

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

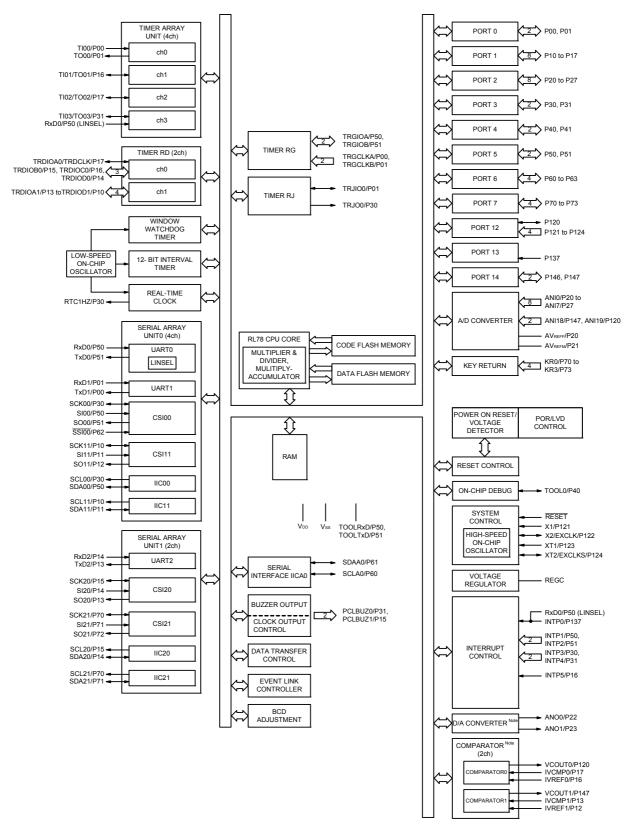
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFL

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	32-HWQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104beana-u0

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.4 Pin Identification

ANI0 to ANI14,:	Analog input	RxD0 to RxD3:	Receive data
ANI16 to ANI20		SCK00, SCK01, SCK10,:	Serial clock input/output
ANO0, ANO1:	Analog output	SCK11, SCK20, SCK21,	
AVREFM:	A/D converter reference	SCK30, SCK31	
	potential (– side) input	SCLA0, SCLA1,:	Serial clock input/output
AVREFP:	A/D converter reference	SCL00, SCL01, SCL10, SCL11,:	Serial clock output
	potential (+ side) input	SCL20, SCL21, SCL30,	
EVDD0, EVDD1:	Power supply for port	SCL31	
EVsso, EVss1:	Ground for port	SDAA0, SDAA1, SDA00,:	Serial data input/output
EXCLK:	External clock input	SDA01, SDA10, SDA11,	
	(main system clock)	SDA20, SDA21, SDA30,	
EXCLKS:	External clock input	SDA31	
	(subsystem clock)	SI00, SI01, SI10, SI11,:	Serial data input
INTP0 to INTP11:	External interrupt input	SI20, SI21, SI30, SI31	
IVCMP0, IVCMP1:	Comparator input	SO00, SO01, SO10,:	Serial data output
IVREF0, IVREF1:	Comparator reference input	SO11, SO20, SO21,	
KR0 to KR7:	Key return	SO30, SO31	
P00 to P06:	Port 0	SSI00:	Serial interface chip select input
P10 to P17:	Port 1	TI00 to TI03,:	Timer input
P20 to P27:	Port 2	TI10 to TI13	
P30, P31:	Port 3	TO00 to TO03,:	Timer output
P40 to P47:	Port 4	TO10 to TO13, TRJO0	
P50 to P57:	Port 5	TOOL0:	Data input/output for tool
P60 to P67:	Port 6	TOOLRxD, TOOLTxD:	Data input/output for external device
P70 to P77:	Port 7	TRDCLK, TRGCLKA,:	Timer external input clock
P80 to P87:	Port 8	TRGCLKB	
P100 to P102:	Port 10	TRDIOA0, TRDIOB0,:	Timer input/output
P110, P111:	Port 11	TRDIOC0, TRDIOD0,	
P120 to P124:	Port 12	TRDIOA1, TRDIOB1,	
P130, P137:	Port 13	TRDIOC1, TRDIOD1,	
P140 to P147:	Port 14	TRGIOA, TRGIOB, TRJIO0	
P150 to P156:	Port 15	TxD0 to TxD3:	Transmit data
PCLBUZ0, PCLBUZ1:	Programmable clock	VCOUT0, VCOUT1:	Comparator output
	output/buzzer output	Vdd:	Power supply
REGC:	Regulator capacitance	Vss:	Ground
RESET:	Reset	X1, X2:	Crystal oscillator (main system clock)
RTC1HZ:	Real-time clock correction	XT1, XT2:	Crystal oscillator (subsystem clock)
	clock		
	(1 Hz) output		

1.5.5 44-pin products

Note Mounted on the 96 KB or more code flash memory products.

[80-pin, 100-pin products (code flash memory 384 KB to 512 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

			(1/2)				
		80-pin	100-pin				
	Item	R5F104Mx	R5F104Px				
		(x = K, L)	(x = K, L)				
Code flash me	emory (KB)	384 to 512	384 to 512				
Data flash me	mory (KB)	8	8				
RAM (KB)		32 to 48 Note	100-pin R5F104Px $(x = K, L)$ 384 to 512 8 32 to 48 Note by stem clock input (EXCLK) 0D = 2.7 to 5.5 V), 0D = 2.4 to 5.5 V), 0D = 2.7 to 5.5 V), 0D = 1.6 to 5.5 V), 0D = 1.6 to 5.5 V) 0D = 2.7 to 5.5 V, 0D = 1.6 to 5.5 V) 0D = 2.7 to 5.5 V, 0D = 1.6 to 5.5 V) 0D = 2.7 to 5.5 V, 0D = 1.6 to 5.5 V) 0D = 2.7 to 5.5 V, 0D = 2.7 to 5.5 V, 0D = 2.7 to 5.5 V, 0D = 2.7 to 5.5 V,				
Address space	e	1 MB					
Main system clock	High-speed system clock	LS (low-speed main) mode: 1 to 8 MHz (Vor					
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)					
Subsystem clo	ock	XT1 (crystal) oscillation, external subsystem cl	ock input (EXCLKS) 32.768 kHz				
Low-speed on	-chip oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V					
General-purpo	ose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 bar	nks)				
Minimum instr	uction execution time	$0.03125 \ \mu s$ (High-speed on-chip oscillator cloc	k: fiн = 32 MHz operation)				
		0.05 μ s (High-speed system clock: fMx = 20 MHz operation)					
		30.5 µs (Subsystem clock: fsub = 32.768 kHz operation)					
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 I Multiplication (8 bits × 8 bits, 16 bits × 16 bits) Multiplication and Accumulation (16 bits × 16 Rotate, barrel shift, and bit manipulation (Set. 	, Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) bits + 32 bits)				
I/O port	Total	74	92				
	CMOS I/O	64	82				
	CMOS input	5	5				
	CMOS output	1	1				
	N-ch open-drain I/O (6 V tolerance)	4	4				
Timer	16-bit timer	12 channels (TAU: 8 channels, Timer RJ: 1 channel, Timer	RD: 2 channels, Timer RG: 1 channel)				
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output	Timer outputs: 18 channels PWM outputs: 12 channels					
	RTC output	1 ● 1 Hz (subsystem clock: fs∪B = 32.768 kHz)					

Note

In the case of the 48 KB, this is about 47 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/G14 User's Manual).

2.1 **Absolute Maximum Ratings**

Absolute Maximum Ratings

Absolute Maximum R	atings			(1/2)
Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	-0.3 to EVDD0 +0.3 and -0.3 to VDD +0.3 Note 2	V
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to VDD +0.3 Note 2	V
Output voltage	Vo1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-0.3 to EVDD0 +0.3 and -0.3 to VDD +0.3 Note 2	V
	V02	P20 to P27, P150 to P156	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI20	-0.3 to EVDD0 +0.3 and -0.3 to AVREF(+) +0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI14	-0.3 to VDD +0.3 and -0.3 to AVREF(+) +0.3 Notes 2, 3	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

- Note 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\text{@1}} \text{ MHz to } 32 \text{ MHz}$

2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{@}1}$ MHz to 8 MHz

LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 4 MHz

- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	(Conditions	HS (high-s main) mo		LS (low-speed mode	d main)	LV (low-vol main) mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkcy1 ≥ 4/fclk	$2.7~V \leq E_{VDD0} \leq 5.5~V$	125		500		1000		ns
			$2.4~V \leq EV_{DD0} \leq 5.5~V$	250		500		1000		ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	500		500		1000		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1000		1000		1000		ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	—		1000		1000		ns
SCKp high-/low-level	tкнı,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
width	tĸ∟1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 38		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 100		tксү1/2 - 100		tксү1/2 - 100		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	—		tксү1/2 - 100		tксү1/2 - 100		ns
SIp setup time	tsik1	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	44		110		110		ns
(to SCKp↑) Note 1		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	44		110		110		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	75		110		110		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	110		110		110		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	220		220		220		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	—		220		220		ns
SIp hold time	tksi1	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	19		19		19		ns
(from SCKp [↑]) Note 2		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	—		19		19		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	$1.7 V \le EV_{DD0}$ C = 30 pF Note			25		25		25	ns
		$1.6 V \le EV_{DD0}$ C = 30 pF Note			_		25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

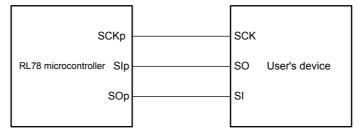
Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

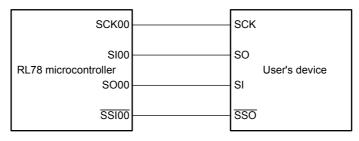
Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)

Remark 2. fMck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))


Description	0		0			LS (low-speed		1)((),		11.2
Parameter	Symbol		Conditions	HS (high-spee mode	HS (high-speed main) mode		l main)	LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	120		120		120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	200		200		200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		400		400		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		400		400		ns
		DAPmn = 1	$2.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		1/fмск + 400		1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		1/fмск + 400		1/fмск + 400		ns
		DAPmn = 1	$2.7~V \leq EV_{DD0} \leq 5.5~V$	120		120		120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	200		200		200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		400		400		ns
			1.6 V ≤ EVDD0 ≤ 5.5 V	—		400		400		ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Parameter	Symbol	Conditions		speed main) ode		peed main) ode	•	oltage main) iode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 k\Omega \end{array}$		400 Note 1		400 Note 1		400 Note 1	kHz
		$\begin{array}{l} 1.8 \text{ V} \leq EV_{\text{DD0}} < 2.7 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega \end{array}$		300 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:bound} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$		250 Note 1		250 Note 1		250 Note 1	kHz
		$\label{eq:bound} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$		-		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\begin{array}{l} 1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega \end{array}$	1150		1150		1150		ns
		$\label{eq:bound} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1550		1550		1550		ns
		$\label{eq:bound} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1850		1850		1850		ns
		$\label{eq:bound} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	—		1850		1850		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\begin{array}{l} 1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega \end{array}$	1150		1150		1150		ns
		$\label{eq:bound} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} \mbox{=} 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} \mbox{=} 5 \mbox{ k}\Omega \end{array}$	1550		1550		1550		ns
		$\label{eq:bound} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1850		1850		1850		ns
		$\label{eq:loss} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	_		1850		1850		ns

(5) During communication at same potential (simplified I²C mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI14	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI20	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \le AV_{REFP} \le 5.5~V$		1.2	±3.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \leq V_{\text{DD}} \leq 5.5~V$	2.375		39	μs
		Target pin: Internal reference voltage, and temperature sensor output voltage	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	3.5625		39	μs
	(HS (high-speed main) mode)	$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs	
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±0.50	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±0.50	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±2.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±1.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±2.0	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed m	nain) mode)	\ \	±5.0 ±1.5 ±2.0	V	
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed m			VTMPS25 Note 5		V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3.	When AVREFP < VDD, the MAX. values are as foll	ows.
	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add ±0.05%FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4.	Values when the conversion time is set to 57 μs	(min.) and 95 µs (max.).

Note 5. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI14, ANI16 to ANI20

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD = EVDD1 \leq VDD, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VBGR ^{Note 3}, Reference voltage (-) = AVREFM = 0 V ^{Note 4}, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tCONV	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN		·	0		VBGR Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error:Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.Integral linearity error:Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.Differential linearity error:Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(Ta = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EVDD0 = EVDD1 \le VDD \le 5.5 \text{ V}, \text{ Vss} = EVss0 = EVss1 = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	F F F	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-3.0 Note 2	mA
			$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-30.0	mA
		P102, P120, P130, P140 to P145	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-10.0	mA
		Total of P05, P06, P10 to P17, 4.0	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-5.0	mA
			$4.0~V \le EV_{DD0} \le 5.5~V$			-30.0	mA
		P30, P31, P50 to P57,	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-19.0	mA
		P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty ≤ 70% ^{Note 3})	2.4 V ≤ EVDD0 < 2.7 V			-10.0	mA
Юн		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			-60.0	mA
	Іон2	IOH2 Per pin for P20 to P27, 2 P150 to P156	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$			-0.1 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4~V \le V \text{DD} \le 5.5~V$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IOH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	Condit	tions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscilla- tor operating current	I _{FIL} Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operat- ing current	IIT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter operating cur- rent	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
			Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μA
Temperature sensor operat- ing current	ITMPS Note 1				75.0		μA
D/A converter operating cur- rent	IDAC Notes 1, 11, 13	Per D/A converter channel				1.5	mA
Comparator operating cur-	ICMP Notes 1, 12, 13	2. 13 $V_{DD} = 5.0 V$, Regulator output voltage = 2.1 V	Window mode		12.5		μA
			Comparator high-speed mode		6.5		μA
			Comparator low-speed mode		1.7		μA
		VDD = 5.0 V,	Window mode		8.0		μA
		Regulator output voltage = 1.8 V	Comparator high-speed mode		4.0		μA
			Comparator low-speed mode		1.3		μA
LVD operating current	ILVD Notes 1, 7		·		0.08		μA
Self-programming operat- ing current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	1.10	mA
			The A/D conversion opera- tions are performed, Low volt- age mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	2.04	
		CSI/UART operation			0.70	1.54	
		DTC operation			3.10		

(4) Peripheral Functions (Common to all products)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. Current flowing to VDD.

Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.

Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.

Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

3.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min- imum instruction exe- cution time)	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
		clock (fMAIN) operation	· · ·	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
		Subsystem clo	ock (fsuв) operation	$2.4~V \le V_{DD} \le 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \le V_{DD} \le 5.5~V$	0.03125		1	μs
		program- mode ming mode	mode	$2.4 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$	0.0625		1	μs
External system clock	fEX	$2.7~V \leq V \text{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V \text{DD} \leq$	2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock	texн,	$2.7~V \leq V \text{DD} \leq$	5.5 V		24			ns
input high-level width,	t EXL	$2.4~V \leq V \text{DD} \leq$	2.7 V		30			ns
low-level width texhs, texts	texhs, texls				13.7			μs
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	t⊤ıн, t⊤ı∟				1/fмск + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \leq EV \text{DD0} \leq 5.5 \text{ V}$	100			ns
				$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	300			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq EV \text{DD0} \leq 5.5 \text{ V}$	40			ns
level width, low-level width	t⊤ji∟			$2.4 \text{ V} \le \text{EVdd0} < 2.7 \text{ V}$	120			ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD2.4 V $\leq EVDD0 < 2.7$ V: MIN. 125 ns

RemarkfMCK: Timer array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel
number (n = 0 to 3))

$[IA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$							(2/2)
Items	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdін, tтdі∟	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1		3/fclк			ns
Timer RD forced cutoff signal	t TDSIL	P130/INTP0	$2MHz < f_{CLK} \le 32 MHz$	1			μs
input low-level width			fclk ≤ 2 MHz	1/fclк + 1			
Timer RG input high-level width, low-level width	tтGін, tтGі∟	TRGIOA, TRGIOB		2.5/fclk			ns
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			16	MHz
TO10 to TO13,		2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
TRJIO0, TRJO0, TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB output frequency			2.4 V ≤ EVDD0 < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
frequency			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
Interrupt input high-level	tinth,	INTP0	$2.4~V \leq V_{DD} \leq 5.5~V$	1			μs
width, low-level width	t INTL	INTP1 to INTP11	$2.4~V \leq EV_{DD0} \leq 5.5~V$	1			μs
Key interrupt input low-level width	tкr	KR0 to KR7	$2.4 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsl			10			μs

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol		Conditions		HS (high-speed main) mode	
				MIN.	MAX.	
SCKp cycle time	tксү1	tkcy1 ≥ 4/fclk	$2.7 \text{ V} \leq \text{Evdd0} \leq 5.5 \text{ V}$	250		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	500		ns
SCKp high-/low-level width	tĸнı, tĸ∟ı	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 24		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 36		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 76		ns
SIp setup time (to SCKp [↑]) Note 1	tsiĸ1	tsik1 $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		66		ns
		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		66		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		113		ns
SIp hold time (from SCKp↑) Note 2	tĸsı1			38		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note	C = 30 pF Note 4		50	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq EV	$VDD0 = EVDD1 \le VDD$	≤ 5.5 V, Vss = EVss₀ = EVss₁ = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	main) mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 2.4 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 3 \ \text{k}\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200	ns	ns
		$\begin{array}{l} 2.4V \leq EV_{DD0} \leq 5.5 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 3 \; k\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ Cb = 100 pF, Rb = 3 k Ω	4600		ns
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 220 Note 2		ns
		$\begin{array}{l} 2.4V \leq EV_{DD0} \leq 5.5 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 3 \; k\Omega \end{array}$	1/fMCK + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} \texttt{=} 100 \ pF, \ R_{b} \texttt{=} 3 \ k\Omega \end{array}$	0	1420	ns

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI14	Refer to 3.6.1 (1).	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).
ANI16 to ANI20	Refer to 3.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 3.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

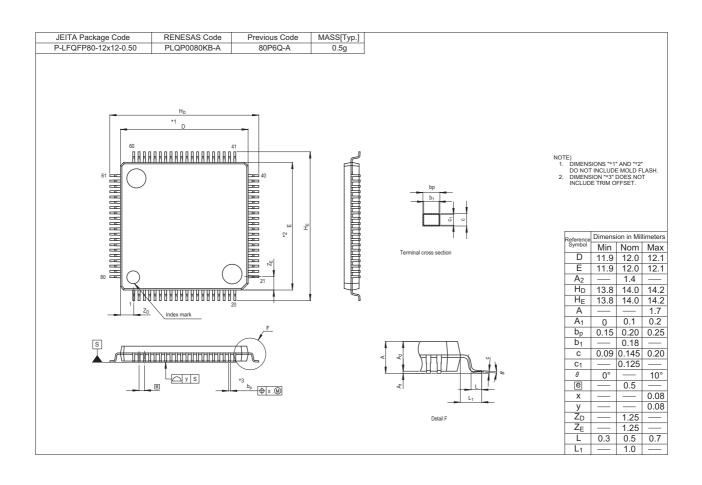
Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES					10	bit
Overall error Note 1	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \leq AV_{REFP} \leq 5.5~V$		1.2	±3.5	LSB
Conversion time	tCONV	10-bit resolution Target pin: ANI2 to ANI14	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.1875		39	μs
			$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.375		39	μs
		Target pin: Internal reference voltage, and temperature sensor output volt- age (HS (high-speed main) mode)	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.5625		39	μs
			$2.4~V \leq V_{\text{DD}} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4~V \le AV_{REFP} \le 5.5~V$			±0.25	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±1.5	LSB
Analog input voltage	Vain	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage output (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)		\	/ _{BGR} Note	4	V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed n	nain) mode)	VTMPS25 Note 4		te 4	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

 Note 3.
 When AVREFP < VDD, the MAX. values are as follows.</th>

 Overall error:
 Add ±1.0 LSB to the MAX. value when AVREFP = VDD.


 Zero-scale error/Full-scale error:
 Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/ Differential linearity error:
 Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

 Note 4.
 Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

R5F104MKAFB, R5F104MLAFB R5F104MKGFB, R5F104MLGFB

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-case Lectronics nong roug Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +55-631-30200, Fax: +65-6213-0300 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141