                        | bps  |
|                  |        | $\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega, \\ V_b = 2.3 \mbox{ V} \end{array}$ |                                                                                                                                                                                          | 1.2 Note 4    |                              | 1.2 Note 4 |                             | 1.2 Note 4 | Mbps                          |      |
|                  |        |                                                                                                                                                                                          | $\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$                                                                                         |               | Notes 5, 6                   |            | Notes 5, 6                  |            | Notes 5, 6                    | bps  |
|                  |        |                                                                                                                                                                                          | Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$                                                                     |               | 0.43 Note 7                  |            | 0.43 Note 7                 |            | 0.43 Note 7                   | Mbps |

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when  $4.0 \text{ V} \le \text{EV}\text{DD0} \le 5.5 \text{ V}$  and  $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$ 

1

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) = 
$$\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{|V_b|})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}}$$

\* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

**Note 3.** The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V  $\leq$  EVDD0 < 4.0 V and 2.3 V  $\leq$  Vb  $\leq$  2.7 V

Maximum transfer rate = 
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
Baud rate error (theoretical value) = 
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

\* This value is the theoretical value of the relative difference between the transmission and reception sides



# (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

| Parameter             | Symbol |                                                                                                                                                                                                                                                                            | Conditions                                                                                                                                | HS (high-s<br>main) mo | peed<br>ode | LS (low-speed<br>mode | d main) | LV (low-vol<br>main) mo | ltage<br>ode | Unit |
|-----------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------|-----------------------|---------|-------------------------|--------------|------|
|                       |        |                                                                                                                                                                                                                                                                            |                                                                                                                                           | MIN.                   | MAX.        | MIN.                  | MAX.    | MIN.                    | MAX.         |      |
| SCKp cycle time       | tксү1  | tkcy1 ≥ 4/fclk                                                                                                                                                                                                                                                             |                                                                                                                                           | 300                    |             | 1150                  |         | 1150                    |              | ns   |
|                       |        |                                                                                                                                                                                                                                                                            | $\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$ | 500                    |             | 1150                  |         | 1150                    |              | ns   |
|                       |        |                                                                                                                                                                                                                                                                            | 1150                                                                                                                                      |                        | 1150        |                       | 1150    |                         | ns           |      |
| SCKp high-level width | tкнı   | $\begin{array}{l} 4.0 \ V \leq EV_{DD0} \\ 2.7 \ V \leq V_b \leq 4. \\ C_b = 30 \ pF, \ R_b \end{array}$                                                                                                                                                                   | ≤ 5.5 V,<br>0 V,<br>= 1.4 kΩ                                                                                                              | tксү1/2 - 75           |             | tксү1/2 - 75          |         | tксү1/2 - 75            |              | ns   |
|                       |        | $\begin{split} & 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ & 2.3 \ V \leq V_b \leq 2.7 \ V, \\ & C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \\ & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$ |                                                                                                                                           | tксү1/2 - 170          |             | tксү1/2 - 170         |         | tксү1/2 - 170           |              | ns   |
|                       |        |                                                                                                                                                                                                                                                                            |                                                                                                                                           | tксү1/2 - 458          |             | tксү1/2 - 458         |         | tkcy1/2 - 458           |              | ns   |
| SCKp low-level width  | tĸL1   | $\begin{array}{l} 4.0 \ V \leq EV_{DD0} \\ 2.7 \ V \leq V_b \leq 4. \\ C_b = 30 \ pF, \ R_b \end{array}$                                                                                                                                                                   | ≤ 5.5 V,<br>0 V,<br>= 1.4 kΩ                                                                                                              | tксү1/2 - 12           |             | tксү1/2 - 50          |         | tксү1/2 - 50            |              | ns   |
|                       |        | $\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2. \\ C_{b} = 30 \ pF, \ R_{b} \end{array}$                                                                                                                                                             | < 4.0 V,<br>7 V,<br>= 2.7 kΩ                                                                                                              | tксү1/2 - 18           |             | tксү1/2 - 50          |         | tkcy1/2 - 50            |              | ns   |
|                       |        | $1.8 V \le EV_{DD0}$<br>$1.6 V \le V_b \le 2.$<br>$C_b = 30 \text{ pF, Rb}$                                                                                                                                                                                                | < 3.3 V,<br>0 V <sup>Note</sup> ,<br>= 5.5 kΩ                                                                                             | tксү1/2 - 50           |             | tксү1/2 - 50          |         | tксү1/2 - 50            |              | ns   |

(TA = -40 to +85°C, 1.8 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

**Note** Use it with  $EVDD0 \ge Vb$ .

(Remarks are listed two pages after the next page.)



Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.



CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)





- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

## RL78/G14

## 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic

| Parameter                         | Symbol  | Conditions                                         | MIN. | TYP. | MAX. | Unit  |
|-----------------------------------|---------|----------------------------------------------------|------|------|------|-------|
| Temperature sensor output voltage | VTMPS25 | Setting ADS register = 80H, T <sub>A</sub> = +25°C |      | 1.05 |      | V     |
| Internal reference voltage        | Vbgr    | Setting ADS register = 81H                         | 1.38 | 1.45 | 1.5  | V     |
| Temperature coefficient           | FVTMPS  | Temperature sensor that depends on the temperature |      | -3.6 |      | mV/°C |
| Operation stabilization wait time | tamp    |                                                    | 5    |      |      | μs    |

(TA = -40 to +85°C, 2.4 V  $\leq$  VDD  $\leq$  5.5 V, VSS = EVSS0 = EVSS1 = 0 V, HS (high-speed main) mode)

# 2.6.3 D/A converter characteristics

## (TA = -40 to +85°C, 1.6 V $\leq$ EVsso = EVss1 $\leq$ VDD $\leq$ 5.5 V, Vss = EVsso = EVss1 = 0 V)

| Parameter     | Symbol       | Con                  | ditions                                          | MIN. | TYP. | MAX. | Unit |
|---------------|--------------|----------------------|--------------------------------------------------|------|------|------|------|
| Resolution    | RES          |                      |                                                  |      |      | 8    | bit  |
| Overall error | AINL         | Rload = 4 M $\Omega$ | $1.8~V \le V_{DD} \le 5.5~V$                     |      |      | ±2.5 | LSB  |
|               |              | Rload = 8 M $\Omega$ | $1.8~V \le V_{DD} \le 5.5~V$                     |      |      | ±2.5 | LSB  |
| Settling time | <b>t</b> SET | Cload = 20 pF        | $2.7~V \leq V_{DD} \leq 5.5~V$                   |      |      | 3    | μs   |
|               |              |                      | $1.6 \text{ V} \le \text{V}_{\text{DD}}$ < 2.7 V |      |      | 6    | μs   |



## 3.2 Oscillator Characteristics

## 3.2.1 X1, XT1 characteristics

#### $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

| Resonator                                  | Resonator          | Conditions                                                   | MIN. | TYP.   | MAX. | Unit |
|--------------------------------------------|--------------------|--------------------------------------------------------------|------|--------|------|------|
| X1 clock oscillation frequency (fx) Note   | Ceramic resonator/ | $2.7~V \leq V \text{DD} \leq 5.5~V$                          | 1.0  |        | 20.0 | MHz  |
|                                            | crystal resonator  | $2.4 \text{ V} \leq \text{V}_{\text{DD}} \leq 2.7 \text{ V}$ | 1.0  |        | 16.0 |      |
| XT1 clock oscillation frequency (fxT) Note | Crystal resonator  |                                                              | 32   | 32.768 | 35   | kHz  |

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

## 3.2.2 On-chip oscillator characteristics

#### (TA = -40 to +105°C, 2.4 V $\leq$ VDD $\leq$ 5.5 V, Vss = 0 V)

| Oscillators                                                 | Parameters | Co            | onditions                           | MIN. | TYP. | MAX. | Unit |
|-------------------------------------------------------------|------------|---------------|-------------------------------------|------|------|------|------|
| High-speed on-chip oscillator clock frequency<br>Notes 1, 2 | fін        |               |                                     |      |      | 32   | MHz  |
| High-speed on-chip oscillator clock frequency               |            | -20 to +85°C  | $2.4~V \leq V \text{DD} \leq 5.5~V$ | -1.0 |      | +1.0 | %    |
| accuracy                                                    |            | -40 to -20°C  | $2.4~V \leq V \text{DD} \leq 5.5~V$ | -1.5 |      | +1.5 | %    |
|                                                             |            | +85 to +105°C | $2.4~V \leq V \text{DD} \leq 5.5~V$ | -2.0 |      | +2.0 | %    |
| Low-speed on-chip oscillator clock frequency                | fı∟        |               |                                     |      | 15   |      | kHz  |
| Low-speed on-chip oscillator clock frequency accuracy       |            |               |                                     | -15  |      | +15  | %    |

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.



## 3.3 DC Characteristics

## 3.3.1 Pin characteristics

#### $(Ta = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EVDD0 = EVDD1 \le VDD \le 5.5 \text{ V}, \text{ Vss} = EVss0 = EVss1 = 0 \text{ V})$

| Items                       | Symbol | Conditions                                                                                                                                                                  |                                                              | MIN. | TYP. | MAX.           | Unit |
|-----------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------|------|----------------|------|
| Output current, high Note 1 | Іон1   | Per pin for P00 to P06,<br>P10 to P17, P30, P31,<br>P40 to P47, P50 to P57,<br>P64 to P67, P70 to P77,<br>P80 to P87, P100 to P102, P110,<br>P111, P120, P130, P140 to P147 | $2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ |      |      | -3.0<br>Note 2 | mA   |
|                             |        | Total of P00 to P04, P40 to P47,       4.0         P102, P120, P130, P140 to P145       2.7         (When duty $\leq$ 70% Note 3)       2.4                                 | $4.0~V \le EV_{DD0} \le 5.5~V$                               |      |      | -30.0          | mA   |
|                             |        |                                                                                                                                                                             | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$ |      |      | -10.0          | mA   |
|                             |        |                                                                                                                                                                             | $2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$ |      |      | -5.0           | mA   |
|                             |        | Total of P05, P06, P10 to P17, $4$ P30, P31, P50 to P57, $7$ P64 to P67, P70 to P77, $7$ P80 to P87, P100, P101, P110, $7$ P111, P146, P147 $70\%$ Note 3)                  | $4.0~V \le EV_{DD0} \le 5.5~V$                               |      |      | -30.0          | mA   |
|                             |        |                                                                                                                                                                             | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$ |      |      | -19.0          | mA   |
|                             |        |                                                                                                                                                                             | 2.4 V ≤ EVDD0 < 2.7 V                                        |      |      | -10.0          | mA   |
| -                           |        | Total of all pins (When duty $\leq$ 70% <sup>Note 3</sup> )                                                                                                                 | $2.4 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$         |      |      | -60.0          | mA   |
|                             | Іон2   | Per pin for P20 to P27,<br>P150 to P156                                                                                                                                     | $2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$           |      |      | -0.1<br>Note 2 | mA   |
|                             |        | Total of all pins (When duty $\leq$ 70% <sup>Note 3</sup> )                                                                                                                 | $2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$           |      |      | -1.5           | mA   |

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

**Note 3.** Specification under conditions where the duty factor  $\leq$  70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IOH = -10.0 mA Total output current of pins =  $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$  mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



| Items               | Symbol | Conditions                                                                                                                                             |                                                                                  | MIN.      | TYP. | MAX.      | Unit |
|---------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------|------|-----------|------|
| Input voltage, high | Vih1   | P00 to P06, P10 to P17, P30,<br>P31, P40 to P47, P50 to P57,<br>P64 to P67, P70 to P77,<br>P80 to P87, P100 to P102, P110,<br>P111, P120, P140 to P147 | Normal input buffer                                                              | 0.8 EVDD0 |      | EVddo     | V    |
|                     | VIH2   | P01, P03, P04, P10, P14 to P17,<br>P30, P43, P44, P50, P53 to P55,                                                                                     | TTL input buffer<br>$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ | 2.2       |      | EVDD0     | V    |
|                     |        | P80, P81, P142, P143                                                                                                                                   | TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$      | 2.0       |      | EVDD0     | V    |
|                     |        |                                                                                                                                                        | TTL input buffer<br>2.4 V ≤ EVDD0 < 3.3 V                                        | 1.5       |      | EVDD0     | V    |
| Vı<br>Vı            | Vінз   | P20 to P27, P150 to P156                                                                                                                               |                                                                                  | 0.7 Vdd   |      | Vdd       | V    |
|                     | VIH4   | P60 to P63                                                                                                                                             | 0.7 EVDD0                                                                        |           | 6.0  | V         |      |
| Vih5                |        | P121 to P124, P137, EXCLK, EX                                                                                                                          | CLKS, RESET                                                                      | 0.8 Vdd   |      | Vdd       | V    |
| Input voltage, low  | VIL1   | P00 to P06, P10 to P17, P30,<br>P31, P40 to P47, P50 to P57,<br>P64 to P67, P70 to P77,<br>P80 to P87, P100 to P102, P110,<br>P111, P120, P140 to P147 | Normal input buffer                                                              | 0         |      | 0.2 EVDD0 | V    |
|                     | VIL2   | P01, P03, P04, P10, P14 to P17,<br>P30, P43, P44, P50, P53 to P55,                                                                                     | TTL input buffer<br>$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ | 0         |      | 0.8       | V    |
|                     |        | P80, P81, P142, P143                                                                                                                                   | TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$      | 0         |      | 0.5       | V    |
|                     |        |                                                                                                                                                        | TTL input buffer<br>2.4 V ≤ EVDD0 < 3.3 V                                        | 0         |      | 0.32      | V    |
|                     | VIL3   | P20 to P27, P150 to P156                                                                                                                               |                                                                                  | 0         |      | 0.3 VDD   | V    |
|                     | VIL4   | P60 to P63                                                                                                                                             |                                                                                  | 0         |      | 0.3 EVDD0 | V    |
|                     | VIL5   | P121 to P124, P137, EXCLK, EXCLKS, RESET                                                                                                               |                                                                                  | 0         |      | 0.2 VDD   | V    |

(TA = -40 to +105°C, 2.4 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, Vss = EVss0 = EVss1 = 0 V)

(3/5)

The maximum value of VIH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. Remark

Caution



#### (4) During communication at same potential (simplified I<sup>2</sup>C mode)

|--|

| Parameter                     | Symbol   | Conditions                                                                                                                                                                     | HS (high-speed                  | HS (high-speed main) mode |     |
|-------------------------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|-----|
|                               |          |                                                                                                                                                                                | MIN.                            | MAX.                      |     |
| SCLr clock frequency          | fscL     | $\begin{array}{l} 2.7 \ \text{V} \leq EV_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_{b} = 50 \ \text{pF}, \ R_{b} = 2.7 \ \text{k}\Omega \end{array}$                              |                                 | 400 Note 1                | kHz |
|                               |          | $\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 3 \ k\Omega \end{array}$                                                                  |                                 | 100 Note 1                | kHz |
| Hold time when SCLr = "L"     | t∟ow     | $\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$ | 1200                            |                           | ns  |
|                               |          | $\begin{array}{l} 2.4 V \leq EV_{DD0} \leq 5.5 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 3 \; k\Omega \end{array}$                                                                | 4600                            |                           | ns  |
| Hold time when SCLr = "H"     | thigh    | $\begin{array}{l} 2.7 \mbox{ V} \leq EV_{DD0} \leq 5.5 \mbox{ V}, \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7  \Omega \end{array}$                                               | 1200                            |                           | ns  |
|                               |          | $\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} \texttt{=} 100 \ pF, \ R_{b} \texttt{=} 3 \ k\Omega \end{array}$                                                | 4600                            |                           | ns  |
| Data setup time (reception)   | tsu: dat | $\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ C_b = 50 \ \text{pF}, \ \text{R}_b = 2.7 \ \text{k}\Omega \end{array}$                          | 1/f <sub>MCK</sub> + 220 Note 2 |                           | ns  |
|                               |          | $\label{eq:linear} \begin{split} 2.4 V &\leq E V_{DD0} \leq 5.5 \; V, \\ C_{b} &= 100 \; pF, \; R_{b} = 3 \; k \Omega \end{split}$                                             | 1/f <sub>MCK</sub> + 580 Note 2 |                           | ns  |
| Data hold time (transmission) | thd: dat | $\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$ | 0                               | 770                       | ns  |
|                               |          | $\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} = 100 \ pF, \ R_{b} = 3 \ k\Omega \end{array}$                                                                  | 0                               | 1420                      | ns  |

**Note 1.** The value must also be equal to or less than fMCK/4.

**Note 2.** Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)



## 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic

| Parameter                         | Symbol  | Conditions                                         | MIN. | TYP. | MAX. | Unit  |
|-----------------------------------|---------|----------------------------------------------------|------|------|------|-------|
| Temperature sensor output voltage | VTMPS25 | Setting ADS register = 80H, T <sub>A</sub> = +25°C |      | 1.05 |      | V     |
| Internal reference voltage        | Vbgr    | Setting ADS register = 81H                         | 1.38 | 1.45 | 1.5  | V     |
| Temperature coefficient           | Fvtmps  | Temperature sensor that depends on the temperature |      | -3.6 |      | mV/°C |
| Operation stabilization wait time | tamp    |                                                    | 5    |      |      | μs    |

(TA = -40 to +105°C, 2.4 V  $\leq$  VDD  $\leq$  5.5 V, Vss = EVsso = EVss1 = 0 V, HS (high-speed main) mode)

## 3.6.3 D/A converter characteristics

#### (TA = -40 to +105°C, 2.4 V $\leq$ EVsso = EVss1 $\leq$ VDD $\leq$ 5.5 V, Vss = EVsso = EVss1 = 0 V)

| Parameter     | Symbol       | Conditions           |                                | MIN. | TYP. | MAX. | Unit |
|---------------|--------------|----------------------|--------------------------------|------|------|------|------|
| Resolution    | RES          |                      |                                |      |      | 8    | bit  |
| Overall error | AINL         | Rload = 4 M $\Omega$ | $2.4~V \leq V_{DD} \leq 5.5~V$ |      |      | ±2.5 | LSB  |
|               |              | Rload = 8 M $\Omega$ | $2.4~V \leq V_{DD} \leq 5.5~V$ |      |      | ±2.5 | LSB  |
| Settling time | <b>t</b> SET | Cload = 20 pF        | $2.7~V \leq V_{DD} \leq 5.5~V$ |      |      | 3    | μs   |
|               |              |                      | $2.4~V \leq V_{DD} < 2.7~V$    |      |      | 6    | μs   |



# 4. PACKAGE DRAWINGS

## 4.1 30-pin products

R5F104AAASP, R5F104ACASP, R5F104ADASP, R5F104AEASP, R5F104AFASP, R5F104AGASP R5F104AADSP, R5F104ACDSP, R5F104ADDSP, R5F104AEDSP, R5F104AFDSP, R5F104AGDSP R5F104AAGSP, R5F104ACGSP, R5F104ADGSP, R5F104AEGSP, R5F104AFGSP, R5F104AGGSP

| JEITA Package Code  | RENESAS Code | Previous Code  | MASS (TYP.) [g] |
|---------------------|--------------|----------------|-----------------|
| P-LSSOP30-0300-0.65 | PLSP0030JB-B | S30MC-65-5A4-3 | 0.18            |







#### NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.



·κ

Α 9.85±0.15 в 0.45 MAX С 0.65 (T.P.)  $0.24_{-0.07}^{+0.08}$ D F 0.1±0.05 F 1.3±0.1 G 1.2 8.1±0.2 Н 6.1±0.2 I 1.0±0.2 J 0.17±0.03 κ L 0.5 0.13 Μ Ν 0.10 Р 3°+5° 0.25 т 0.6±0.15 U

©2012 Renesas Electronics Corporation. All rights reserved.



## 4.6 48-pin products

R5F104GAAFB, R5F104GCAFB, R5F104GDAFB, R5F104GEAFB, R5F104GFAFB, R5F104GGAFB, R5F104GHAFB, R5F104GJAFB

R5F104GADFB, R5F104GCDFB, R5F104GDDFB, R5F104GEDFB, R5F104GFDFB, R5F104GGDFB, R5F104GHDFB, R5F104GJDFB

R5F104GAGFB, R5F104GCGFB, R5F104GDGFB, R5F104GEGFB, R5F104GFGFB, R5F104GGGFB, R5F104GHGFB, R5F104GJGFB

| JEITA Package Code | RENESAS Code | Previous Code  | MASS (TYP.) [g] |
|--------------------|--------------|----------------|-----------------|
| P-LFQFP48-7x7-0.50 | PLQP0048KF-A | P48GA-50-8EU-1 | 0.16            |



#### NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.



ZE

0.75

R5F104LCAFP, R5F104LDAFP, R5F104LEAFP, R5F104LFAFP, R5F104LGAFP, R5F104LHAFP, R5F104LJAFP R5F104LCDFP, R5F104LDDFP, R5F104LEDFP, R5F104LFDFP, R5F104LGDFP, R5F104LHDFP, R5F104LJDFP R5F104LCGFP, R5F104LDGFP, R5F104LEGFP, R5F104LFGFP, R5F104LGGFP, R5F104LHGFP, R5F104LJGFP

| JEITA Package Code  | RENESAS Code | Previous Code  | MASS (TYP.) [g] |
|---------------------|--------------|----------------|-----------------|
| P-LQFP64-14x14-0.80 | PLQP0064GA-A | P64GC-80-GBW-1 | 0.7             |



© 2012 Renesas Electronics Corporation. All rights reserved.



## 4.10 100-pin products

R5F104PFAFB, R5F104PGAFB, R5F104PHAFB, R5F104PJAFB R5F104PFDFB, R5F104PGDFB, R5F104PHDFB, R5F104PJDFB R5F104PFGFB, R5F104PGGFB, R5F104PHGFB, R5F104PJGFB

| JEITA Package Code    | RENESAS Code | Previous Code   | MASS (TYP.) [g] |
|-----------------------|--------------|-----------------|-----------------|
| P-LFQFP100-14x14-0.50 | PLQP0100KE-A | P100GC-50-GBR-1 | 0.69            |



©2012 Renesas Electronics Corporation. All rights reserved.

