

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	30-LSSOP (0.240", 6.10mm Width)
Supplier Device Package	30-LSSOP
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104adasp-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Pin Configuration (Top View)

1.3.1 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}\text{)}.$

- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.3.6 48-pin products

• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)

- **Note 2.** Mounted on the 384 KB or more code flash memory products.
- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

10	(n)
1.71	
12/	∠ /

		30-pin	32-pin	36-pin	40-pin			
ľ	tem	R5F104Ax	R5F104Bx	R5F104Cx	R5F104Ex			
		(x = F, G)	(x = F, G)	(x = F, G)	(x = F to H)			
Clock output/buzzer	output	2	2	2	2			
		 [30-pin, 32-pin, 36-pin products] 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) [40-pin products] 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsuB = 32.768 kHz operation) 						
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels			
D/A converter		1 channel	2 channels					
Comparator		2 channels						
Serial interface		[30-pin, 32-pin products] • CSI: 1 channel/UART (• CSI: 1 channel/UART: • CSI: 1 channel/UART: [36-pin, 40-pin products] • CSI: 1 channel/UART (• CSI: 1 channel/UART: • CSI: 2 channel/UART:	 CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel [36-pin, 40-pin products] CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels 					
	I ² C bus	1 channel	1 channel	1 channel	1 channel			
Data transfer contro	ller (DTC)	30 sources	1		31 sources			
Event link controller	(ELC)	Event input: 21 Event trigger output: 8	Event input: 21, Event trigger output: 9		Event input: 22 Event trigger output: 9			
Vectored interrupt	Internal	24	24	24	24			
sources	External	6	6	6	7			
Key interrupt		-	—	—	4			
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access						
Power-on-reset circl	uit	• Power-on-reset: $1.51 \pm 0.04 \text{ V} (\text{T}_{A} = -40 \text{ to } +85^{\circ}\text{C})$ $1.51 \pm 0.06 \text{ V} (\text{T}_{A} = -40 \text{ to } +105^{\circ}\text{C})$ • Power-down-reset: $1.50 \pm 0.04 \text{ V} (\text{T}_{A} = -40 \text{ to } +85^{\circ}\text{C})$ $1.50 \pm 0.06 \text{ V} (\text{T}_{A} = -40 \text{ to } +105^{\circ}\text{C})$						
Voltage detector		1.63 V to 4.06 V (14 stag	es)					
On-chip debug funct	tion	Provided						
Power supply voltag	e	V _{DD} = 1.6 to 5.5 V (T _A = - V _{DD} = 2.4 to 5.5 V (T _A = -	-40 to +85°C) -40 to +105°C)					
Operating ambient t	emperature	$T_A = -40$ to +85°C (A: Consumer applications, D: Industrial applications), $T_A = -40$ to +105°C (G: Industrial applications)						

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

(2)	2)
(2/	<u>~</u>)

		44-pin	48-pin	52-pin	64-pin				
l	tem	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx				
		(x = F to H, J)	(x = F to H, J)	(x = F to H, J)	(x = F to H, J)				
Clock output/buzz	zer output	2	2	2	2				
		• 2.44 kHz, 4.88 kHz,	9.76 kHz, 1.25 MHz, 2.	5 MHz, 5 MHz, 10 MHz					
		(Main system clock: fmain = 20 MHz operation)							
		• 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz							
9/10 bit recolution					12 obonnolo				
8/10-bit resolution	TA/D converter		To channels	12 channels	12 channels				
D/A converter		2 channels	2 channels						
Comparator		2 channels							
Serial interface		[44-pin products]			:6 - d 120 - 4 - d - a - a - a - a				
		CSI: 1 channel/UAR		N-DUS): 1 channel/simpi	Iffed I2C: 1 channel				
		CSI: 2 channels/LIAI	RT: 1 channel/simplified	I ² C: 2 channels					
		[48-pin, 52-pin produc	ts]						
		CSI: 2 channels/UAI	RT (UART supporting L	IN-bus): 1 channel/simp	olified I ² C: 2 channels				
		CSI: 1 channel/UAR	T: 1 channel/simplified I	² C: 1 channel					
		CSI: 2 channels/UAF	RT: 1 channel/simplified	I ² C: 2 channels					
		[64-pin products]							
		CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I ² C: 2 channels							
		CSI: 2 channels/UAI	CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels						
		• CSI: 2 channels/UAI	RI: 1 channel/simplified		1				
	I ² C bus		1 channel	1 channel	1 channel				
Data transfer con	troller (DTC)	31 sources	32 sources		33 sources				
Event link control	ler (ELC)	Event input: 22							
	1	Event trigger output: 9	Event trigger output: 9						
Vectored inter-	Internal	24	24	24	24				
Tupi sources	External	7	10	12	13				
Key interrupt		4	6	8	8				
Reset		Reset by RESET pir	ı						
		 Internal reset by wat 	chdog timer						
		Internal reset by pov	ver-on-reset						
		Internal reset by volu	age delector	Note					
		Internal reset by RA	M parity error						
		Internal reset by illeg	gal-memory access						
Power-on-reset c	ircuit	Power-on-reset:	1.51 ±0.04 V (TA = -40	to +85°C)					
			1.51 ±0.06 V (TA = -40	to +105°C)					
		• Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (TA = -40 to +85°C)							
		1.50 ±0.06 V (TA = -40 to +105°C)							
Voltage detector		1.63 V to 4.06 V (14 s	tages)						
On-chip debug fu	nction	Provided	Provided						
Power supply vol	tage	VDD = 1.6 to 5.5 V (TA	$= -40 \text{ to } +85^{\circ}\text{C}$						
Operating and in	at tomporet	VUU = 2.4 to 5.5 V (1A)	$\frac{1}{2} - \frac{1}{2} + \frac{1}$	Du Industrial application					
Operating ambier	it temperature	$IA = -40$ to $+85^{\circ}C$ (A: $T_{A} = -40$ to $+105^{\circ}C$ (C	TA = -40 to +85°C (A: Consumer applications, D: Industrial applications), TA = -40 to +105°C (C: Industrial applications)						
		IA+0 10 + 105 C (G		/					

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(R20UT2944).

 Note
 The flash library uses RAM in self-programming and rewriting of the data flash memory.

 The target products and start address of the RAM areas used by the flash library are shown below.

 R5F104xL (x = G, L, M, P): Start address F3F00H

 For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family

- Note 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\text{@1}} \text{ MHz to } 32 \text{ MHz}$

2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{0}}1~\mbox{MHz}$ to 8 MHz}$$

LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- **Note 8.** Current flowing during programming of the data flash.
- Note 9. Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
- **Note 11.** Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- **Note 12.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

Items	Symbol	Conditio	ns	MIN.	TYP.	MAX.	Unit
Timer RD input high-level	tтdiн,	TRDIOA0, TRDIOA1, TRDIOE	B0, TRDIOB1,	3/fclk			ns
width, low-level width	t⊤dil	TRDIOC0, TRDIOC1, TRDIOI					
Timer RD forced cutoff signal	t TDSIL	P130/INTP0	P130/INTP0 2MHz < fclk ≤ 32 MHz				μs
input low-level width			$f_{CLK} \leq 2 \ MHz$	1/fclk + 1			
Timer RG input high-level	tтgiн,	TRGIOA, TRGIOB		2.5/fclk			ns
width, low-level width	t⊤gi∟						
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
TO10 to TO13,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			8	MHz
TRJIOU, TRJOU, TRDIOAN TRDIOA1			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
TRDIOB0, TRDIOB1,			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1,		LS (low-speed main) mode	$1.8 \text{ V} \leq EV \text{DD0} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
TRGIOA, TRGIOB output frequency		LV (low-voltage main) mode	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
frequency			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed main) mode	$1.8 \text{ V} \leq EV \text{DD0} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LV (low-voltage main) mode	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
Interrupt input high-level	tinth,	INTP0	$1.6~V \le V_{DD} \le 5.5~V$	1			μs
width, low-level width	tintl	INTP1 to INTP11	$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1			μs
Key interrupt input low-level	t KR	KR0 to KR7	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	250			ns
width			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$	1			μs
RESET low-level width	trsl			10			μs

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Cond	litions	HS (high-speed main) LS mode		LS (low-speed mode	LS (low-speed main) mode		LV (low-voltage main) mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tксү2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	20 MHz < fмск	8/fмск		_		_		ns
time Note 5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	16 MHz < fмск	8/fмск		_		_		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns	
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns	
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/ tkH2, $4.0 V \le EV_{DI}$		$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		tĸcy2/2 - 7		tkcy2/2 - 7		tксү2/2 - 7		ns
low-level width tkl2	TKL2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tkcy2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns
	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		ns	
	$1.7~V \leq EV_{DD0} \leq 5.5~V$		tксү2/2 - 66		tkcy2/2 - 66		tkcy2/2 - 66		ns	
	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			_		tkcy2/2 - 66		tkcy2/2 - 66		ns
SIp setup time	tsik2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns	
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 40		1/fмск + 40		1/fмск + 40		ns	
		$1.6~V \leq EV_{DD0} \leq 5.5~V$				1/fмск + 40		1/fмск + 40		ns
SIp hold time	tksi2	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		$1.7~V \leq EV_{DD0} \leq 5.5~V$		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$				1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 100		2/fмск + 110		2/fмск + 110	ns
			$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/fмск + 220		2/fмск + 220		2/fмск + 220	ns
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_		2/fмск + 220		2/fмск + 220	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

RL78/G14

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Conditions		HS (high-s main) mo	de LS (low-speed ma mode		d main)	nain) LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ 2/fc∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 20 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq EV_{DDO} \\ 2.7 \ V \leq V_b \leq 4 \\ C_b = 20 \ pF, \ R_b \end{array}$	o ≤ 5.5 V, .0 V, = 1.4 kΩ	tkcy1/2 - 50		tkcy1/2 - 50		tkcy1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 20 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		ns
SCKp low-level width	tĸ∟ı			tксү1/2 - 7		tксү1/2 - 50		tkcy1/2 - 50		ns
				tксү1/2 - 10		tkcy1/2 - 50		tkcy1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsiк1	4.0 V \leq EV _{DD0} \leq 5.5 V, 2.7 V \leq V _b \leq 4.0 V, C _b = 20 pF. R _b = 1.4 kΩ		58		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tĸsı1	$\begin{array}{l} 4.0 \ V \leq EV_{DDO} \\ 2.7 \ V \leq V_{b} \leq V_{b} \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	0 ≤ 5.5 V, 4.0 V, = 1.4 kΩ	10		10		10		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 1 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to SOp out- put ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{DD}\\ 2.7 \ V \leq V_{b} \leq V\\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	0 ≤ 5.5 V, 4.0 V, = 1.4 kΩ		60		60		60	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ		130		130		130	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(Notes, Caution, and Remarks are listed on the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $EVDD0 \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VoD tolerance (for the 30- to 52-pin products)/EVoD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(3) I²C fast mode plus

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions		HS (hig main)	h-speed mode	LS (lov main)	v-speed mode	LV (low main)	-voltage mode	Unit
					MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	$ \begin{array}{ c c c } \mbox{Fast mode plus:} \\ \mbox{fcLk} \geq 10 \mbox{ MHz} \end{array} 2.7 \mbox{ V} \leq \mbox{EV}_{\mbox{DD0}} \leq 5.5 \mbox{ V} \\ \label{eq:clk} \end{array} $		0	1000	_		—		kHz
Setup time of restart condi- tion	tsu: sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.26		_		—		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.26		-		—		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7~V \leq EV_{DD0} \leq 5$.5 V	0.5		—		—		μs
Hold time when SCLA0 = "H"	tніgн	$2.7~V \leq EV_{DD0} \leq 5$.5 V	0.26		—		—		μs
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5$.5 V	50		-	_	-	_	ns
Data hold time (transmission) Note 2	thd: dat	$2.7 \text{ V} \leq EV_{DD0} \leq 5$	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$		0.45	-	_	-	_	μs
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{DD0} \leq 5$	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$			-	_	-	_	μs
Bus-free time	t BUF	$2.7~V \leq EV_{DD0} \leq 5$.5 V	0.5		-	_	_	_	μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEDAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- Note 3. The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Fast mode plus: Cb = 120 pF, Rb = 1.1 k Ω

IICA serial transfer timing

Remark n = 0, 1

Absolute Maximum Ratings

(2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
		-170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins 170 mA	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA
			P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	Та	In normal o	pperation mode	-40 to +105	°C
temperature		In flash me	mory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

RL78/G14

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- **Note 2.** When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.

Note 5.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz

Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit
				MIN.	MAX.	
SCKp cycle time	t КСҮ1	tĸcy1 ≥ 4/fcLĸ	$2.7 \text{ V} \leq \text{Evdd0} \leq 5.5 \text{ V}$	250		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	500		ns
SCKp high-/low-level width	tĸнı, tĸ∟ı	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 36		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 76		ns
SIp setup time (to SCKp↑) Note 1	tsıĸı	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	66		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	66		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	113		ns
SIp hold time (from SCKp [↑]) Note 2	tksii			38		ns
Delay time from SCKp \downarrow to SOp output ^{Note 3}	tkso1	C = 30 pF Note 4	ļ		50	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(1/2)

Parameter	Symbol			Conditions	HS (high-s	peed main) mode	Unit
					MIN.	MAX.	
Transfer rate		reception	4.0 2.7	$\begin{split} V &\leq E V_{DD0} \leq 5.5 \text{ V}, \\ V &\leq V_b \leq 4.0 \text{ V} \end{split}$		f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate f_{MCK} = f_{CLK} Note 3		2.6	Mbps
			2.7 2.3	$\begin{split} &V \leq EV_{DD0} < 4.0 \text{ V}, \\ &V \leq V_b \leq 2.7 \text{ V} \end{split}$		f _{MCK} /12 Note 1	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 3$		2.6	Mbps
			2.4 1.6	$\begin{split} &V \leq EV_{DD0} < 3.3 \text{ V}, \\ &V \leq V_{b} \leq 2.0 \text{ V} \end{split}$		f _{MCK} /12 Notes 1, 2	bps
				Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 3$		2.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

```
Note 2. The following conditions are required for low voltage interface when EVDD0 < VDD.
```

 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$: MAX. 1.3 Mbps

- **Note 3.** The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are: HS (high-speed main) mode: $32 \text{ MHz} (2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V})$
 - 16 MHz (2.4 V \leq VDD \leq 5.5 V)
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.
- Remark 1. Vb [V]: Communication line voltage
- **Remark 2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

3.5.2 Serial interface IICA

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) mode				Unit
			Standard mode		Fast mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscl	Fast mode: fc∟ĸ ≥ 3.5 MHz	_	—	0	400	kHz
		Standard mode: fc∟k ≥ 1 MHz	0	100	_	—	kHz
Setup time of restart condition	tsu: sta		4.7		0.6		μs
Hold time Note 1	thd: STA		4.0		0.6		μs
Hold time when SCLA0 = "L"	t∟ow		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu: dat		250		100		ns
Data hold time (transmission) Note 2	thd: dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu: sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DE DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing

Remark n = 0, 1

3.6.2 Temperature sensor characteristics/internal reference voltage characteristic

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V, HS (high-speed main) mode)

3.6.3 D/A converter characteristics

(TA = -40 to +105°C, 2.4 V \leq EVsso = EVss1 \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 M Ω	$2.4~V \le V_{DD} \le 5.5~V$			±2.5	LSB
		Rload = 8 M Ω	$2.4~V \le V_{DD} \le 5.5~V$			±2.5	LSB
Settling time	t SET	Cload = 20 pF	$2.7~V \leq V_{DD} \leq 5.5~V$			3	μs
			$2.4~V \leq V_{DD} < 2.7~V$			6	μs

