

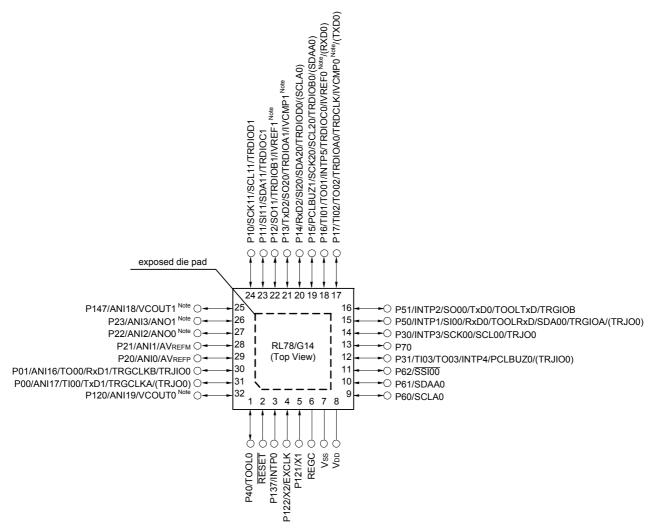

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	32-HWQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104bfgna-u0

Email: info@E-XFL.COM

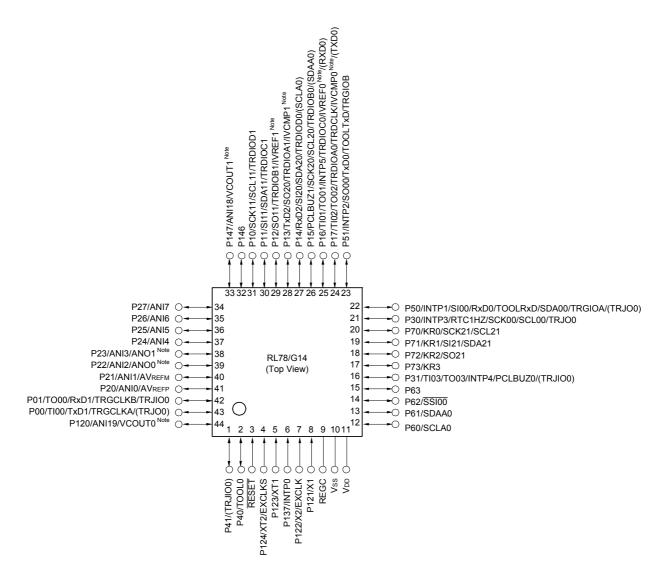
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.2 32-pin products

• 32-pin plastic HWQFN (5 × 5 mm, 0.5 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$


- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).
- Remark 3. It is recommended to connect an exposed die pad to Vss.

RL78/G14

1.3.5 44-pin products

• 44-pin plastic LQFP (10 × 10 mm, 0.8 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.4 Pin Identification

ANI0 to ANI14,:	Analog input	RxD0 to RxD3:	Receive data
ANI16 to ANI20		SCK00, SCK01, SCK10,:	Serial clock input/output
ANO0, ANO1:	Analog output	SCK11, SCK20, SCK21,	
AVREFM:	A/D converter reference	SCK30, SCK31	
	potential (– side) input	SCLA0, SCLA1,:	Serial clock input/output
AVREFP:	A/D converter reference	SCL00, SCL01, SCL10, SCL11,:	Serial clock output
	potential (+ side) input	SCL20, SCL21, SCL30,	
EVDD0, EVDD1:	Power supply for port	SCL31	
EVsso, EVss1:	Ground for port	SDAA0, SDAA1, SDA00,:	Serial data input/output
EXCLK:	External clock input	SDA01, SDA10, SDA11,	
	(main system clock)	SDA20, SDA21, SDA30,	
EXCLKS:	External clock input	SDA31	
	(subsystem clock)	SI00, SI01, SI10, SI11,:	Serial data input
INTP0 to INTP11:	External interrupt input	SI20, SI21, SI30, SI31	
IVCMP0, IVCMP1:	Comparator input	SO00, SO01, SO10,:	Serial data output
IVREF0, IVREF1:	Comparator reference input	SO11, SO20, SO21,	
KR0 to KR7:	Key return	SO30, SO31	
P00 to P06:	Port 0	SSI00:	Serial interface chip select input
P10 to P17:	Port 1	TI00 to TI03,:	Timer input
P20 to P27:	Port 2	TI10 to TI13	
P30, P31:	Port 3	TO00 to TO03,:	Timer output
P40 to P47:	Port 4	TO10 to TO13, TRJO0	
P50 to P57:	Port 5	TOOL0:	Data input/output for tool
P60 to P67:	Port 6	TOOLRxD, TOOLTxD:	Data input/output for external device
P70 to P77:	Port 7	TRDCLK, TRGCLKA,:	Timer external input clock
P80 to P87:	Port 8	TRGCLKB	
P100 to P102:	Port 10	TRDIOA0, TRDIOB0,:	Timer input/output
P110, P111:	Port 11	TRDIOC0, TRDIOD0,	
P120 to P124:	Port 12	TRDIOA1, TRDIOB1,	
P130, P137:	Port 13	TRDIOC1, TRDIOD1,	
P140 to P147:	Port 14	TRGIOA, TRGIOB, TRJIO0	
P150 to P156:	Port 15	TxD0 to TxD3:	Transmit data
PCLBUZ0, PCLBUZ1:	Programmable clock	VCOUT0, VCOUT1:	Comparator output
	output/buzzer output	Vdd:	Power supply
REGC:	Regulator capacitance	Vss:	Ground
RESET:	Reset	X1, X2:	Crystal oscillator (main system clock)
RTC1HZ:	Real-time clock correction	XT1, XT2:	Crystal oscillator (subsystem clock)
	clock		
	(1 Hz) output		

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xD (x = A to C, E to G, J, L): Start address FE900H
	R5F104xE (x = A to C, E to G, J, L): Start address FE900H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V \text{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	1.0		16.0	
		$1.8~\text{V} \leq \text{V}\text{DD} < 2.4~\text{V}$	1.0		8.0	
		$1.6~\text{V} \leq \text{V}\text{DD} < 1.8~\text{V}$	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	C	Conditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін		1		32	MHz	
High-speed on-chip oscillator clock frequency		-20 to +85°C	$1.8~V \leq V \text{DD} \leq 5.5~V$	-1.0		+1.0	%
accuracy			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.0		+5.0	%
		-40 to -20°C	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 5.5 \text{ V}$	-1.5		+1.5	%
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply cur-	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.93	3.32	mA
rent Note 1	Note 2		mode Note 7	fiн = 32 MHz ^{Note 4}	VDD = 3.0 V		0.93	3.32	
				fносо = 32 MHz,	VDD = 5.0 V		0.5	2.63	1
				fiн = 32 MHz ^{Note 4}	VDD = 3.0 V		0.5	2.63	1
				fносо = 48 MHz,	VDD = 5.0 V		0.72	2.60	1
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.72	2.60	1
				fносо = 24 MHz,	VDD = 5.0 V		0.42	2.03	1
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.42	2.03	1
				fносо = 16 MHz,	VDD = 5.0 V		0.39	1.50	
				fiн = 16 MHz ^{Note 4}	VDD = 3.0 V		0.39	1.50	1
			LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		270	800	μA
			mode Note 7	fiH = 8 MHz Note 4	VDD = 2.0 V		270	800	1
			LV (low-voltage main)	fносо = 4 MHz,	VDD = 3.0 V		450	755	μA
			mode Note 7	fiH = 4 MHz Note 4	VDD = 2.0 V		450	755	1
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.69	mA
			mode Note 7	VDD = 5.0 V	Resonator connection		0.41	1.91	1
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.69	1
				VDD = 3.0 V	Resonator connection		0.41	1.91	1
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.94	1
				VDD = 5.0 V	Resonator connection		0.26	1.02	1
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.94	1
				VDD = 3.0 V	Resonator connection		0.26	1.02	1
			LS (low-speed main)	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	610	μA
			mode Note 7	VDD = 3.0 V	Resonator connection		150	660	1
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	610	1
				VDD = 2.0 V	Resonator connection		150	660	1
			Subsystem clock oper-	fsub = 32.768 kHz Note 5,	Square wave input		0.31		μA
			ation	TA = -40°C	Resonator connection		0.50		1
				fsub = 32.768 kHz Note 5,	Square wave input		0.38	0.76	1
				TA = +25°C	Resonator connection		0.57	0.95	1
				fsue = 32.768 kHz Note 5,	Square wave input		0.47	3.59	1
				TA = +50°C	Resonator connection		0.70	3.78	1
				fsub = 32.768 kHz Note 5,	Square wave input		0.80	6.20	1
				TA = +70°C	Resonator connection		1.00	6.39	1
				fsub = 32.768 kHz Note 5,	Square wave input		1.65	10.56	1
				TA = +85°C	Resonator connection		1.84	10.75	1
	IDD3	STOP mode	TA = -40°C				0.19		μA
	Note 6	Note 8	TA = +25°C				0.30	0.59	1
			T _A = +50°C				0.41	3.42	1
			TA = +70°C				0.80	6.03	1
			TA = +85°C				1.53	10.39	1

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(Notes and Remarks are listed on the next page.)

2.4 AC Characteristics

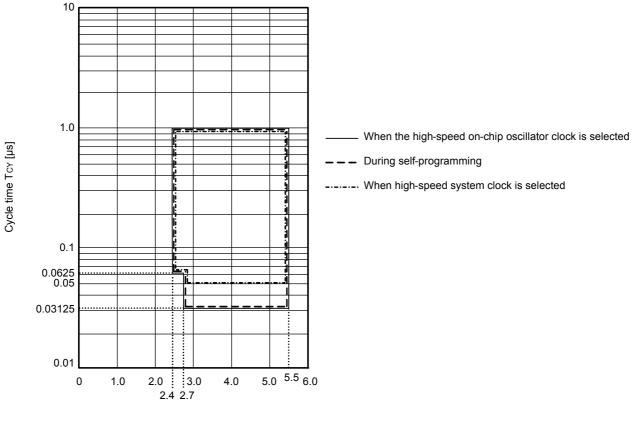
Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V \text{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe-		clock (fmain)	mode	$2.4 \text{ V} \le \text{V}_{DD} \le 2.7 \text{ V}$	0.0625		1	μs
cution time)		operation	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.6 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.25		1	μs
		Subsystem clock (fsub) operation		$1.8~V \le V_{DD} \le 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \leq V \text{DD} \leq 5.5~V$	0.03125		1	μs
		program- ming mode	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
			LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock	fEX	$2.7 \text{ V} \leq \text{V}_{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{DD} \leq$	2.7 V		1.0		16.0	MHz
		$1.8 \text{ V} \leq \text{V}_{DD} <$	2.4 V		1.0		8.0	MHz
		$1.6 V \le V_{DD} <$	1.8 V		1.0		4.0	MHz
	fexs				32		35	kHz
External system clock	texh, texl	$2.7~V \leq V_{DD} \leq$	5.5 V		24			ns
input high-level width,		$2.4~V \leq V_{DD} \leq$	2.7 V		30			ns
low-level width		$1.8 \text{ V} \leq \text{V}_{DD} <$	2.4 V		60			ns
		$1.6 \text{ V} \leq \text{V}_{DD} <$	1.8 V		1.0 1.0 1.0 1.0 24 30		ns	
	texhs, texls				13.7			μs
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	ttiH, tti∟							ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	100			ns
				$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	300			ns
				$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$	500			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	40			ns
level width, low-level	t⊤JIL			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns
width				1.6 V ≤ EVDD0 < 1.8 V	200			ns

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

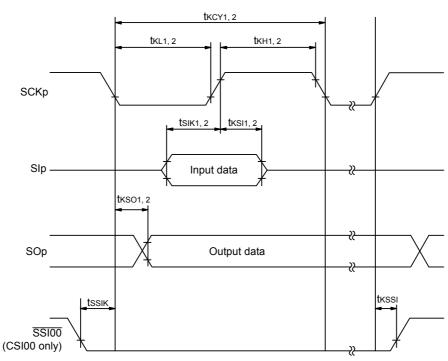
NoteThe following conditions are required for low voltage interface when EVDD0 < VDD $1.8 V \le EVDD0 < 2.7 V$: MIN. 125 ns $1.6 V \le EVDD0 < 1.8 V$: MIN. 250 ns

Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

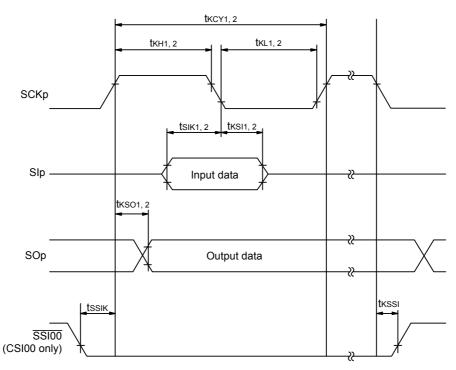
Items	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтон, tто∟	TRDIOA0, TRDIOA1, TRDIOI TRDIOC0, TRDIOC1, TRDIO		3/fclk			ns
Timer RD forced cutoff signal	t TDSIL	P130/INTP0	2MHz < fclk ≤ 32 MHz	1			μs
input low-level width			fclk ≤ 2 MHz	1/fclk + 1			
Timer RG input high-level	tтgiн,	TRGIOA, TRGIOB		2.5/fclk			ns
width, low-level width	t⊤GIL						
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
TO10 to TO13,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			8	MHz
TRJIO0, TRJO0, TRDIOA0, TRDIOA1,			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
TRDIOB0, TRDIOB1,			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
TRDIOC0, TRDIOC1,		LS (low-speed main) mode	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
RDIOD0, TRDIOD1,			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
TRGIOA, TRGIOB output frequency		LV (low-voltage main) mode	$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
frequency			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed main) mode	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
Interrupt input high-level	tinth,	INTP0	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	1			μs
width, low-level width	tintl	INTP1 to INTP11	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1			μs
Key interrupt input low-level	tĸĸ	KR0 to KR7	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	250			ns
width			1.6 V ≤ EVDD0 < 1.8 V	1			μs
RESET low-level width	trsl		1	10			μs


(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)


Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)


Supply voltage VDD [V]

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

RL78/G14

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed mode	,	LV (low-vo main) mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ 2/fс∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	width 2.7 V ≤		0 ≤ 5.5 V, 1.0 V, = 1.4 kΩ	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2 \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,	tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \; pF, \; R_{b} \end{array}$	4.0 V,	tксү1/2 - 7		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,	tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} = 20 \; pF, \; R_{b} \end{array}$	4.0 V,	58		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} = 20 \; pF, \; R_{b} \end{array}$	4.0 V,	10		10		10		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp out- put ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} = 20 \; pF, \; R_{b} \end{array}$	4.0 V,		60		60		60	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,		130		130		130	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(Notes, Caution, and Remarks are listed on the next page.)

(2/3)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions		speed main) ode	•	peed main) ode		oltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı		81		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	479		479		479		ns
SIp hold time (from SCKp†) Note 1	SCKp↑) Note 1 2.7		19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	19		19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tkso1			100		100		100	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		195		195		195	ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $		483		483		483	ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. Use it with $EV_{DD0} \ge V_b$.

(Remarks are listed on the page after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions		peed main) ode		peed main) ode	LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	250		250		ns
Data hold time (transmission)	thd: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
Note 2		$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.6 V \le EV_{DD0} \le 5.5 V$ —		0	3.45	0	3.45	μs	
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.0		4.0		μs
Bus-free time	t BUF	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.7		4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DE DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb = 400 pF, Rb = 2.7 k Ω

2.6.6 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage	Supply voltage level	VLVD0	Rising edge	3.98	4.06	4.14	V
detection			Falling edge	3.90	3.98	4.06	V
threshold		VLVD1	Rising edge	3.68	3.75	3.82	V
			Falling edge	3.60	3.67	3.74	V
		VLVD2	Rising edge	3.07	3.13	3.19	V
			Falling edge	3.00	3.06	3.12	V
		VLVD3	Rising edge	2.96	3.02	3.08	V
			Falling edge	2.90	2.96	3.02	V
		VLVD4	Rising edge	2.86	2.92	2.97	V
			Falling edge	2.80	2.86	2.91	V
		VLVD5	Rising edge	2.76	2.81	2.87	V
			Falling edge	2.70	2.75	2.81	V
		VLVD6	Rising edge	2.66	2.71	2.76	V
			Falling edge	2.60	2.65	2.70	V
		VLVD7	Rising edge	2.56	2.61	2.66	V
			Falling edge	2.50	2.55	2.60	V
		VLVD8	Rising edge	2.45	2.50	2.55	V
			Falling edge	2.40	2.45	2.50	V
		Vlvd9	Rising edge	2.05	2.09	2.13	V
			Falling edge	2.00	2.04	2.08	V
		VLVD10	Rising edge	1.94	1.98	2.02	V
			Falling edge	1.90	1.94	1.98	V
		VLVD11	Rising edge	1.84	1.88	1.91	V
			Falling edge	1.80	1.84	1.87	V
		VLVD12	Rising edge	1.74	1.77	1.81	V
			Falling edge	1.70	1.73	1.77	V
		VLVD13	Rising edge	1.64	1.67	1.70	V
			Falling edge	1.60	1.63	1.66	V
Minimum pu	lse width	tLw		300			μs
Detection de	lay time					300	μs

RL78/G14

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.

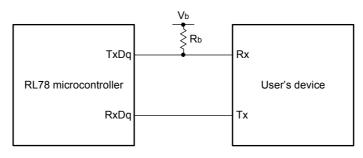
Note 5.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz

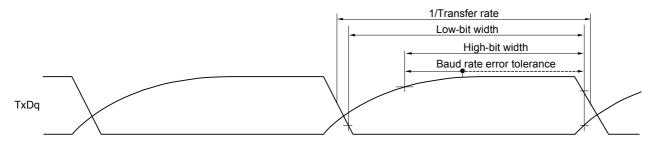
Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

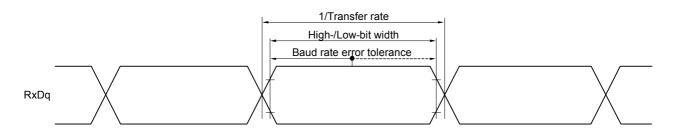
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C


$(1A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$							(2/2)
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdін, tтdі∟	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1		3/fclк			ns
Timer RD forced cutoff signal	t TDSIL	P130/INTP0	$2MHz < f_{CLK} \le 32 MHz$	1			μs
input low-level width			fclk ≤ 2 MHz	1/fclк + 1			
Timer RG input high-level width, low-level width	tтGін, tтGі∟	TRGIOA, TRGIOB		2.5/fclk			ns
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			16	MHz
TO10 to TO13,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
TRJIO0, TRJO0, TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB output frequency			2.4 V ≤ EVDD0 < 2.7 V			4	MHz
PCLBUZ0, PCLBUZ1 output frequency	f PCL	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
Interrupt input high-level width, low-level width	tinth,	INTP0	$2.4~V \leq V_{DD} \leq 5.5~V$	1			μs
	t INTL	INTP1 to INTP11	$2.4~V \leq EV_{DD0} \leq 5.5~V$	1			μs
Key interrupt input low-level width	tкr	KR0 to KR7	$2.4 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$	250			ns
RESET low-level width	trsl			10			μs

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


(2/2)



UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

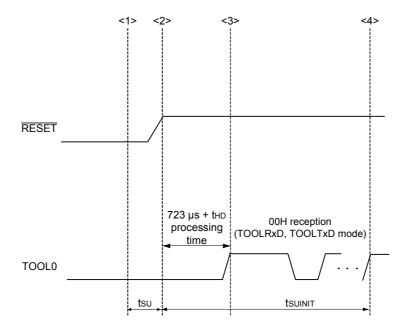
Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Voltage detection	VLVDD0	VPOC2, VPOC1, VPOC0 = 0, 1, 1, falling reset voltage			2.75	2.86	V
threshold	VLVDD1	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.81	2.92	3.03	V
		Falling interrupt voltage	2.75	2.86	2.97	V	
	VLVDD2	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.90	3.02	3.14	V
		Falling interrupt voltage	2.85	2.96	3.07	V	
	VLVDD3	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.90	4.06	4.22	V
			Falling interrupt voltage	3.83	3.98	4.13	V

(2) Interrupt & Reset Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

3.6.7 Power supply voltage rising slope characteristics

(TA = -40 to +105°C, Vss = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 3.4 AC Characteristics.

3.10 Timing of Entry to Flash Memory Programming Modes

Parameter		Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

- **Remark** tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.
 - tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
 - tHD: How long to keep the TOOL0 pin at the low level from when the external resets end
 - (excluding the processing time of the firmware to control the flash memory)

