

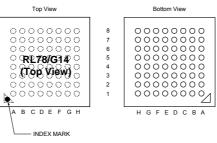
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


XF

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I²C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	32-HWQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104bcana-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• 64-pin plastic FLGA (5 × 5 mm, 0.5 mm pitch)

	А	В	С	D	E	F	G	н	
8	EVDD0	EVsso	P121/X1	P122/X2/ EXCLK	P137/INTP0	P123/XT1	P124/XT2/ EXCLKS	P120/ANI19/ VCOUT0 Note 1	8
7	P60/SCLA0	Vdd	Vss	REGC	RESET	P01/TO00/ TRGCLKB/ TRJIO0	P00/TI00/ TRGCLKA/ (TRJO0)	P140/ PCLBUZ0/ INTP6	7
6	P61/SDAA0	P62/SSI00	P63	P40/TOOL0	P41/(TRJIO0)	P43/(INTP9)	P02/ANI17/ SO10/TxD1	P141/ PCLBUZ1/ INTP7	6
5	P77/KR7/ INTP11/(TXD2)	P31/TI03/ TO03/INTP4/ (PCLBUZ0)/ (TRJIO0)	P53/(INTP2)	P42/(INTP8)	P03/ANI16/ SI10/RxD1/ SDA10	P04/SCK10/ SCL10	P130	P20/ANI0/ AVrefp	5
4	P75/KR5/ INTP9/ SCK01/ SCL01	P76/KR6/ INTP10/ (RXD2)	P52/(INTP1)	P54/(INTP3)	P16/TI01/ TO01/INTP5/ TRDIOC0/ IVREF0 Note 1/ (SI00)/(RXD0)	P21/ANI1/ AVrefm	P22/ANI2/ ANO0 Note 1	P23/ANI3/ ANO1 ^{Note 1}	4
3	P70/KR0/ SCK21/ SCL21	P73/KR3/ SO01	P74/KR4/ INTP8/SI01/ SDA01	P17/TI02/TO02/ TRDIOA0/ TRDCLK/ IVCMP0 Note 1/ (SO00)/(TXD0)	P15/SCK20/ SCL20/ TRDIOB0/ (SDAA0)	P12/SO11/ TRDIOB1/ IVREF1 Note 1/ (INTP5)/ (TxD0_1) Note 2	P24/ANI4	P26/ANI6	3
2	P30/INTP3/ RTC1HZ/ SCK00/ SCL00/TRJO0	P72/KR2/ SO21	P71/KR1/ SI21/SDA21	P06/(INTP11)/ (TRJIO0)	P14/RxD2/ SI20/SDA20/ TRDIOD0/ (SCLA0)	P11/SI11/ SDA11/ TRDIOC1/ (RxD0_1) Note 2	P25/ANI5	P27/ANI7	2
1	P05/(INTP10)	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/ TRGIOA/ (TRJO0)	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	P55/ (PCLBUZ1)/ (SCK00)/ (INTP4)	P13/TxD2/ SO20/ TRDIOA1/ IVCMP1 Note 1	P10/SCK11/ SCL11/ TRDIOD1	P146	P147/ANI18/ VCOUT1 Note 1	1
	А	В	С	D	E	F	G	Н	

Note 1. Mounted on the 96 KB or more code flash memory products.

Note 2. Mounted on the 384 KB or more code flash memory products.

Caution 1. Make EVsso pin the same potential as VSS pin.

Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.

Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.

Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

10	$\langle \mathbf{n} \rangle$
12	121
12	~ /

					(2/2				
		30-pin	32-pin	36-pin	40-pin				
ľ	Item R5F104Ax (x = A, C to E) R5F104Bx (x = A, C to E) R5F104Cx (x = A, C to E) publbuzzer output 2 2 2 i30-pin, 32-pin, 36-pin products] - 2.4 kHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAN = 20 MHz operation) i40-pin products] - 2.4 kHz, 4.8 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 10 MHz (Main system clock: fMAN = 20 MHz operation) - 2.4 kHz, 4.8 kHz, 9.76 kHz, 1.25 MHz, 5 MHz, 10 MHz (Main system clock: fSul = 2.2.768 kHz, 1.92 kHz, 10.384 kHz, 33 (Subsystem clock: fSul = 32.768 kHz, 0.906 kHz, 8.192 kHz, 16.384 kHz, 33 (Subsystem clock: fSul = 32.768 kHz, 0.906 kHz, 8.192 kHz, 16.384 kHz, 33 (Subsystem clock: fSul = 32.768 kHz, 0.906 kHz, 8.192 kHz, 16.384 kHz, 33 (Subsystem clock: fSul = 32.768 kHz, 0.906 kHz, 8.192 kHz, 16.384 kHz, 33 (Subsystem clock: fSul = 32.768 kHz, 0.907 kHz, 1.010 kHz (Main system clock: fSul = 32.768 kHz, 0.907 kHz, 1.010 kHz, 10.384 kHz, 33 (Subsystem clock: fSul = 32.768 kHz, 0.907 kHz, 1.010 kHz, 1.01	R5F104Ex (x = A, C to E)							
Clock output/buzzer	output	2	2	2	2				
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) [40-pin products] 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz 							
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels				
Serial interface		 CSI: 1 channel/UART (U CSI: 1 channel/UART: 1 CSI: 1 channel/UART: 1 [36-pin, 40-pin products] CSI: 1 channel/UART (U CSI: 1 channel/UART: 1 	 CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel [36-pin, 40-pin products] CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel 						
	I ² C bus	1 channel	1 channel	1 channel	1 channel				
Data transfer contro	ller (DTC)	28 sources 29 sources							
Event link controller (ELC)									
Vectored interrupt	Internal	24	24	24	24				
sources	External	6	6	6	7				
Key interrupt				_	4				
Reset		 Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error 							
Power-on-reset circuit		1.51 ±0.06 V (T _A = -40 to +105°C) • Power-down-reset: 1.50 ±0.04 V (T _A = -40 to +85°C)							
Voltage detector		1.63 V to 4.06 V (14 stage	es)						
On-chip debug funct	lion	Provided							
Power supply voltag	e	```	,						
Operating ambient t	emperature	•		dustrial applications),					

Note

The illegal instruction is generated when instruction code $\ensuremath{\mathsf{FFH}}$ is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

RENESAS

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

10	(α)
1 /	///
12	~ /

			<u> </u>		(2/2				
		30-pin	32-pin	36-pin	40-pin				
ľ	tem	R5F104Ax (x = F, G)	R5F104Bx (x = F, G)	R5F104Cx (x = F, G)	R5F104Ex (x = F to H)				
Clock output/buzzer output		2	2	2	2				
		 [30-pin, 32-pin, 36-pin products] 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) [40-pin products] 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fSUB = 32.768 kHz operation) 							
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels				
D/A converter		1 channel	2 channels						
Comparator		2 channels	I						
Serial interface		 CSI: 1 channel/UART: 1 CSI: 1 channel/UART: 1 [36-pin, 40-pin products] CSI: 1 channel/UART (I CSI: 1 channel/UART: 1 CSI: 2 channels/UART: 	 CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel 						
	I ² C bus	1 channel	1 channel	1 channel	1 channel				
Data transfer contro	ller (DTC)	30 sources			31 sources				
Data transfer controller (DTC) Event link controller (ELC)		Event input: 21 Event trigger output: 8	Event input: 21, E	Event input: 22 Event trigger output: 9					
Vectored interrupt	Internal	24	24	24	24				
sources	External	6	6	6	7				
Key interrupt		-	—	—	4				
Reset Power-on-reset circu	uit	 Internal reset by power- Internal reset by voltage Internal reset by illegal Internal reset by RAM p Internal reset by illegal- 	 Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 						
Power-on-reset circuit		• Power-down-reset: 1.5	• Power-on-reset: $1.51 \pm 0.04 \text{ V}$ (Ta = -40 to +85°C) $1.51 \pm 0.06 \text{ V}$ (Ta = -40 to +105°C) • Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (Ta = -40 to +85°C) $1.50 \pm 0.06 \text{ V}$ (Ta = -40 to +105°C)						
Voltage detector		1.63 V to 4.06 V (14 stage	1.63 V to 4.06 V (14 stages)						
On-chip debug funct	tion	Provided							
Power supply voltag	е	V _{DD} = 1.6 to 5.5 V (T _A = - V _{DD} = 2.4 to 5.5 V (T _A = -	,						
Operating ambient t	emperature	T _A = -40 to +85°C (A: Co T _A = -40 to +105°C (G: In		ndustrial applications),					

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

Items	Symbol	Condition	าร	MIN.	TYP.	MAX.	Unit
Output voltage, high	VOH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -10.0 mA	EVDD0 - 1.5		1.3 0.7 0.6 0.4 0.4 0.4 0.4 2.0	V
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -3.0 mA	EVDD0 - 0.7	1.5 0.7 0.5 5 5 6 0.7 0.7 0.5 1.3 0.7 0.4 0.4 0.4 0.4 0.4 0.4	V	
		P111, P120, P130, P140 to P147	1.8 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -1.5 mA	EVDD0 - 0.5		1.3 0.7 0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	V
			1.6 V ≤ EVDD0 < 1.8 V, Іон1 = -1.0 mA	EVDD0 - 0.5			V
	Voh2	P20 to P27, P150 to P156	1.6 V ≤ VDD ≤ 5.5 V, IOH2 = -100 μA	Vdd - 0.5			V
Output voltage, low	VOL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 20.0 mA			1.3	V
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 8.5 \text{ mA}$			0.7	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 3.0 mA			0.6	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 0.6 mA			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 0.3 mA			0.4	V
	Vol2	P20 to P27, P150 to P156	$1.6 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V},$ Iol2 = 400 μA			0.4	V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 5.0 mA			0.4	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 2.0 mA			0.4	V
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 1.0 mA			0.4	V

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(4/5)

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

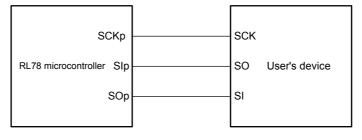
- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- **Note 2.** During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: 1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** file: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

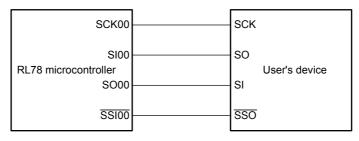
(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Un
Supply	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.9		mA
ote 1		ing mode	mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.9		
Note 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.5		
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.5		
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		6.0	11.2	m/
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		6.0	11.2	
				fносо = 32 MHz,	Normal	VDD = 5.0 V		5.5	10.6	
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		5.5	10.6	
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.7	8.6	
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.7	8.6	
				fносо = 24 MHz,	Normal	VDD = 5.0 V		4.4	8.2	
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.4	8.2	
				fносо = 16 MHz,	Normal	VDD = 5.0 V		3.3	5.9	
				fiн = 16 MHz Note 3	operation	VDD = 3.0 V		3.3	5.9	
			LS (low-speed main)	fносо = 8 MHz,	Normal	VDD = 3.0 V		1.5	2.5	m
			mode Note 5	fiH = 8 MHz Note 3	operation	VDD = 2.0 V		1.5	2.5	
			LV (low-voltage main)	fносо = 4 MHz,	Normal	VDD = 3.0 V		1.5	2.1	m
			mode Note 5	fiH = 4 MHz Note 3	operation	VDD = 2.0 V		1.5	2.1	
			HS (high-speed main)	f _{MX} = 20 MHz Note 2,	Normal	Square wave input		3.7	6.8	m
			mode Note 5	VDD = 5.0 V	operation	Resonator connection		3.9	7.0	
				f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.7	6.8	
				VDD = 3.0 V	operation	Resonator connection		3.9	7.0	
				fmx = 10 MHz ^{Note 2} , VDD = 5.0 V	Normal operation	Square wave input		2.3	4.1	
						Resonator connection		2.3	4.2	-
				f _{MX} = 10 MHz Note 2,	Normal	Square wave input		2.3	4.1	
			LS (low-speed main)	VDD = 3.0 V	operation	Resonator connection		2.3	4.2	1
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.4	2.4	m
			mode Note 5	VDD = 3.0 V	operation	Resonator connection		1.4	2.5	
			-	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.4	2.4	
				VDD = 2.0 V	operation	Resonator connection		1.4	2.5	
			Subsystem clock	fsub = 32.768 kHz Note 4	Normal	Square wave input		5.2		μ
			operation	$T_A = -40^{\circ}C$	operation	Resonator connection		5.2		1
				fsuв = 32.768 kHz ^{Note 4}	Normal	Square wave input		5.3	7.7	
				$T_A = +25^{\circ}C$	operation	Resonator connection		5.3	7.7	
				fsuв = 32.768 kHz ^{Note 4}	Normal	Square wave input		5.5	10.6	
				$T_A = +50^{\circ}C$	operation	Resonator connection		5.5	10.6	
				fsub = 32.768 kHz Note 4	Normal	Square wave input		5.9	13.2	
				$T_A = +70^{\circ}C$	operation	Resonator connection	<u> </u>	6.0	13.2	1
				fsub = 32.768 kHz ^{Note 4}	Normal	Square wave input		6.8	17.5	
				$T_A = +85^{\circ}C$	operation	Resonator connection		6.9	17.5	1

(Notes and Remarks are listed on the next page.)


Description	0		0					1)((),		11.2
Parameter	Symbol		Conditions	HS (high-spee mode	mode		l main)	LV (low-voltage mode	Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	120		120		120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	200		200		200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		400		400		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		400		400		ns
		DAPmn = 1	$2.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		1/fмск + 400		1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400	400 120 1/fmck + 120 200 1/fmck + 200 400 1/fmck + 400 400 1/fmck + 400 120 1/fmck + 120 200 1/fmck + 400 400 1/fmck + 200 400 1/fmck + 400 120 1/fmck + 200 400 1/fmck + 200 400 1/fmck + 200		ns	
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		1/fмск + 400		1/fмск + 400		ns
		DAPmn = 1	$2.7~V \leq EV_{DD0} \leq 5.5~V$	120		120		120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	200		200		200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	$\leq 5.5 \vee$ 1/fmck + 200 1/fmck + 200 1/fmck + 200 $\leq 5.5 \vee$ 1/fmck + 400 1/fmck + 400 1/fmck + 400 $\leq 5.5 \vee$ 1/fmck + 400 1/fmck + 400 1/fmck + 400 $\leq 5.5 \vee$ - 1/fmck + 400 1/fmck + 400 $\leq 5.5 \vee$ 1/fmck + 120 1/fmck + 120 1/fmck + 120 $\leq 5.5 \vee$ 1/fmck + 200 1/fmck + 200 1/fmck + 200 $\leq 5.5 \vee$ 1/fmck + 400 1/fmck + 400 1/fmck + 400 $\leq 5.5 \vee$ 1/fmck + 400 1/fmck + 400 1/fmck + 400 $\leq 5.5 \vee$ 120 120 120 120 $\leq 5.5 \vee$ 200 200 200 200 $\leq 5.5 \vee$ 400 400 400 400		ns				
			1.6 V ≤ EVDD0 ≤ 5.5 V	—		400		400		ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

- **Note 4.** This value as an example is calculated when the conditions described in the "Conditions" column are met.
- Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- Note 5. Use it with $EV_{DD0} \ge V_b$.
- **Note 6.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate

sfer rate =
$$\frac{}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$

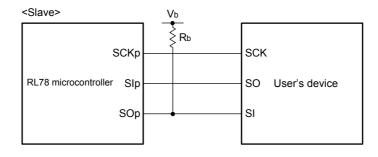
1

Baud rate error (theoretical value) =

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 100 [\%]$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

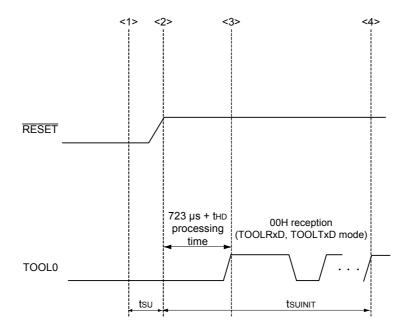
* This value is the theoretical value of the relative difference between the transmission and reception sides


- **Note 7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $EVDD0 \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VoD tolerance (for the 30- to 52-pin products)/EVoD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)



- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

2.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends

 $\ensuremath{\text{tHD:}}$ $\ensuremath{\text{How}}$ long to keep the TOOL0 pin at the low level from when the external resets end

(excluding the processing time of the firmware to control the flash memory)

3.2 Oscillator Characteristics

3.2.1 X1, XT1 characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V \text{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	1.0		16.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

3.2.2 On-chip oscillator characteristics

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator clock frequency		-20 to +85°C	$2.4~V \leq V \text{DD} \leq 5.5~V$	-1.0		+1.0	%
accuracy		-40 to -20°C	$2.4~V \leq V \text{DD} \leq 5.5~V$	-1.5		+1.5	%
		+85 to +105°C	$2.4~V \leq V \text{DD} \leq 5.5~V$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Itomo	Items Symbol Conditions						1.1.0.14
Items	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Output voltage, high	utput voltage, high Vон1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOH1 = -3.0 mA	EVDD0 - 0.7			V
		D00 to D07 D400 to D400 D440	2.7 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -2.0 mA	EVDD0 - 0.6			V
		P111, P120, P130, P140 to P147	2.4 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -1.5 mA	EVDD0 - 0.5			V
	Voh2	P20 to P27, P150 to P156	2.4 V ≤ Vdd ≤ 5.5 V, Ioh2 = -100 μA	Vdd - 0.5			V
Output voltage, low	VOL1	P31, P40 to P47, P50 to P57, I P64 to P67, P70 to P77, 2 P80 to P87, P100 to P102, P110, 1	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ I_{OL1} = 8.5 \ mA \end{array}$			0.7	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 3.0 \text{ mA}$			0.6	V
		P111, P120, P130, P140 to P147	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{IOL1} = 1.5 \text{ mA}$			0.4	V
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 0.6 mA			0.4	V
	VOL2	P20 to P27, P150 to P156	$\begin{array}{l} \text{2.4 V} \leq \text{Vdd} \leq 5.5 \text{ V},\\ \text{Iol2 = 400 } \mu\text{A} \end{array}$			0.4	V
	Vol3	P60 to P63	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 15.0 mA			2.0	V
		$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 5.0 mA			0.4	V	
	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 3.0 mA			0.4	V		
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 2.0 mA			0.4	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(4/5)

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

$(IA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$							(2/2)
Items	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdін, tтdі∟	TRDIOA0, TRDIOA1, TRDIOI TRDIOC0, TRDIOC1, TRDIO	, ,	3/fclк			ns
Timer RD forced cutoff signal	t TDSIL	P130/INTP0	$2MHz < f_{CLK} \le 32 MHz$	1			μs
input low-level width			fclk ≤ 2 MHz	1/fclк + 1			
Timer RG input high-level width, low-level width	tтGін, tтGі∟	TRGIOA, TRGIOB		2.5/fclk			ns
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			16	MHz
TO10 to TO13,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
TRJIO0, TRJO0, TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB output frequency			2.4 V ≤ EVDD0 < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
frequency			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
Interrupt input high-level	tinth,	INTP0	$2.4~V \leq V_{DD} \leq 5.5~V$	1			μs
width, low-level width	t INTL	INTP1 to INTP11	$2.4~V \leq EV_{DD0} \leq 5.5~V$	1			μs
Key interrupt input low-level width	tкr	KR0 to KR7	$2.4 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsl			10			μs

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

3.6.2 Temperature sensor characteristics/internal reference voltage characteristic

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V, HS (high-speed main) mode)

3.6.3 D/A converter characteristics

(TA = -40 to +105°C, 2.4 V \leq EVsso = EVss1 \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V)

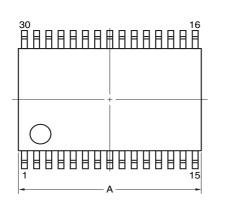
Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 M Ω	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.5	LSB
		Rload = 8 MΩ	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.5	LSB
Settling time	tset	Cload = 20 pF	$2.7~V \leq V\text{DD} \leq 5.5~V$			3	μs
			$2.4~V \leq V_{DD} < 2.7~V$			6	μs

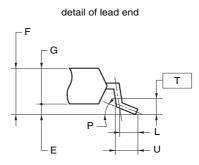
3.6.6 LVD circuit characteristics

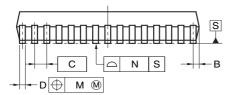
(1) Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

Pa	irameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit					
Voltage detection	Supply voltage level	VLVD0	Rising edge	3.90	4.06	4.22	V					
threshold			Falling edge	3.83	3.98	4.13	V					
		VLVD1	Rising edge	3.60	3.75	3.90	V					
			Falling edge	3.53	3.67	3.81	V					
		VLVD2	Rising edge	3.01	3.13	3.25	V					
			Falling edge	2.94	3.06	3.18	V					
		VLVD3	Rising edge	2.90	3.02	3.14	V					
								Falling edge	2.85	2.96	3.07	V
		VLVD4	Rising edge	2.81	2.92	3.03	V					
			Falling edge	2.75	2.86	2.97	V					
		VLVD5	Rising edge	2.70	2.81	2.92	V					
				Falling edge	2.64	2.75	2.86	V				
					VLVD6	Rising edge	2.61	2.71	2.81	V		
							Falling edge	2.55	2.65	2.75	V	
		VLVD7	Rising edge	2.51	2.61	2.71	V					
			Falling edge	2.45	2.55	2.65	V					
Minimum pulse wid	dth	tlw		300			μs					
Detection delay tin	ne					300	μs					

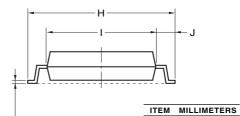



4. PACKAGE DRAWINGS


4.1 30-pin products

R5F104AAASP, R5F104ACASP, R5F104ADASP, R5F104AEASP, R5F104AFASP, R5F104AGASP R5F104AADSP, R5F104ACDSP, R5F104ADDSP, R5F104AEDSP, R5F104AFDSP, R5F104AGDSP R5F104AAGSP, R5F104ACGSP, R5F104ADGSP, R5F104AEGSP, R5F104AFGSP, R5F104AGGSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



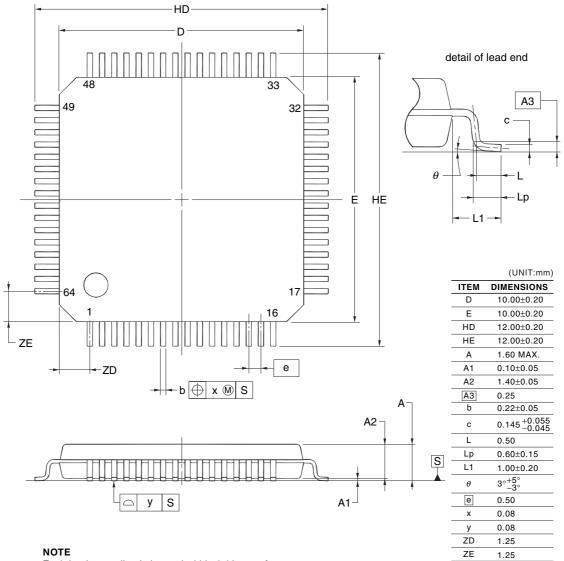
NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

·κ

Α 9.85±0.15 в 0.45 MAX С 0.65 (T.P.) $0.24_{-0.07}^{+0.08}$ D F 0.1±0.05 F 1.3±0.1 G 1.2 8.1±0.2 Н 6.1±0.2 I 1.0±0.2 J 0.17±0.03 κ L 0.5 0.13 Μ Ν 0.10 Р 3°+5° 0.25 т 0.6±0.15 U

©2012 Renesas Electronics Corporation. All rights reserved.

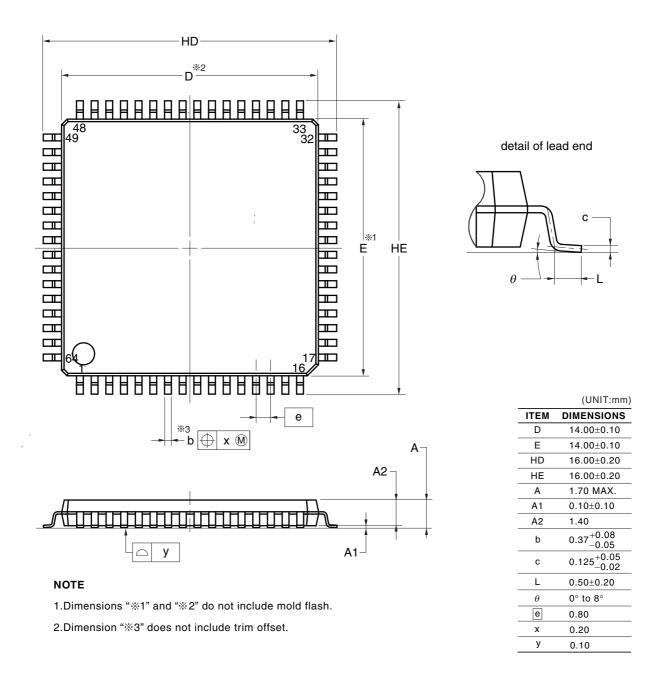


R5F104LCAFB, R5F104LDAFB, R5F104LEAFB, R5F104LFAFB, R5F104LGAFB, R5F104LHAFB, R5F104LJAFB

R5F104LCDFB, R5F104LDDFB, R5F104LEDFB, R5F104LFDFB, R5F104LGDFB, R5F104LHDFB, R5F104LJDFB

R5F104LCGFB, R5F104LDGFB, R5F104LEGFB, R5F104LFGFB, R5F104LGGFB, R5F104LHGFB, R5F104LJGFB

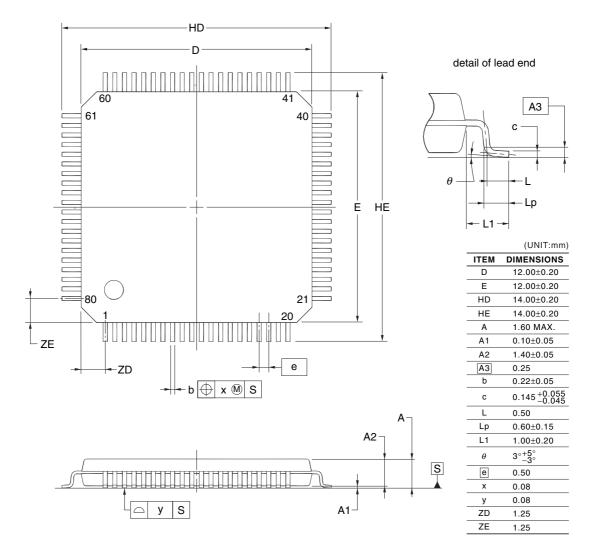
JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35


Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

R5F104LCAFP, R5F104LDAFP, R5F104LEAFP, R5F104LFAFP, R5F104LGAFP, R5F104LHAFP, R5F104LJAFP R5F104LCDFP, R5F104LDDFP, R5F104LEDFP, R5F104LFDFP, R5F104LGDFP, R5F104LHDFP, R5F104LJDFP R5F104LCGFP, R5F104LDGFP, R5F104LEGFP, R5F104LFGFP, R5F104LGGFP, R5F104LHGFP, R5F104LJGFP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP64-14x14-0.80	PLQP0064GA-A	P64GC-80-GBW-1	0.7


© 2012 Renesas Electronics Corporation. All rights reserved.

4.9 80-pin products

R5F104MFAFB, R5F104MGAFB, R5F104MHAFB, R5F104MJAFB R5F104MFDFB, R5F104MGDFB, R5F104MHDFB, R5F104MJDFB R5F104MFGFB, R5F104MGGFB, R5F104MHGFB, R5F104MJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP80-12x12-0.50	PLQP0080KE-A	P80GK-50-8EU-2	0.53

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

