

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XF

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	32-HWQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104bfana-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

○ ROM, RAM capacities

Elash ROM	Data flach	PAM	RL78/G14					
T IdSIT KOW	Data liasii		30 pins	32 pins	32 pins 36 pins			
192 KB	8 KB	20 KB	—	—	—	R5F104EH		
128 KB	8 KB	16 KB	R5F104AG	R5F104BG	R5F104CG	R5F104EG		
96 KB	8 KB	12 KB	R5F104AF	R5F104BF	R5F104CF	R5F104EF		
64 KB	4 KB	5.5 KB Note	R5F104AE	R5F104BE	R5F104CE	R5F104EE		
48 KB	4 KB	5.5 KB Note	R5F104AD	R5F104BD	R5F104CD	R5F104ED		
32 KB	4 KB	4 KB	R5F104AC	R5F104BC	R5F104CC	R5F104EC		
16 KB	4 KB	2.5 KB	R5F104AA	R5F104BA	R5F104CA	R5F104EA		

Elash ROM	Data flach	PAM	RL78/G14					
T Idolf TOW	Data liasii		44 pins	48 pins	52 pins	64 pins		
512 KB	8 KB	48 KB Note		R5F104GL	—	R5F104LL		
384 KB	8 KB	32 KB	_	R5F104GK	—	R5F104LK		
256 KB	8 KB	24 KB Note	R5F104FJ	R5F104GJ	R5F104JJ	R5F104LJ		
192 KB	8 KB	20 KB	R5F104FH	R5F104GH	R5F104JH	R5F104LH		
128 KB	8 KB	16 KB	R5F104FG	R5F104GG	R5F104JG	R5F104LG		
96 KB	8 KB	12 KB	R5F104FF	R5F104GF	R5F104JF	R5F104LF		
64 KB	4 KB	5.5 KB Note	R5F104FE	R5F104GE	R5F104JE	R5F104LE		
48 KB	4 KB	5.5 KB Note	R5F104FD	R5F104GD	R5F104JD	R5F104LD		
32 KB	4 KB	4 KB	R5F104FC	R5F104GC	R5F104JC	R5F104LC		
16 KB	4 KB	2.5 KB	R5F104FA	R5F104GA	_			

Flash ROM	Data flach	DAM	RL78/G14			
T IdSIT KOW	Data hash		80 pins	100 pins		
512 KB	8 KB	48 KB Note	R5F104ML	R5F104PL		
384 KB	8 KB	32 KB	R5F104MK	R5F104PK		
256 KB	8 KB	24 KB Note	R5F104MJ	R5F104PJ		
192 KB	8 KB	20 KB	R5F104MH	R5F104PH		
128 KB	8 KB	16 KB	R5F104MG	R5F104PG		
96 KB	8 KB	12 KB	R5F104MF	R5F104PF		

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xD (x = A to C, E to G, J, L): Start address FE900H

R5F104xE (x = A to C, E to G, J, L): Start address FE900H

R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H

R5F104xL (x = G, L, M, P): Start address F3F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).

RL78/G14

1.3.5 44-pin products

• 44-pin plastic LQFP (10 × 10 mm, 0.8 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:	2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz
	2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
LS (low-speed main) mode:	1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz
LV (low-voltage main) mode:	1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.) Remark 3. file:
- High-speed on-chip oscillator clock frequency (32 MHz max.) Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

R01DS0053EJ0330 Rev. 3.30 Aug 12, 2016

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.9		mA
current		ing mode	mode Note 5	fiн = 32 MHz Note 3	operation	VDD = 3.0 V		2.9		
NOLE 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.5		
				fiн = 32 MHz Note 3	operation	VDD = 3.0 V		2.5		
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		6.0	11.2	mA
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		6.0	11.2	
				fносо = 32 MHz,	Normal	VDD = 5.0 V		5.5	10.6	
				fiн = 32 MHz Note 3	operation	VDD = 3.0 V		5.5	10.6	
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.7	8.6	
				fiн = 24 MHz Note 3	operation	VDD = 3.0 V		4.7	8.6	
				fносо = 24 MHz,	Normal	VDD = 5.0 V		4.4	8.2	
				fin = 24 MHz Note 3	operation	VDD = 3.0 V		4.4	8.2	
				fносо = 16 MHz,	Normal	VDD = 5.0 V		3.3	5.9	
				fiн = 16 MHz ^{Note 3}	operation	VDD = 3.0 V		3.3	5.9	
			LS (low-speed main)	fносо = 8 MHz,	Normal	VDD = 3.0 V		1.5	2.5	mA
			mode Note 5	fiH = 8 MHz Note 3 O	operation	VDD = 2.0 V		1.5	2.5	
			LV (low-voltage main)	fносо = 4 MHz,	Normal	VDD = 3.0 V		1.5	2.1	mA
			mode Note 5	fin = 4 MHz Note 3	operation	VDD = 2.0 V		1.5	2.1	
			HS (high-speed main) $f_{MX} = 20$ I	f _{MX} = 20 MHz ^{Note 2} , Normal Sc	Square wave input		3.7	6.8	mA	
	mode Note	mode Note 5	VDD = 5.0 V	operation	Resonator connection		3.9	7.0		
				f _{MX} = 20 MHz ^{Note 2} , N	Normal operation	Square wave input		3.7	6.8	
				VDD = 3.0 V		Resonator connection		3.9	7.0	-
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.3	4.1	
				VDD = 5.0 V	operation	Resonator connection		2.3	4.2	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.3	4.1	
				VDD = 3.0 V	operation	Resonator connection		2.3	4.2	
			LS (low-speed main)	f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.4	2.4	mA
			mode Note 5	VDD = 3.0 V	operation	Resonator connection		1.4	2.5	
				f _{MX} = 8 MHz ^{Note 2} ,	Normal	Square wave input		1.4	2.4	
				V _{DD} = 2.0 V	operation	Resonator connection		1.4	2.5	
		Subsystem clock	Subsystem clock	fsue = 32.768 kHz Note 4	Normal	Square wave input		5.2		μΑ
			operation	TA = -40°C	operation	Resonator connection		5.2		
	fsub = 32.768 kHz ^k	fsue = 32.768 kHz Note 4	Normal	Square wave input		5.3	7.7			
				TA = +25°C C fsub = 32.768 kHz Note 4 TA = +50°C C	operation	Resonator connection		5.3	7.7	-
					Normal	Square wave input		5.5	10.6	
			-		operation	Resonator connection		5.5	10.6	
				fsuB = 32.768 kHz Note 4 TA = +70°C	Normal operation	Square wave input		5.9	13.2	
						Resonator connection		6.0	13.2	
				fsue = 32.768 kHz Note 4	Normal	Square wave input		6.8	17.5	
	TA = +	Γ _A = +85°C	operation	Resonator connection		6.9	17.5			

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\text{@1}} \text{ MHz to } 32 \text{ MHz}$

2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{0}}1~\mbox{MHz}$ to 8 MHz}$$

LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** file: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

TCY vs VDD (LS (low-speed main) mode)

TCY vs VDD (LV (low-voltage main) mode)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance

- **Remark 2.** r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 3 to 5, 14),
 - h: POM number (h = 0, 1, 3 to 5, 7, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

RL78/G14

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (high-s main) mo	peed ode	LS (low-speed mode	LS (low-speed main) LV (low-voltage mode main) mode		LV (low-voltage main) mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ 2/fc∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 20 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq EV_{DDO} \\ 2.7 \ V \leq V_b \leq 4 \\ C_b = 20 \ pF, \ R_b \end{array}$	o ≤ 5.5 V, .0 V, = 1.4 kΩ	tkcy1/2 - 50		tkcy1/2 - 50		tkcy1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ	tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		ns
SCKp low-level width	tĸ∟ı	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		tксү1/2 - 7		tксү1/2 - 50		tkcy1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 1 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ	tксү1/2 - 10		tkcy1/2 - 50		tkcy1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsiк1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		58		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tĸsı1	$\begin{array}{l} 4.0 \ V \leq EV_{DDO} \\ 2.7 \ V \leq V_{b} \leq V_{b} \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	0 ≤ 5.5 V, 4.0 V, = 1.4 kΩ	10		10		10		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 1 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to SOp out- put ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{DD}\\ 2.7 \ V \leq V_{b} \leq V\\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	0 ≤ 5.5 V, 4.0 V, = 1.4 kΩ		60		60		60	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ		130		130		130	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(Notes, Caution, and Remarks are listed on the next page.)

(2/3)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (high-s mo	peed main) ode	LS (low-sp mo	peed main) ode	LV (low-vo mo	ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı		81		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2,} \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1		19		19		19		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	19		19		19		ns
		$ \begin{split} & 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note 2}}, \\ & \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	19		19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1			100		100		100	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		195		195		195	ns
		$\label{eq:linear} \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		483		483		483	ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. Use it with $EV_{DD0} \ge V_b$.

(Remarks are listed on the page after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

RL78/G14

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions		Conditions HS (high-spe main) mod		-speed LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,$	24 MHz < fмск	14/fмск		—		—		ns
Note 1		$2.7~V \leq V_b \leq 4.0~V$	20 MHz < fмск ≤ 24 MHz	12/fмск		_		_		ns
			$8 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	10/fмск		_		—		ns
			$4 \text{ MHz} < f_{MCK} \leq 8 \text{ MHz}$	8/fмск		16/fмск		—		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	24 MHz < fмск	20/fмск		—		—		ns
			20 MHz < fмск ≤ 24 MHz	16/fмск		—		—		ns
			16 MHz < fмск ≤ 20 MHz	14/fмск		—		—		ns
			$8 \text{ MHz} < \text{fmck} \le 16 \text{ MHz}$	12/fмск		—		—		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	8/fмск		16/fмск		—		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ Note \ 2 \end{array}$	24 MHz < fмск	48/fмск		—		—		ns
			20 MHz < fмск ≤ 24 MHz	36/fмск		—		—		ns
			16 MHz < fмск ≤ 20 MHz	32/fмск		—		—		ns
			$8 \text{ MHz} < \text{fmck} \le 16 \text{ MHz}$	26/fмск		—		—		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		16/fмск		—		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level width	tкн2, tкi 2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$				tксү2/2 - 50		tксү2/2 - 50		ns
		2.7 V < EVDD0 < 4.0 V. 2	$2.3 V < V_{b} < 2.7 V$	tkCY2/2	-	tkcy2/2	-	tkCY2/2		ns
				- 18		- 50		- 50		_
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, T$	$1.6 \text{ V} \leq V_b \leq 2.0 \text{ V} \text{ Note } 2$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIn setup time	tsik2	40V <fvppq<55v< td=""><td>$27 V < V_{h} < 40 V$</td><td>1/fмск</td><td></td><td>1/fмск</td><td></td><td>1/fмск</td><td></td><td>ns</td></fvppq<55v<>	$27 V < V_{h} < 40 V$	1/fмск		1/fмск		1/fмск		ns
(to SCKp↑) Note 3	tonic			+ 20		+ 30		+ 30		
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2$	$2.7 \ V \le EV_{DD0} < 4.0 \ V, \ 2.3 \ V \le V_b \le 2.7 \ V$			1/fмск + 30		1/fмск + 30		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, ^{2}$	$1.6 \text{ V} \le V_b \le 2.0 \text{ V}$ Note 2	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time	tksi2			1/fмск		1/fмск		1/fмск		ns
(from SCKp↑) Note 4				+ 31		+ 31		+ 31		
Delay time from SCKp↓ to SOp	tkso2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2$ Cb = 30 pF, Rb = 1.4 kΩ	$2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
output Note 5		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2$ Cb = 30 pF, Rb = 2.7 kΩ	$2.3 V \le V_b \le 2.7 V,$		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$1.8 V \le EV_{DD0} < 3.3 V$, $C_b = 30 pF$, $R_V = 5.5 k\Omega$	1.6 V \leq V _b \leq 2.0 V Note 2,		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

($(T_A = -40 \text{ to } +85^{\circ}\text{C})$	18V<	< Vnn < 5 5 V	Vss = EVsso	= FVSS1 = 0	٧١
	1A = -40 10 + 00 0	1.0 V -		, v 33 – L v 330		• /

(Notes, Caution, and Remarks are listed on the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $EVDD0 \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (Vbb tolerance (for the 30- to 52-pin products)/EVbb tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For ViH and ViL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

2.7 **RAM Data Retention Characteristics**

(TA = -40 to +85°C, Vss = 0V)										
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit				
Data retention supply voltage	VDDDR		1.46 Note		5.5	V				

The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset Note is effected, but RAM data is not retained when a POR reset is effected.

2.8 **Flash Memory Programming Characteristics**

$(1A = -40 tO + 60 C, 1.6 V \le VDD \le 0.5 V, VSS = 0 V$	$(T_A = -40 \text{ to } +85^{\circ}\text{C}.)$	1.8 $V \leq VDD \leq 5$	5.5 V. Vss = 0 V)
---	--	--------------------------------	-------------------

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$1.8~V \leq V_{DD} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3 Number of data flash rewrites	Cerwr	Retained for 20 years TA = 85°C Retained for 1 year	1,000	1,000,000		Times
Notes 1, 2, 3		TA = 25°C				
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 **Dedicated Flash Memory Programmer Communication (UART)**

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings

Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to VDD +0.3 Note 1	
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P47, P50 to P57, P64 to P67,	and -0.3 to V _{DD} +0.3 Note 2	
		P70 to P77, P80 to P87, P100 to P102,		
		P110, P111, P120, P140 to P147		
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137,	-0.3 to VDD +0.3 Note 2	V
		P150 to P156, EXCLK, EXCLKS, RESET		
Output voltage	V01	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P47, P50 to P57, P60 to P67,	and -0.3 to VDD +0.3 Note 2	
		P70 to P77, P80 to P87, P100 to P102,		
		P110, P111, P120, P130, P140 to P147		
	V02	P20 to P27, P150 to P156	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI20	-0.3 to EVDD0 +0.3	V
			and -0.3 to AVREF(+) +0.3 Notes 2, 3	v
	VAI2	ANI0 to ANI14	-0.3 to VDD +0.3	V
			and -0.3 to AVREF(+) +0.3 Notes 2, 3	v

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

(1/2)

Items	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Input voltage, high	Vih1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVDD0		EVddo	V
	VIH2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	2.2		EVDD0	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer 2.4 V ≤ EVDD0 < 3.3 V	1.5		EVDD0	V
	Vінз	P20 to P27, P150 to P156	0.7 Vdd		Vdd	V	
	VIH4	P60 to P63	0.7 EVDD0		6.0	V	
	Vih5	P121 to P124, P137, EXCLK, EX	0.8 Vdd		Vdd	V	
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	0		0.8	V
		P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	0		0.5	V
			TTL input buffer 2.4 V ≤ EVDD0 < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3 VDD	V
	VIL4	P60 to P63		0		0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EX	0		0.2 VDD	V	

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(3/5)

The maximum value of VIH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. Remark

Caution

- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- **Note 8.** Current flowing during programming of the data flash.
- Note 9. Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
- **Note 11.** Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- **Note 12.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

Parameter	Symbol	Cond	Conditions		TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$		1.2	±5.0	LSB
Conversion time	tCONV	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.35	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
Integral linearity error Note 1	ILE	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution EVDD0 ≤ AVREFP = VDD Notes 3, 4	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±2.0	LSB
Analog input voltage	VAIN	ANI16 to ANI20		0		AVREFP and EVDD0	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.
	Zero-scale error/Full-scale error:	Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD.
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.
Note 4.	When AVREFP < EVDD0 \leq VDD, the MAX. values a	are as follows.
	Overall error:	Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

Zero-scale error/Full-scale error:

Add ±0.20%FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

REVISION HISTORY

RL78/G14 Datasheet

Boy	Data		Description
Rev.	Dale	Page	Summary
2.00	Oct 25, 2013	112 to 169	Addition of CHAPTER 3 ELECTRICAL SPECIFICATIONS
		171 to 187	Modification of 4.1 30-pin products to 4.10 100-pin products
3.00	Feb 07, 2014	All	Addition of products with maximum 512 KB flash ROM and 48 KB RAM
		1	Modification of 1.1 Features
		2	Modification of ROM, RAM capacities and addition of note 3
		3	Modification of Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14
		6 to 8	Addition of part number
		15, 16	Modification of 1.3.6 48-pin products
		17	Modification of 1.3.7 52-pin products
		18, 19	Modification of 1.3.8 64-pin products
		20	Modification of 1.3.9 80-pin products
		21, 22	Modification of 1.3.10 100-pin products
		35, 37, 39, 41, 43, 45, 47	Modification of operating ambient temperature in 1.6 Outline of Functions
		42, 43	Addition of table of 48-pin, 52-pin, 64-pin products (code flash memory 384 KB to 512 KB)
		46, 47	Addition of table of 80-pin, 100-pin products (code flash memory 384 KB to 512 KB)
		65 to 68	Addition of (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products
		118	Modification of 2.7 Data Memory Retention Characteristics
		137 to 140	Addition of (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products
		180	Modification of 3.7 Data Memory Retention Characteristics
		189, 190	Addition and modification of 4.6 48-pin products
		191	Modification of 4.7 52-pin products
		193 to 195	Addition and modification of 4.8 64-pin products
		198, 199	Addition and modification of 4.9 80-pin products
		201, 202	Addition and modification of 4.10 100-pin products
3.20	Jan 05, 2015	p.2	Deletion of R5F104JK and R5F104JL from the list of ROM and RAM capacities and modification of note
		p.6	Deletion of ordering part numbers of R5F104JK and R5F104JL from 52-pin plastic LQFP package in 1.2 Ordering Information
		p.6 to 8	Deletion of note 2 in 1.2 Ordering Information
		p.17	Deletion of note 2 in 1.3.7 52-pin products
		p.36, 39, 42, 45, 48, 50, 52	Modification of description in 1.6 Outline of Functions
		p.46, 48	Deletion of description of 52-pin in 1.6 Outline of Functions
		p.47	Modification of note of 1.6 Outline of Functions
		p.62, 64, 66, 68, 70, 72	Modification of specifications in 2.3.2 Supply current characteristics