



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

XF

| Product Status             | Obsolete                                                                        |
|----------------------------|---------------------------------------------------------------------------------|
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 22                                                                              |
| Program Memory Size        | 128KB (128K x 8)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 8K x 8                                                                          |
| RAM Size                   | 16К х 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V                                                                     |
| Data Converters            | A/D 8x8/10b; D/A 2x8b                                                           |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 32-WFQFN Exposed Pad                                                            |
| Supplier Device Package    | 32-HWQFN (5x5)                                                                  |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104bgana-u0 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### ○ ROM, RAM capacities

| Elash ROM   | Data flach  | RAM         | RL78/G14 |          |          |          |  |
|-------------|-------------|-------------|----------|----------|----------|----------|--|
| T IdSIT KOW | Data liasii |             | 30 pins  | 32 pins  | 36 pins  | 40 pins  |  |
| 192 KB      | 8 KB        | 20 KB       | —        | —        | —        | R5F104EH |  |
| 128 KB      | 8 KB        | 16 KB       | R5F104AG | R5F104BG | R5F104CG | R5F104EG |  |
| 96 KB       | 8 KB        | 12 KB       | R5F104AF | R5F104BF | R5F104CF | R5F104EF |  |
| 64 KB       | 4 KB        | 5.5 KB Note | R5F104AE | R5F104BE | R5F104CE | R5F104EE |  |
| 48 KB       | 4 KB        | 5.5 KB Note | R5F104AD | R5F104BD | R5F104CD | R5F104ED |  |
| 32 KB       | 4 KB        | 4 KB        | R5F104AC | R5F104BC | R5F104CC | R5F104EC |  |
| 16 KB       | 4 KB        | 2.5 KB      | R5F104AA | R5F104BA | R5F104CA | R5F104EA |  |

| Elash ROM   | Data flach  | PAM         |          | RL78     | 8/G14    |          |
|-------------|-------------|-------------|----------|----------|----------|----------|
| T Idolf TOW | Data liasii |             | 44 pins  | 48 pins  | 52 pins  | 64 pins  |
| 512 KB      | 8 KB        | 48 KB Note  |          | R5F104GL | —        | R5F104LL |
| 384 KB      | 8 KB        | 32 KB       | _        | R5F104GK | —        | R5F104LK |
| 256 KB      | 8 KB        | 24 KB Note  | R5F104FJ | R5F104GJ | R5F104JJ | R5F104LJ |
| 192 KB      | 8 KB        | 20 KB       | R5F104FH | R5F104GH | R5F104JH | R5F104LH |
| 128 KB      | 8 KB        | 16 KB       | R5F104FG | R5F104GG | R5F104JG | R5F104LG |
| 96 KB       | 8 KB        | 12 KB       | R5F104FF | R5F104GF | R5F104JF | R5F104LF |
| 64 KB       | 4 KB        | 5.5 KB Note | R5F104FE | R5F104GE | R5F104JE | R5F104LE |
| 48 KB       | 4 KB        | 5.5 KB Note | R5F104FD | R5F104GD | R5F104JD | R5F104LD |
| 32 KB       | 4 KB        | 4 KB        | R5F104FC | R5F104GC | R5F104JC | R5F104LC |
| 16 KB       | 4 KB        | 2.5 KB      | R5F104FA | R5F104GA | _        |          |

| Elash ROM Data flash |           | DAM        | RL78/G14 |          |  |  |  |
|----------------------|-----------|------------|----------|----------|--|--|--|
| T IdSIT KOW          | Data hash |            | 80 pins  | 100 pins |  |  |  |
| 512 KB               | 8 KB      | 48 KB Note | R5F104ML | R5F104PL |  |  |  |
| 384 KB               | 8 KB      | 32 KB      | R5F104MK | R5F104PK |  |  |  |
| 256 KB               | 8 KB      | 24 KB Note | R5F104MJ | R5F104PJ |  |  |  |
| 192 KB               | 8 KB      | 20 KB      | R5F104MH | R5F104PH |  |  |  |
| 128 KB               | 8 KB      | 16 KB      | R5F104MG | R5F104PG |  |  |  |
| 96 KB                | 8 KB      | 12 KB      | R5F104MF | R5F104PF |  |  |  |

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xD (x = A to C, E to G, J, L): Start address FE900H

R5F104xE (x = A to C, E to G, J, L): Start address FE900H

R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H

R5F104xL (x = G, L, M, P): Start address F3F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).



# 1.5.9 80-pin products





# **1.6** Outline of Functions

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 16 KB to 64 KB)]

# Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

|                      |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                        |                                          |                             | (1/2)                                                                                  |  |  |  |
|----------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|----------------------------------------------------------------------------------------|--|--|--|
|                      |                                                                            | 30-pin                                                                                                                                                                                                                                                                                                                                                                                                                 | 32-pin                                   | 36-pin                      | 40-pin                                                                                 |  |  |  |
|                      | Item                                                                       | R5F104Ax<br>(x = A, C to E)                                                                                                                                                                                                                                                                                                                                                                                            | R5F104Bx<br>(x = A, C to E)              | R5F104Cx<br>(x = A, C to E) | R5F104Ex<br>(x = A, C to E)                                                            |  |  |  |
| Code flash memo      | ry (KB)                                                                    | 16 to 64                                                                                                                                                                                                                                                                                                                                                                                                               | 16 to 64                                 | 16 to 64                    | 16 to 64                                                                               |  |  |  |
| Data flash memor     | у (КВ)                                                                     | 4                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                        | 4                           | 4                                                                                      |  |  |  |
| RAM (KB)             |                                                                            | 2.5 to 5.5 Note                                                                                                                                                                                                                                                                                                                                                                                                        | 2.5 to 5.5 Note                          | 2.5 to 5.5 Note             | 2.5 to 5.5 Note                                                                        |  |  |  |
| Address space        |                                                                            | 1 MB                                                                                                                                                                                                                                                                                                                                                                                                                   |                                          |                             |                                                                                        |  |  |  |
| Main system<br>clock | High-speed system<br>clock<br>High-speed on-chip<br>oscillator clock (fiH) | X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK)<br>HS (high-speed main) mode: 1 to 20 MHz ( $VDD = 2.7$ to 5.5 V),<br>HS (high-speed main) mode: 1 to 16 MHz ( $VDD = 2.4$ to 5.5 V),<br>LS (low-speed main) mode: 1 to 8 MHz ( $VDD = 1.8$ to 5.5 V),<br>LV (low-voltage main) mode: 1 to 4 MHz ( $VDD = 1.6$ to 5.5 V)<br>HS (high-speed main) mode: 1 to 32 MHz ( $VDD = 2.7$ to 5.5 V), |                                          |                             |                                                                                        |  |  |  |
|                      |                                                                            | LS (low-speed main) mode                                                                                                                                                                                                                                                                                                                                                                                               | e: 1 to 8 MHz (VDD = 1.8                 | to 5.5 V),                  |                                                                                        |  |  |  |
| Subsystem clock      |                                                                            | LV (low-voltage main) mod                                                                                                                                                                                                                                                                                                                                                                                              | ue: 1 to 4 MHZ (VDD = 1.t                | 10 5.5 V)                   | XT1 (crystal) oscillation,<br>external subsystem<br>clock input (EXCLKS)<br>32.768 kHz |  |  |  |
| Low-speed on-chi     | p oscillator clock                                                         | 15 kHz (TYP.): VDD = 1.6 t                                                                                                                                                                                                                                                                                                                                                                                             | o 5.5 V                                  |                             |                                                                                        |  |  |  |
| General-purpose      | register                                                                   | 8 bits $\times$ 32 registers (8 bits                                                                                                                                                                                                                                                                                                                                                                                   | $s \times 8$ registers $\times 4$ banks) |                             |                                                                                        |  |  |  |
| Minimum instructi    | on execution time                                                          | $0.03125\mu s$ (High-speed o                                                                                                                                                                                                                                                                                                                                                                                           | n-chip oscillator clock: fін             | = 32 MHz operation)         |                                                                                        |  |  |  |
|                      |                                                                            | $0.05 \ \mu s$ (High-speed syste                                                                                                                                                                                                                                                                                                                                                                                       | em clock: fmx = 20 MHz op                | eration)                    |                                                                                        |  |  |  |
|                      |                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                        | —                                        |                             | 30.5 μs (Subsystem<br>clock: fsuв = 32.768 kHz<br>operation)                           |  |  |  |
| Instruction set      |                                                                            | <ul> <li>Data transfer (8/16 bits)</li> <li>Adder and subtractor/logical operation (8/16 bits)</li> <li>Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits)</li> <li>Multiplication and Accumulation (16 bits × 16 bits + 32 bits)</li> <li>Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.</li> </ul>                     |                                          |                             |                                                                                        |  |  |  |
| I/O port             | Total                                                                      | 26                                                                                                                                                                                                                                                                                                                                                                                                                     | 28                                       | 32                          | 36                                                                                     |  |  |  |
|                      | CMOS I/O                                                                   | 21                                                                                                                                                                                                                                                                                                                                                                                                                     | 22                                       | 26                          | 28                                                                                     |  |  |  |
|                      | CMOS input                                                                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                        | 3                           | 5                                                                                      |  |  |  |
|                      | CMOS output                                                                | —                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                        | —                           | —                                                                                      |  |  |  |
|                      | N-ch open-drain I/O (6<br>V tolerance)                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                      | 3                                        | 3                           | 3                                                                                      |  |  |  |
| Timer                | 16-bit timer                                                               | 8 channels<br>(TAU: 4 channels, Timer R                                                                                                                                                                                                                                                                                                                                                                                | RJ: 1 channel, Timer RD: 2               | channels, Timer RG: 1 ch    | annel)                                                                                 |  |  |  |
|                      | Watchdog timer                                                             | 1 channel                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                             |                                                                                        |  |  |  |
|                      | Real-time clock (RTC)                                                      | 1 channel                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                             |                                                                                        |  |  |  |
|                      | 12-bit interval timer                                                      | 1 channel                                                                                                                                                                                                                                                                                                                                                                                                              |                                          |                             |                                                                                        |  |  |  |
|                      | Timer output                                                               | Timer outputs: 13 channels<br>PWM outputs: 9 channels                                                                                                                                                                                                                                                                                                                                                                  |                                          |                             |                                                                                        |  |  |  |
|                      | RTC output                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                        | _                                        |                             | 1<br>• 1 Hz<br>(subsystem clock: fsub<br>= 32.768 kHz)                                 |  |  |  |

(Note is listed on the next page.)



(R20UT2944).

 Note
 The flash library uses RAM in self-programming and rewriting of the data flash memory.

 The target products and start address of the RAM areas used by the flash library are shown below.

 R5F104xL (x = G, L, M, P): Start address F3F00H

 For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family



| Items                      | Symbol | Conditions                                                                                                                                                                  |                                                             | MIN. | TYP. | MAX.           | Unit |
|----------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|------|------|----------------|------|
| Output current, low Note 1 | IOL1   | Per pin for P00 to P06,<br>P10 to P17, P30, P31,<br>P40 to P47, P50 to P57,<br>P64 to P67, P70 to P77,<br>P80 to P87, P100 to P102, P110,<br>P111, P120, P130, P140 to P147 |                                                             |      |      | 20.0<br>Note 2 | mA   |
|                            |        | Per pin for P60 to P63                                                                                                                                                      |                                                             |      |      | 15.0<br>Note 2 | mA   |
|                            |        | Total of P00 to P04, P40 to P47,                                                                                                                                            | $4.0~V \leq EV_{DD0} \leq 5.5~V$                            |      |      | 70.0           | mA   |
|                            |        | P102, P120, P130, P140 to P145<br>(When duty ≤ 70% <sup>Note 3</sup> )                                                                                                      | $2.7~V \leq EV_{DD0} < 4.0~V$                               |      |      | 15.0           | mA   |
|                            |        |                                                                                                                                                                             | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$ |      |      | 9.0            | mA   |
|                            |        |                                                                                                                                                                             | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$  |      |      | 4.5            | mA   |
|                            |        | Total of P05, P06, P10 to P17,                                                                                                                                              | $4.0~V \leq EV_{DD0} \leq 5.5~V$                            |      |      | 80.0           | mA   |
|                            |        | P30, P31, P50 to P57,                                                                                                                                                       | $2.7~V \leq EV_{DD0} < 4.0~V$                               |      |      | 35.0           | mA   |
|                            |        | P60 to P67, P70 to P77,<br>P80 to P87, P100, P101, P110                                                                                                                     | $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V}$ |      |      | 20.0           | mA   |
|                            |        | P111, P146, P147<br>(When duty $\leq$ 70% <sup>Note 3</sup> )                                                                                                               | 1.6 V ≤ EVDD0 < 1.8 V                                       |      |      | 10.0           | mA   |
|                            |        | Total of all pins (When duty $\leq$ 70% <sup>Note 3</sup> )                                                                                                                 |                                                             |      |      | 150.0          | mA   |
|                            | IOL2   | Per pin for P20 to P27,<br>P150 to P156                                                                                                                                     |                                                             |      |      | 0.4<br>Note 2  | mA   |
|                            |        | Total of all pins<br>(When duty $\leq$ 70% <sup>Note 3</sup> )                                                                                                              | $1.6 V \le VDD \le 5.5 V$                                   |      |      | 5.0            | mA   |

(TA = -40 to +85°C, 1.6 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.

Note 2. Do not exceed the total current value.

**Note 3.** Specification under conditions where the duty factor  $\leq$  70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL  $\times$  0.7)/(n  $\times$  0.01)
- <Example> Where n = 80% and IoL = 10.0 mA
  - Total output current of pins =  $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$  mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



| Items               | Symbol | Conditions                                                                                                                                             | 3                                                                                | MIN.      | TYP. | MAX.      | Unit |
|---------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|-----------|------|-----------|------|
| Input voltage, high | Vih1   | P00 to P06, P10 to P17, P30,<br>P31, P40 to P47, P50 to P57,<br>P64 to P67, P70 to P77,<br>P80 to P87, P100 to P102, P110,<br>P111, P120, P140 to P147 | Normal input buffer                                                              | 0.8 EVddo |      | EVddo     | V    |
|                     | Vih2   | P01, P03, P04, P10, P14 to P17,<br>P30, P43, P44, P50, P53 to P55,                                                                                     | TTL input buffer<br>$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ | 2.2       |      | EVDD0     | V    |
|                     |        | P80, P81, P142, P143                                                                                                                                   | TTL input buffer<br>$3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$  | 2.0       |      | EVDD0     | V    |
|                     |        |                                                                                                                                                        | TTL input buffer $1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}$      | 1.5       |      | EVDD0     | V    |
|                     | Vінз   | P20 to P27, P150 to P156                                                                                                                               | ·                                                                                | 0.7 Vdd   |      | Vdd       | V    |
|                     | VIH4   | P60 to P63                                                                                                                                             | 0.7 EVDD0                                                                        |           | 6.0  | V         |      |
|                     | Vih5   | P121 to P124, P137, EXCLK, EX                                                                                                                          | CLKS, RESET                                                                      | 0.8 Vdd   |      | Vdd       | V    |
| Input voltage, low  | VIL1   | P00 to P06, P10 to P17, P30,<br>P31, P40 to P47, P50 to P57,<br>P64 to P67, P70 to P77,<br>P80 to P87, P100 to P102, P110,<br>P111, P120, P140 to P147 | Normal input buffer                                                              | 0         |      | 0.2 EVDD0 | V    |
|                     | VIL2   | P01, P03, P04, P10, P14 to P17,<br>P30, P43, P44, P50, P53 to P55,                                                                                     | TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$    | 0         |      | 0.8       | V    |
|                     |        | P80, P81, P142, P143                                                                                                                                   | TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$      | 0         |      | 0.5       | V    |
|                     |        |                                                                                                                                                        | TTL input buffer<br>1.6 V ≤ EVpp₀ < 3.3 V                                        | 0         |      | 0.32      | V    |
|                     | VIL3   | P20 to P27, P150 to P156                                                                                                                               |                                                                                  | 0         |      | 0.3 Vdd   | V    |
|                     | VIL4   | P60 to P63                                                                                                                                             |                                                                                  | 0         |      | 0.3 EVDD0 | V    |
|                     | VIL5   | P121 to P124, P137, EXCLK, EX                                                                                                                          | CLKS, RESET                                                                      | 0         |      | 0.2 Vdd   | V    |

(TA = -40 to +85°C, 1.6 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(3/5)

Caution The maximum value of VIH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



| (TA = -40 to +8  | 5°C, 1.6 | $\mathbf{V} \leq \mathbf{EV} \mathbf{DD}$ | $\mathbf{D} = \mathbf{EV}\mathbf{D}\mathbf{D}1 \leq \mathbf{V}\mathbf{D}\mathbf{D} \leq \mathbf{C}$ | 5.5 V, Vss = I        | EVsso   | = EVSS1 = 0                 | V)   |                         |         | (2/2) |
|------------------|----------|-------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------|---------|-----------------------------|------|-------------------------|---------|-------|
| Parameter        | Symbol   |                                           | Conditions                                                                                          | HS (high-spee<br>mode | d main) | LS (low-speed main)<br>mode |      | LV (low-voltage<br>mode | e main) | Unit  |
|                  |          |                                           |                                                                                                     | MIN.                  | MAX.    | MIN.                        | MAX. | MIN.                    | MAX.    |       |
| SSI00 setup time | tssik    | DAPmn = 0                                 | $2.7~V \leq EV_{DD0} \leq 5.5~V$                                                                    | 120                   |         | 120                         |      | 120                     |         | ns    |
|                  |          |                                           | $1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$                                        | 200                   |         | 200                         |      | 200                     |         | ns    |
|                  |          |                                           | $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$                                      | 400                   |         | 400                         |      | 400                     |         | ns    |
|                  |          |                                           | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$                                        | —                     |         | 400                         |      | 400                     |         | ns    |
|                  |          | DAPmn = 1                                 | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$                                      | 1/fмск + 120          |         | 1/fмск + 120                |      | 1/fмск + 120            |         | ns    |
|                  |          |                                           | $1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$                                        | 1/fмск + 200          |         | 1/fмск + 200                |      | 1/fмск + 200            |         | ns    |
|                  |          |                                           | $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$                                      | 1/fмск + 400          |         | 1/fмск + 400                |      | 1/fмск + 400            |         | ns    |
|                  |          |                                           | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$                                        | —                     |         | 1/fмск + 400                |      | 1/fмск + 400            |         | ns    |
| SSI00 hold time  | tĸssi    | DAPmn = 0                                 | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$                                      | 1/fмск + 120          |         | 1/fмск + 120                |      | 1/fмск + 120            |         | ns    |
|                  |          |                                           | $1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$                                        | 1/fмск + 200          |         | 1/fмск + 200                |      | 1/fмск + 200            |         | ns    |
|                  |          |                                           | $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$                                      | 1/fмск + 400          |         | 1/fмск + 400                |      | 1/fмск + 400            |         | ns    |
|                  |          |                                           | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$                                        | —                     |         | 1/fмск + 400                |      | 1/fмск + 400            |         | ns    |
|                  |          | DAPmn = 1                                 | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$                                      | 120                   |         | 120                         |      | 120                     |         | ns    |
|                  |          |                                           | $1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$                                        | 200                   |         | 200                         |      | 200                     |         | ns    |
|                  |          |                                           | $1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$                                      | 400                   |         | 400                         |      | 400                     |         | ns    |
|                  |          |                                           | $1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$                                        | _                     |         | 400                         |      | 400                     |         | ns    |

# (4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

**Remark** p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

#### CSI mode connection diagram (during communication at same potential)



CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))



**Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)



## UART mode connection diagram (during communication at different potential)



#### UART mode bit width (during communication at different potential) (reference)





**Remark 1.**  $Rb[\Omega]$ : Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

**Remark 2.** q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

**Remark 4.** UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.



# 3. ELECTRICAL SPECIFICATIONS (G: INDUSTRIAL APPLICATIONS TA = -40 to +105°C)

This chapter describes the following electrical specifications. Target products G: Industrial applications  $T_A = -40$  to  $+105^{\circ}C$ R5F104xxGxx

- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.
- Caution 4. Please contact Renesas Electronics sales office for derating of operation under TA = +85 to +105°C. Derating is the systematic reduction of load for the sake of improved reliability.
- Remark When RL78/G14 is used in the range of T<sub>A</sub> = -40 to +85°C, see 2. ELECTRICAL SPECIFICATIONS (T<sub>A</sub> = -40 to +85°C).



# 3.2 Oscillator Characteristics

# 3.2.1 X1, XT1 characteristics

#### $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

| Resonator                                  | Resonator          | Conditions                                                 | MIN. | TYP.   | MAX. | Unit |
|--------------------------------------------|--------------------|------------------------------------------------------------|------|--------|------|------|
| X1 clock oscillation frequency (fx) Note   | Ceramic resonator/ | $2.7~V \leq V \text{DD} \leq 5.5~V$                        | 1.0  |        | 20.0 | MHz  |
|                                            | crystal resonator  | $2.4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$ | 1.0  |        | 16.0 |      |
| XT1 clock oscillation frequency (fxT) Note | Crystal resonator  |                                                            | 32   | 32.768 | 35   | kHz  |

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

# 3.2.2 On-chip oscillator characteristics

#### (TA = -40 to +105°C, 2.4 V $\leq$ VDD $\leq$ 5.5 V, Vss = 0 V)

| Oscillators                                                 | Parameters | Co            | onditions                           | MIN. | TYP. | MAX. | Unit |
|-------------------------------------------------------------|------------|---------------|-------------------------------------|------|------|------|------|
| High-speed on-chip oscillator clock frequency<br>Notes 1, 2 | fін        |               |                                     |      |      | 32   | MHz  |
| High-speed on-chip oscillator clock frequency               |            | -20 to +85°C  | $2.4~V \leq V \text{DD} \leq 5.5~V$ | -1.0 |      | +1.0 | %    |
| accuracy                                                    |            | -40 to -20°C  | $2.4~V \leq V \text{DD} \leq 5.5~V$ | -1.5 |      | +1.5 | %    |
|                                                             |            | +85 to +105°C | $2.4~V \leq V \text{DD} \leq 5.5~V$ | -2.0 |      | +2.0 | %    |
| Low-speed on-chip oscillator clock frequency                | fı∟        |               |                                     |      | 15   |      | kHz  |
| Low-speed on-chip oscillator clock frequency accuracy       |            |               |                                     | -15  |      | +15  | %    |

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.



| Items                                                          | Symbol | Conditi                                                                                                                                                | ons                       |                                             | MIN. | TYP. | MAX. | Unit |
|----------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------------------------------|------|------|------|------|
| Input leakage cur-<br>rent, high                               | ILIH1  | P00 to P06, P10 to P17, P30,<br>P31, P40 to P47, P50 to P57,<br>P64 to P67, P70 to P77,<br>P80 to P87, P100 to P102, P110,<br>P111, P120, P140 to P147 | VI = EVDDO                |                                             |      |      | 1    | μA   |
|                                                                | Ilih2  | P20 to P27, P137, P150 to P156,<br>RESET                                                                                                               | VI = VDD                  |                                             |      |      | 1    | μA   |
|                                                                | Ілнз   | P121 to P124<br>(X1, X2, EXCLK, XT1, XT2,<br>EXCLKS)                                                                                                   | VI = VDD                  | In input port or<br>external clock<br>input |      |      | 1    | μA   |
|                                                                |        |                                                                                                                                                        |                           | In resonator con-<br>nection                |      |      | 10   | μA   |
| Input leakage<br>current, low<br>On-chip pull-up<br>resistance | ILIL1  | P00 to P06, P10 to P17, P30,<br>P31, P40 to P47, P50 to P57,<br>P64 to P67, P70 to P77,<br>P80 to P87, P100 to P102, P110,<br>P111, P120, P140 to P147 | VI = EVsso                |                                             |      | -1   | μΑ   |      |
|                                                                | ILIL2  | P20 to P27, P137, P150 to P156,<br>RESET                                                                                                               | VI = VSS                  |                                             |      |      | -1   | μA   |
|                                                                | Ilil3  | P121 to P124<br>(X1, X2, EXCLK, XT1, XT2,<br>EXCLKS)                                                                                                   | VI = VSS                  | In input port or<br>external clock<br>input |      |      | -1   | μΑ   |
|                                                                |        |                                                                                                                                                        |                           | In resonator con-<br>nection                |      |      | -10  | μA   |
| On-chip pull-up<br>resistance                                  | Ru     | P00 to P06, P10 to P17, P30,<br>P31, P40 to P47, P50 to P57,<br>P64 to P67, P70 to P77,<br>P80 to P87, P100 to P102, P110,<br>P111, P120, P140 to P147 | Vi = EVsso, In input port |                                             | 10   | 20   | 100  | kΩ   |

(TA = -40 to +105°C, 2.4 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.



# 3.3.2 Supply current characteristics

## (1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

#### (TA = -40 to +105°C, 2.4 V $\leq$ EVDD0 $\leq$ VDD $\leq$ 5.5 V, Vss = EVsso = 0 V)

| Parameter | Symbol |          | Conditions                                   |                                                                                    |                      |                      |     |      | MAX. | Unit |
|-----------|--------|----------|----------------------------------------------|------------------------------------------------------------------------------------|----------------------|----------------------|-----|------|------|------|
| Supply    | IDD1   | Operat-  | HS (high-speed main)                         | fносо = 64 MHz,                                                                    | Basic                | VDD = 5.0 V          |     | 2.4  |      | mA   |
| current   |        | ing mode | mode Note 5                                  | fiH = 32 MHz Note 3                                                                | operation            | VDD = 3.0 V          |     | 2.4  |      |      |
| Note 1    |        |          |                                              | fносо = 32 MHz,                                                                    | Basic                | VDD = 5.0 V          |     | 2.1  |      |      |
|           |        |          |                                              | fiH = 32 MHz Note 3                                                                | operation            | VDD = 3.0 V          |     | 2.1  |      |      |
|           |        |          | HS (high-speed main)                         | fносо = 64 MHz,                                                                    | Normal               | VDD = 5.0 V          |     | 5.1  | 9.3  | mA   |
|           |        |          | mode Note 5                                  | fiH = 32 MHz Note 3                                                                | operation            | VDD = 3.0 V          |     | 5.1  | 9.3  |      |
|           |        |          |                                              | fносо = 32 MHz,                                                                    | Normal               | VDD = 5.0 V          |     | 4.8  | 8.7  |      |
|           |        |          |                                              | fiH = 32 MHz Note 3                                                                | operation            | VDD = 3.0 V          |     | 4.8  | 8.7  |      |
|           |        |          |                                              | fносо = 48 MHz,                                                                    | Normal               | VDD = 5.0 V          |     | 4.0  | 7.3  |      |
|           |        |          |                                              | fiH = 24 MHz Note 3                                                                | operation            | VDD = 3.0 V          |     | 4.0  | 7.3  |      |
|           |        |          |                                              | fносо = 24 MHz,                                                                    | Normal               | VDD = 5.0 V          |     | 3.8  | 6.7  |      |
|           |        |          |                                              | fiH = 24 MHz Note 3                                                                | operation            | VDD = 3.0 V          |     | 3.8  | 6.7  |      |
|           |        |          |                                              | fносо = 16 MHz, Normal                                                             | Normal               | VDD = 5.0 V          |     | 2.8  | 4.9  |      |
|           |        |          |                                              | fiH = 16 MHz Note 3<br>f <sub>MX</sub> = 20 MHz Note 2,<br>V <sub>DD</sub> = 5.0 V | operation            | VDD = 3.0 V          |     | 2.8  | 4.9  |      |
|           |        |          | HS (high-speed main)<br>mode Note 5          |                                                                                    | Normal               | Square wave input    |     | 3.3  | 5.7  | mA   |
|           |        |          |                                              |                                                                                    | operation            | Resonator connection |     | 3.4  | 5.8  |      |
|           |        |          | f <sub>MX</sub> = 20 MHz <sup>Note 2</sup> , | Normal                                                                             | Square wave input    |                      | 3.3 | 5.7  |      |      |
|           |        |          | VDD = 3.0 V                                  | operation                                                                          | Resonator connection |                      | 3.4 | 5.8  |      |      |
|           |        |          |                                              | fmx = 10 MHz Note 2,                                                               | Normal               | Square wave input    |     | 2.0  | 3.4  |      |
|           |        |          |                                              | V <sub>DD</sub> = 5.0 V                                                            | operation            | Resonator connection |     | 2.1  | 3.5  |      |
|           |        |          |                                              | f <sub>MX</sub> = 10 MHz <sup>Note 2</sup> ,<br>V <sub>DD</sub> = 3.0 V            | Normal               | Square wave input    |     | 2.0  | 3.4  |      |
|           |        |          |                                              |                                                                                    | operation            | Resonator connection |     | 2.1  | 3.5  |      |
|           |        |          | Subsystem clock                              | fsub = 32.768 kHz Note 4                                                           | Normal               | Square wave input    |     | 4.7  | 6.1  | μΑ   |
|           |        |          | operation                                    | TA = -40°C                                                                         | operation            | Resonator connection |     | 4.7  | 6.1  |      |
|           |        |          |                                              | fsue = 32.768 kHz Note 4                                                           | Normal               | Square wave input    |     | 4.7  | 6.1  |      |
|           |        |          |                                              | TA = +25°C                                                                         | operation            | Resonator connection |     | 4.7  | 6.1  |      |
|           |        |          |                                              | fsue = 32.768 kHz Note 4                                                           | Normal               | Square wave input    |     | 4.8  | 6.7  |      |
|           |        |          |                                              | TA = +50°C                                                                         | operation            | Resonator connection |     | 4.8  | 6.7  |      |
|           |        |          |                                              | fsub = 32.768 kHz Note 4                                                           | Normal               | Square wave input    |     | 4.8  | 7.5  |      |
|           |        | T        | TA = +70°C                                   | operation                                                                          | Resonator connection |                      | 4.8 | 7.5  |      |      |
|           |        |          |                                              | fsue = 32.768 kHz Note 4                                                           | Normal               | Square wave input    |     | 5.4  | 8.9  |      |
|           |        | TA       | TA = +85°C                                   | operation                                                                          | Resonator connection |                      | 5.4 | 8.9  |      |      |
|           |        |          | fs                                           | fsub = 32.768 kHz Note 4                                                           | Normal               | Square wave input    |     | 7.2  | 21.0 |      |
|           |        |          | TA = +105°C                                  | operation                                                                          | Resonator connection |                      | 7.3 | 21.1 |      |      |

(Notes and Remarks are listed on the next page.)



- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode:  $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$  to 32 MHz
  - 2.4 V  $\leq$  VDD  $\leq$  5.5 V@1 MHz to 16 MHz
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C



# (6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

| (TA = -40 to +105°C, 2.4 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V) |        |                                                                                                                                                          |                           | (2/3) |      |
|-----------------------------------------------------------------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-------|------|
| Parameter                                                                                           | Symbol | Conditions                                                                                                                                               | HS (high-speed main) mode |       | Unit |
|                                                                                                     |        |                                                                                                                                                          | MIN.                      | MAX.  |      |
| SIp setup time (to SCKp↑) <sup>Note</sup>                                                           | tsiк1  |                                                                                                                                                          | 162                       |       | ns   |
|                                                                                                     |        | $\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$         | 354                       |       | ns   |
|                                                                                                     |        | $\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$         | 958                       |       | ns   |
| SIp hold time (from SCKp↑) <sup>Note</sup>                                                          | tksi1  |                                                                                                                                                          | 38                        |       | ns   |
|                                                                                                     |        | $\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$                | 38                        |       | ns   |
|                                                                                                     |        | $\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$ | 38                        |       | ns   |
| Delay time from SCKp↓ to SOp output <sup>Note</sup>                                                 | tkso1  |                                                                                                                                                          |                           | 200   | ns   |
|                                                                                                     |        | $\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$         |                           | 390   | ns   |
|                                                                                                     |        | $\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$         |                           | 966   | ns   |

**Note** When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

(Remarks are listed on the page after the next page.)



Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

## (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I<sup>2</sup>C mode)

| (TA = -40 to +105°C, 2 | $2.4 V \leq EVDD0 = EVDD^{2}$ | $1 \leq VDD \leq 5.5 V, VSS$ | = EVss0 $=$ EVss1 $=$ 0 V) |
|------------------------|-------------------------------|------------------------------|----------------------------|
| (                      |                               |                              |                            |

(1/2)

| Parameter                 | Symbol | Conditions                                                                                                                                                       | HS (high-spe | ed main) mode | Unit |
|---------------------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|------|
|                           |        |                                                                                                                                                                  | MIN.         | MAX.          |      |
| SCLr clock frequency      | fsc∟   |                                                                                                                                                                  |              | 400 Note 1    | kHz  |
|                           |        | $\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                 |              | 400 Note 1    | kHz  |
|                           |        | $\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$       |              | 100 Note 1    | kHz  |
|                           |        | $\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                |              | 100 Note 1    | kHz  |
|                           |        | $\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$ |              | 100 Note 1    | kHz  |
| Hold time when SCLr = "L" | t.ow   |                                                                                                                                                                  | 1200         |               | ns   |
|                           |        | $\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                 | 1200         |               | ns   |
|                           |        |                                                                                                                                                                  | 4600         |               | ns   |
|                           |        | $\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                | 4600         |               | ns   |
|                           |        | $\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$                | 4650         |               | ns   |
| Hold time when SCLr = "H" | tнigн  |                                                                                                                                                                  | 620          |               | ns   |
|                           |        | $\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                 | 500          |               | ns   |
|                           |        |                                                                                                                                                                  | 2700         |               | ns   |
|                           |        | $\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$        | 2400         |               | ns   |
|                           |        | $\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$ | 1830         |               | ns   |



#### (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I<sup>2</sup>C mode)

| 1 | [/ – -40 to +105°C 24 V < EV_00 – EV_01 < V00 < 55 V V99 – EV990 – EV991 − 0                     | n vn |
|---|--------------------------------------------------------------------------------------------------|------|
| 1 | $A = -40 \ 10 + 103 \ C, 2.4 \ V \ge EVDD0 = EVDD1 \ge VDD \ge 3.5 \ V, V33 = EV330 = EV331 = 0$ | , v) |

(2/2)

| Parameter                     | Symbol  | Conditions                                                                                                                                                | HS (high-speed main) mode       |      | Unit |
|-------------------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|------|------|
|                               |         |                                                                                                                                                           | MIN.                            | MAX. |      |
| Data setup time (reception)   | tsu:dat |                                                                                                                                                           | 1/f <sub>MCK</sub> + 340 Note 2 |      | ns   |
|                               |         | $\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$                 | 1/fмск + 340 Note 2             |      | ns   |
|                               |         |                                                                                                                                                           | 1/fmck + 760 Note 2             |      | ns   |
|                               |         | $\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$ | 1/fмск + 760 Note 2             |      | ns   |
|                               |         | $\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$ | 1/fмск + 570 Note 2             |      | ns   |
| Data hold time (transmission) | thd:dat |                                                                                                                                                           | 0                               | 770  | ns   |
|                               |         | $\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$                 | 0                               | 770  | ns   |
|                               |         |                                                                                                                                                           | 0                               | 1420 | ns   |
|                               |         | $\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$ | 0                               | 1420 | ns   |
|                               |         | $\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$                | 0                               | 1215 | ns   |

**Note 1.** The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)



# 4.3 36-pin products

R5F104CAALA, R5F104CCALA, R5F104CDALA, R5F104CEALA, R5F104CFALA, R5F104CGALA R5F104CAGLA, R5F104CCGLA, R5F104CDGLA, R5F104CEGLA, R5F104CFGLA, R5F104CGGLA



©2012 Renesas Electronics Corporation. All rights reserved.



## R5F104GKAFB, R5F104GLAFB R5F104GKGFB, R5F104GLGFB





R5F104LCAFB, R5F104LDAFB, R5F104LEAFB, R5F104LFAFB, R5F104LGAFB, R5F104LHAFB, R5F104LJAFB

R5F104LCDFB, R5F104LDDFB, R5F104LEDFB, R5F104LFDFB, R5F104LGDFB, R5F104LHDFB, R5F104LJDFB

R5F104LCGFB, R5F104LDGFB, R5F104LEGFB, R5F104LFGFB, R5F104LGGFB, R5F104LHGFB, R5F104LJGFB

| JEITA Package Code   | RENESAS Code | Previous Code  | MASS (TYP.) [g] |
|----------------------|--------------|----------------|-----------------|
| P-LFQFP64-10x10-0.50 | PLQP0064KF-A | P64GB-50-UEU-2 | 0.35            |



Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.



R5F104LCAFP, R5F104LDAFP, R5F104LEAFP, R5F104LFAFP, R5F104LGAFP, R5F104LHAFP, R5F104LJAFP R5F104LCDFP, R5F104LDDFP, R5F104LEDFP, R5F104LFDFP, R5F104LGDFP, R5F104LHDFP, R5F104LJDFP R5F104LCGFP, R5F104LDGFP, R5F104LEGFP, R5F104LFGFP, R5F104LGGFP, R5F104LHGFP, R5F104LJGFP

| JEITA Package Code  | RENESAS Code | Previous Code  | MASS (TYP.) [g] |
|---------------------|--------------|----------------|-----------------|
| P-LQFP64-14x14-0.80 | PLQP0064GA-A | P64GC-80-GBW-1 | 0.7             |



© 2012 Renesas Electronics Corporation. All rights reserved.

