

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104bdafp-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Ordering Information

Part No. R5F104LEAxxxFB#V0 Packaging specification #30: Tray (LFQFP, LQFP) #U0: Tray (HWQFN, WFLGA, FLGA) #V0: Tray (LFQFP, LQFP, LSSOP) #50: Embossed Tape (LFQFP, LQFP) #W0:Embossed Tape (HWQFN, WFLGA, FLGA) #X0: Embossed Tape (LFQFP, LQFP, LSSOP) Package type: SP: LSSOP, 0.65 mm pitch FP: LQFP, 0.80 mm pitch FA: LQFP, 0.65 mm pitch FB: LFQFP, 0.50 mm pitch NA: HWQFN, 0.50 mm pitch LA: WFLGA, 0.50 mm pitch FLGA, 0.50 mm pitch ROM number (Omitted with blank products) Fields of application: A: Consumer applications, TA = -40 to +85 °C D: Industrial applications, TA = -40 to +85 $^{\circ}$ C G: Industrial applications, TA = -40 to +105 °C ROM capacity: A: 16 KB C: 32 KB D: 48 KB E: 64 KB F: 96 KB G: 128 KB H: 192 KB J: 256 KB K: 384 KB L: 512 KB Pin count: A: 30-pin B: 32-pin C: 36-pin E: 40-pin F: 44-pin G: 48-pin J: 52-pin L: 64-pin M: 80-pin P: 100-pin RL78/G14 Memory type: F: Flash memory Renesas MCU Renesas semiconductor product

1.3.2 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).
- Remark 3. It is recommended to connect an exposed die pad to Vss.

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

2. ELECTRICAL SPECIFICATIONS (TA = -40 to $+85^{\circ}$ C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$

R5F104xxAxx

- D: Industrial applications TA = -40 to +85°C R5F104xxDxx
- G: Industrial applications when TA = -40 to +105°C products is used in the range of TA = -40 to +85°C R5F104xxGxx
- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.

Parameter	Symbol	Cond	HS (high-spee mode	d main)	LS (low-speed mode	d main)	LV (low-voltage mode	e main)	Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tксү2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	20 MHz < fмск	8/fмск		_		_		ns
time Note 5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	16 MHz < fмск	8/fмск		_		_		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	_		6/fмск and 1500		6/fмск and 1500		ns	
SCKp high-/	tкн2,	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$		tĸcy2/2 - 7		tkcy2/2 - 7		tксү2/2 - 7		ns
IOW-IEVEI WIDTN	TKL2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		tkcy2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns
		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$		tксү2/2 - 66		tkcy2/2 - 66		tkcy2/2 - 66		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$		_		tkcy2/2 - 66		tkcy2/2 - 66		ns
SIp setup time	tsık2	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$		1/fмск + 40		1/fмск + 40		1/fмск + 40		ns
		$1.6~V \leq EV_{DD0} \leq 5.5~V$				1/fмск + 40		1/fмск + 40		ns
SIp hold time	tksi2	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		$1.7~V \leq EV_{DD0} \leq 5.5~V$		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns
		$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$				1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 100		2/fмск + 110		2/fмск + 110	ns
			$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/fмск + 220		2/fмск + 220		2/fмск + 220	ns
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_		2/fмск + 220		2/fмск + 220	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(2/3)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-sp mo	beed main) bde	LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı		81		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2,} \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tĸsıı		19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$ \begin{split} & 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note 2}}, \\ & \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	19		19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tKSO1			100		100		100	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		195		195		195	ns
		$\label{eq:linear} \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		483		483		483	ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. Use it with $EV_{DD0} \ge V_b$.

(Remarks are listed on the page after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	250		250		250		ns
		$1.7 \text{ V} \le EV_{DD0} \le 5.5 \text{ V}$	250		250		250		ns
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	250		250		ns
Data hold time (transmission)	thd: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
Note 2		$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	—		0	3.45	0	3.45	μs
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	4.0		4.0		4.0		μs
		$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	-	_	4.0		4.0		μs
Bus-free time	t BUF	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	4.7		4.7		4.7		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$	4.7		4.7		4.7		μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.7		4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DE DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb = 400 pF, Rb = 2.7 k Ω

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI14	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI20	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditior	IS	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \leq AV_{REFP} \leq 5.5~V$		1.2	±3.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4		1.2	±7.0	LSB
Conversion time	ICONV	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
			$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±0.50	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution AV _{REFP} = V _{DD} Note 3	$1.8~V \leq AV_{REFP} \leq 5.5~V$			±0.25	%FSR
			$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±0.50	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±1.5	LSB
		AV _{REFP} = V _{DD} Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±2.0	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 5			V
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)		V _{TMPS25} Note 5			V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3.	When AVREFP < VDD, the MAX. values are as follo	DWS.							
	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.							
	Zero-scale error/Full-scale error:	Add ±0.05%FSR to the MAX. value when AVREFP = VDD.							
	Integral linearity error/ Differential linearity error:	Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.							
Note 4.	Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).								

Note 5. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(Ta = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EVDD0 = EVDD1 \le VDD \le 5.5 \text{ V}, \text{ Vss} = EVss0 = EVss1 = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-3.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	$4.0~V \le EV_{DD0} \le 5.5~V$			-30.0	mA
		P102, P120, P130, P140 to P145 (When duty ≤ 70% ^{Note 3})	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-10.0	mA
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-5.0	mA
		Total of P05, P06, P10 to P17,4P30, P31, P50 to P57,2P64 to P67, P70 to P77,2P80 to P87, P100, P101, P110,2P111, P146, P147(When duty \leq 70% Note 3)	$4.0~V \le EV_{DD0} \le 5.5~V$			-30.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-19.0	mA
			2.4 V ≤ EVDD0 < 2.7 V			-10.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			-60.0	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-0.1 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IOH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -3.0 mA	EVDD0 - 0.7			V
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P120, P140 to P147	2.7 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -2.0 mA	EVDD0 - 0.6			V
		P111, P120, P130, P140 to P147	2.4 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -1.5 mA	EVDD0 - 0.5			V
	Voh2	P20 to P27, P150 to P156	2.4 V ≤ VDD ≤ 5.5 V, IOH2 = -100 μA	Vdd - 0.5			V
Output voltage, low	Vol1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ I_{OL1} = 8.5 \ mA \end{array}$			0.7	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 3.0 mA			0.6	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 0.6 mA			0.4	V
	Vol2	P20 to P27, P150 to P156	$\begin{array}{l} 2.4 \ V \leq V \ \text{DD} \leq 5.5 \ V, \\ I \ \text{OL2} = 400 \ \mu A \end{array}$			0.4	V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{IOL3 = 5.0 \text{ mA}}$			0.4	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 2.0 mA			0.4	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(4/5)

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

RL78/G14

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- **Note 2.** When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.

Note 5.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz

Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

RL78/G14

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- **Note 2.** When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.

Note 5.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V} @1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz

Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

<R>

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply cur-	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.93	5.16	mA
rent Note 1	Note 2		mode Note 7	fiH = 32 MHz Note 4	VDD = 3.0 V		0.93	5.16	
				fносо = 32 MHz,	VDD = 5.0 V		0.5	4.47	1
				fiн = 32 MHz Note 4	VDD = 3.0 V		0.5	4.47	
				fносо = 48 MHz,	VDD = 5.0 V		0.72	4.08	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.72	4.08	1
				fносо = 24 MHz,	VDD = 5.0 V		0.42	3.51	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.42	3.51	
				fносо = 16 MHz,	VDD = 5.0 V		0.39	2.38	
				fiH = 16 MHz Note 4	VDD = 3.0 V		0.39	2.38	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.83	mA
			mode Note 7	VDD = 5.0 V	Resonator connection		0.41	2.92	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.83	
				VDD = 3.0 V	Resonator connection		0.41	2.92	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.21	1.46	
				VDD = 5.0 V	Resonator connection		0.26	1.57	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	1.46	
				VDD = 3.0 V	Resonator connection		0.26	1.57	1
			Subsystem clock oper-	fsue = 32.768 kHz Note 5,	Square wave input		0.31	0.76	μΑ
			ation	TA = -40°C	Resonator connection		0.50	0.95	
				fsue = 32.768 kHz Note 5,	Square wave input		0.38	0.76	
				TA = +25°C	Resonator connection		0.57	0.95	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.47	3.59	
				TA = +50°C	Resonator connection		0.70	3.78	
				fsue = 32.768 kHz Note 5,	Square wave input		0.80	6.20	
				T _A = +70°C	Resonator connection		1.00	6.39	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		1.65	10.56	
				TA = +85°C	Resonator connection		1.84	10.75	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		8.00	65.7	
				T _A = +105°C	Resonator connection		8.00	65.7	
	IDD3	STOP mode	TA = -40°C				0.19	0.63	μA
	Note 6	Note 8	TA = +25°C				0.30	0.63	
			TA = +50°C			0.41	3.47		
			T _A = +70°C				0.80	6.08	
			TA = +85°C				1.53	10.44	
			TA = +105°C				6.50	67.14	

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(Notes and Remarks are listed on the next page.)

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscilla- tor operating current	I _{FIL} Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operat- ing current	IIT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter operating cur- rent	ADC Notes 1, 6	When conversion at maximum speed	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
			Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μA
Temperature sensor operat- ing current	ITMPS Note 1				75.0		μA
D/A converter operating cur- rent	IDAC Notes 1, 11, 13	Per D/A converter channel				1.5	mA
rent Comparator operating cur- rent	I _{CMP} Notes 1, 12, 13	$V_{DD} = 5.0 V$, Regulator output voltage = 2.1 V	Window mode		12.5		μA
			Comparator high-speed mode		6.5		μA
			Comparator low-speed mode		1.7		μA
		VDD = 5.0 V,	Window mode		8.0		μA
		Regulator output voltage = 1.8 V	Comparator high-speed mode		4.0		μA
			Comparator low-speed mode		1.3		μΑ
LVD operating current	ILVD Notes 1, 7				0.08		μA
Self-programming operat- ing current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	1.10	mA
			The A/D conversion opera- tions are performed, Low volt- age mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	2.04	
		CSI/UART operation			0.70	1.54	
		DTC operation			3.10		

(4) Peripheral Functions (Common to all products)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. Current flowing to VDD.

Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.

Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.

Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)						
Parameter	Symbol	Conditions		HS (high-speed	Unit	
				MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	400		ns
		DAPmn = 1	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1/fмск + 240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	1/fмск + 400		ns
		DAPmn = 1	$2.7~V \leq EV_{DD0} \leq 5.5~V$	240		ns
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		ns

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

SCK00	SCK
SI00 RL78 microcontroller SO00	 SO User's device SI
<u>SSI00</u>	<u>SSO</u>

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol		Conditions	HS (high-speed main) mode		Unit
				MIN.	MAX.	
Transfer rate		transmission	$\begin{array}{l} 4.0 \ V \leq E V_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array} \end{array} \label{eq:VD0}$		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k\Omega, V_b = 2.7 V		2.6 Note 2	Mbps
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k\Omega, V_b = 2.3 V		1.2 Note 4	Mbps
			$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Note 5	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 6	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EVDD0 \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{Transfer rate}) \times Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** The smaller maximum transfer rate derived by using fMck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate = -

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1

al value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times 100 [\%]}$$

Baud rate error (theoretical value) =

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 4.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

RENESAS

CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)

Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

- **Remark** tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.
 - tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
 - tHD: How long to keep the TOOL0 pin at the low level from when the external resets end
 - (excluding the processing time of the firmware to control the flash memory)

4.2 32-pin products

R5F104BAANA, R5F104BCANA, R5F104BDANA, R5F104BEANA, R5F104BFANA, R5F104BGANA R5F104BADNA, R5F104BCDNA, R5F104BDDNA, R5F104BEDNA, R5F104BFDNA, R5F104BGDNA R5F104BAGNA, R5F104BCGNA, R5F104BDGNA, R5F104BEGNA, R5F104BFGNA, R5F104BGGNA

Referance	Dimension in Millimeters					
Symbol	Min	Nom	Max			
D	4.95	5.00	5.05			
E	4.95	5.00	5.05			
Α	0.70	0.75	0.80			
b	0.18	0.25	0.30			
е		0.50	—			
Lp	0.30	0.40	0.50			
x			0.05			
У			0.05			

ITEM		D2			E2		
		MIN	NOM	MAX	MIN	NOM	MAX
EXPOSED DIE PAD VARIATIONS	A	3.45	3.50	3.55	3.45	3.50	3.55

©2012 Renesas Electronics Corporation. All rights reserved.

REVISION HISTORY

RL78/G14 Datasheet

Rev. Date			Description			
		Page	Summary			
0.01	Feb 10, 2011	—	First Edition issued			
0.02	May 01, 2011	1 to 2	1.1 Features revised			
		3	1.2 Ordering Information revised			
		4 to 13	1.3 Pin Configuration (Top View) revised			
		14	1.4 Pin Identification revised			
		15 to 17	1.5.1 30-pin products to 1.5.3 36-pin products revised			
		23 to 26	1.6 Outline of Functions revised			
0.03	Jul 28, 2011	1	1.1 Features revised			
1.00	Feb 21, 2012	1 to 40	1. OUTLINE revised			
		41 to 97	2. ELECTRICAL SPECIFICATIONS added			
2.00	Oct 25, 2013	1	Modification of 1.1 Features			
		3 to 8	Modification of 1.2 Ordering Information			
		9 to 22	Modification of package type in 1.3 Pin Configuration (Top View)			
		34 to 43	Modification of description of subsystem clock in 1.6 Outline of Functions			
		34 to 43	Modification of description of timer output in 1.6 Outline of Functions			
		34 to 43	Modification of error of data transfer controller in 1.6 Outline of Functions			
		34 to 43	Modification of error of event link controller in 1.6 Outline of Functions			
		45, 46	Modification of description of Tables in 2.1 Absolute Maximum Ratings			
		47	Modification of Tables, notes, cautions, and remarks in 2.2 Oscillator Characteristics			
		48	Modification of error of conditions of high level input voltage in 2.3.1 Pin characteristics			
		49	Modification of error of conditions of low level output voltage in 2.3.1 Pin characteristics			
		53 to 62	Modification of Notes and Remarks in 2.3.2 Supply current characteristics			
		65, 66	Addition of Minimum Instruction Execution Time during Main System Clock Operation			
		67 to 69	Addition of AC Timing Test Points			
		70 to 97	Addition of LS mode and LV mode characteristics in 2.5.1 Serial array unit			
		98 to 101	Addition of LS mode and LV mode characteristics in 2.5.2 Serial interface IICA			
		102 to 105	Addition of characteristics about conversion of internal reference voltage and temperature sensor in 2.6.1 A/D converter characteristics			
		107	Addition of characteristic in 2.6.4 Comparator			
		107	Deletion of detection delay in 2.6.5 POR circuit characteristics			
		109	Modification of 2.6.7 Power supply voltage rising slope characteristics			
		110	Modification of 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics			
		110	Addition of characteristic in 2.8 Flash Memory Programming Characteristics			
		111	Addition of description in 2.10 Timing for Switching Flash Memory Programming Modes			