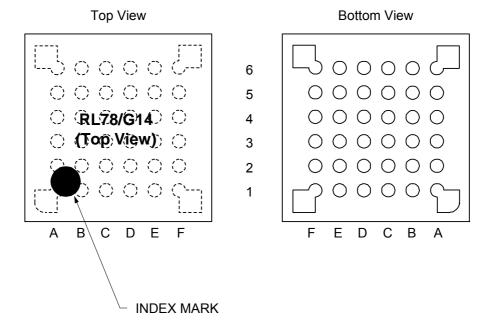


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-WFQFN Exposed Pad
Supplier Device Package	32-HWQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104bgana-w0

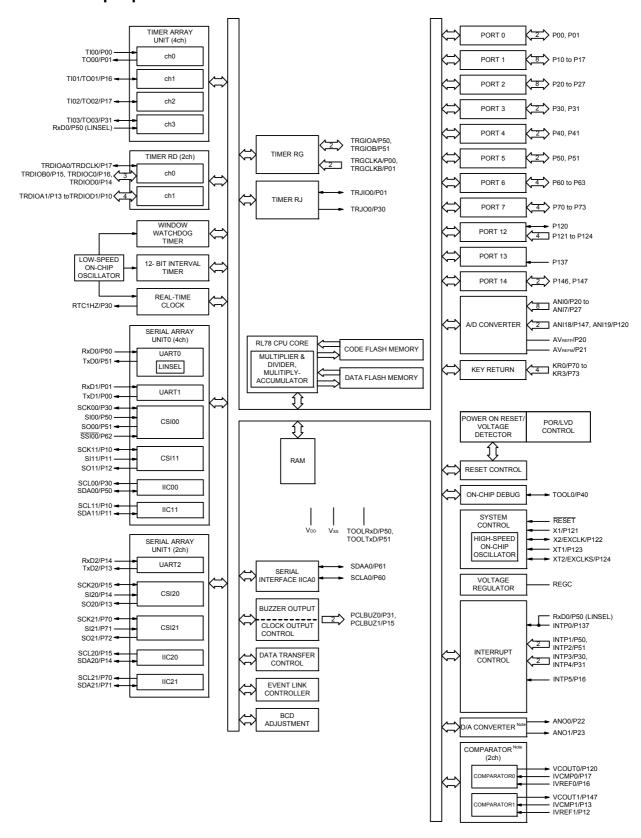
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.3 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)

	Α	В	С	D	E	F	
6	P60/SCLA0	VDD	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
5	P62/SSI00	P61/SDAA0	Vss	REGC	RESET	P120/ANI19/ VCOUT0 Note	5
4	P72/SO21	P71/SI21/ SDA21	P14/RxD2/SI20/ SDA20/TRDIOD0/ (SCLA0)	P31/TI03/TO03/ INTP4/PCLBUZ0/ (TRJIO0)	P00/TI00/TxD1/ TRGCLKA/ (TRJO0)	P01/TO00/ RxD1/TRGCLKB/ TRJIO0	4
3	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/TRGIOA/ (TRJO0)	P70/SCK21/ SCL21	P15/PCLBUZ1/ SCK20/SCL20/ TRDIOB0/ (SDAA0)	P22/ANI2/ ANO0 Note	P20/ANI0/ AVREFP	P21/ANI1/ AVREFM	3
2	P30/INTP3/ SCK00/SCL00/ TRJO0	P16/TI01/TO01/ INTP5/TRDIOC0/ IVREF0 Note/ (RXD0)	P12/SO11/ TRDIOB1/ IVREF1 Note	P11/SI11/ SDA11/ TRDIOC1	P24/ANI4	P23/ANI3/ ANO1 ^{Note}	2
1	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	P17/TI02/TO02/ TRDIOA0/ TRDCLK/ IVCMP0 Note/ (TXD0)	P13/TxD2/ SO20/TRDIOA1/ IVCMP1 Note	P10/SCK11/ SCL11/ TRDIOD1	P147/ANI18/ VCOUT1 Note	P25/ANI5	1
•	Δ	R	C.	n	F	F	


Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.5.5 44-pin products

Note Mounted on the 96 KB or more code flash memory products.

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xD (x = A to C, E to G, J, L): Start address FE900H R5F104xE (x = A to C, E to G, J, L): Start address FE900H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 16 KB to 64 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

					(1/2			
		44-pin	48-pin	52-pin	64-pin			
	Item	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx			
		(x = A, C to E)	(x = A, C to E)	(x = C to E)	(x = C to E)			
Code flash me	mory (KB)	16 to 64	16 to 64	32 to 64	32 to 64			
Data flash men	nory (KB)	4	4	4	4			
RAM (KB)		2.5 to 5.5 Note	2.5 to 5.5 Note	4 to 5.5 Note	4 to 5.5 Note			
Address space		1 MB						
Main system clock	High-speed system clock	HS (high-speed main) HS (high-speed main) LS (low-speed main) n	scillation, external main mode: 1 to 20 MHz (V mode: 1 to 16 MHz (V node: 1 to 8 MHz (VD mode: 1 to 4 MHz (VD	DD = 2.7 to 5.5 V), DD = 2.4 to 5.5 V), D = 1.8 to 5.5 V),	(CLK)			
	High-speed on-chip oscillator clock (fін)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)						
Subsystem clo	ck	XT1 (crystal) oscillation	n, external subsystem o	lock input (EXCLKS) 3	2.768 kHz			
Low-speed on-	chip oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V						
General-purpos	se register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)						
Minimum instru	uction execution time	0.03125 μs (High-spee	ed on-chip oscillator clo	ck: fін = 32 MHz operat	ion)			
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)						
		30.5 μs (Subsystem cl	ock: fsuв = 32.768 kHz	operation)				
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 						
I/O port	Total	40	44	48	58			
	CMOS I/O	31	34	38	48			
	CMOS input	5	5	5	5			
	CMOS output	_	1	1	1			
	N-ch open-drain I/O (6 V tolerance)	4	4	4	4			
Timer	16-bit timer	8 channels (TAU: 4 channels, Tim	er RJ: 1 channel, Timer	RD: 2 channels, Timer	RG: 1 channel)			
	Watchdog timer	1 channel						
	Real-time clock (RTC)	1 channel						
	12-bit interval timer	1 channel						
	Timer output	Timer outputs: 13 channels PWM outputs: 9 channels						
	RTC output	1 • 1 Hz (subsystem clock: fsub = 32.768 kHz)						

(Note is listed on the next page.)

2.3.2 Supply current characteristics

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operat-	HS (high-speed main)	fHOCO = 64 MHz,	Basic	V _{DD} = 5.0 V		2.4		mA
current		ing mode	mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.4		
Note 1				fHOCO = 32 MHz,	Basic	V _{DD} = 5.0 V		2.1		
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.1		
			HS (high-speed main)	fHOCO = 64 MHz,	Normal	V _{DD} = 5.0 V		5.1	8.7	mA
			mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		5.1	8.7	
				fHOCO = 32 MHz,	Normal	V _{DD} = 5.0 V		4.8	8.1	
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		4.8	8.1	
				fHOCO = 48 MHz,	Normal	V _{DD} = 5.0 V		4.0	6.9	
			fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.0	6.9		
				fHOCO = 24 MHz,	Normal	V _{DD} = 5.0 V		3.8	6.3	
				fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		3.8	6.3	
				fHOCO = 16 MHz,	Normal operation	V _{DD} = 5.0 V		2.8	4.6	
				fih = 16 MHz Note 3		V _{DD} = 3.0 V		2.8	4.6	
			LS (low-speed main)	fhoco = 8 MHz,	Normal	V _{DD} = 3.0 V		1.3	2.0	mA
			mode Note 5	fih = 8 MHz Note 3	operation	V _{DD} = 2.0 V		1.3	2.0	
			LV (low-voltage main)	fHOCO = 4 MHz, Nor	Normal	V _{DD} = 3.0 V		1.3	1.8	mA
			mode Note 5	fiH = 4 MHz Note 3	operation	V _{DD} = 2.0 V		1.3	1.8	
		HS(HS (high-speed main)	f _{MX} = 20 MHz Note 2, N	Normal	Square wave input		3.3	5.3	mA
		mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.4	5.5		
			f _{MX} = 20 MHz Note 2,	Normal	Square wave input		3.3	5.3		
				V _{DD} = 3.0 V	operation	Resonator connection		3.4	5.5	- - - -
				fmx = 10 MHz Note 2, VDD = 5.0 V	Normal operation	Square wave input		2.0	3.1	
						Resonator connection		2.1	3.2	
				f _{MX} = 10 MHz Note 2,	Normal	Square wave input		2.0	3.1	
				V _{DD} = 3.0 V	operation	Resonator connection		2.1	3.2	
			LS (low-speed main)	f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9	mA
			mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.2	2.0	
				f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9	
				V _{DD} = 2.0 V	operation	Resonator connection		1.2	2.0	
			Subsystem clock	fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μА
			operation	TA = -40°C	operation	Resonator connection		4.7	6.1	
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	
		T _A = +25°C	operation	Resonator connection		4.7	6.1	- - -		
		fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7			
		T _A = +50°C	operation	Resonator connection		4.8	6.7			
		fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.8	7.5			
				TA = +70°C	operation	Resonator connection		4.8	7.5	1
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		5.4	8.9	
				T _A = +85°C	operation	Resonator connection		5.4	8.9	1

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz}$ to 32 MHz

 $2.4~V \leq V_{DD} \leq 5.5~V \textcircled{@}1~MHz$ to 16 MHz

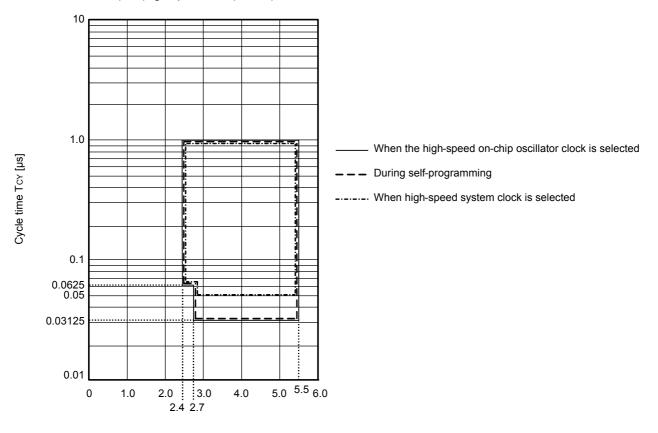
LS (low-speed main) mode: 1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
 Remark 3. fH: High-speed on-chip oscillator clock frequency (32 MHz max.)
 Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$

 $2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

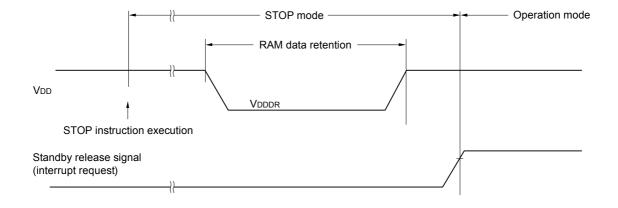

LS (low-speed main) mode: 1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
 Remark 3. filh: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Minimum Instruction Execution Time during Main System Clock Operation

Supply voltage VDD [V]

Tcy vs Vdd (HS (high-speed main) mode)



2.7 RAM Data Retention Characteristics

$(TA = -40 \text{ to } +85^{\circ}C, Vss = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

2.8 Flash Memory Programming Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	1.8 V ≤ VDD ≤ 5.5 V	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years TA = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

2.9 Dedicated Flash Memory Programmer Communication (UART)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

Absolute Maximum Ratings

(2/2)

Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Іон1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
		-170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low los	IoL1 Per pin		P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA
		170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient	TA	In normal c	pperation mode	-40 to +105	°C
temperature		In flash me	mory programming mode		
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter.

That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

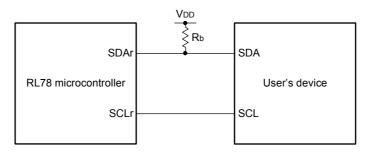
Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{\textcircled{Q}}1 \text{ MHz}$ to 32 MHz $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{\textcircled{Q}}1 \text{ MHz}$ to 16 MHz
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)

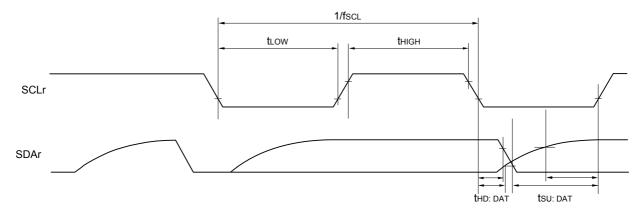
 Remark 3. fil: High-speed on-chip oscillator clock frequency (32 MHz max.)

 Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)


Parameter	Symbol	Cond	ditions	HS (high-speed	main) mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	4.0 V ≤ EV _{DD0} ≤ 5.5 V	20 MHz < fmck	16/ƒмск		ns
			fмcк ≤ 20 MHz	12/fмск		ns
		2.7 V ≤ EVDD0 ≤ 5.5 V	.7 V ≤ EV _{DD0} ≤ 5.5 V 16 MHz < fмcк			ns
			fмcк ≤ 16 MHz	12/fмск		ns
		2.4 V ≤ EVDD0 ≤ 5.5 V		12/fмск and 1000		ns
SCKp high-/low-level width	tkH2, tkL2 4.0 V ≤ EVDD0 ≤ 5.5 V			tkcy2/2 - 14		ns
		2.7 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 16		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 36		ns
SIp setup time (to SCKp↑) Note 1	tsık2	2.7 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 40		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 2	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note 4	2.7 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 66	ns
			2.4 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 113	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SOp output lines.
- **Note 5.** The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fmck: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remark 1. $R_b[\Omega]$: Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance

Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 3 to 5, 14), h: POM number (h = 0, 1, 3 to 5, 7, 14)

Remark 3. fmck: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),
n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions	HS (high-speed m	ain) mode	Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat	$ 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega $	1/fmck + 340 Note 2		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	1/fmck + 340 Note 2		ns
		$\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 2.8 \text{ k}\Omega \end{aligned}$	1/fмск + 760 Note 2		ns
		$\begin{aligned} 2.7 & \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} &= 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	1/fmck + 760 Note 2		ns
		$\begin{aligned} 2.4 & \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V}, \\ 1.6 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned}$	1/fмск + 570 Note 2		ns
Data hold time (transmission)	thd:dat	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	0	770	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	0	770	ns
		$\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} &= 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$	0	1420	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	0	1420	ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$	0	1215	ns

Note 1. The value must also be equal to or less than fmck/4.

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

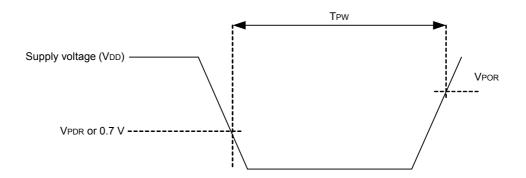
(Remarks are listed on the next page.)

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

3.6.4 Comparator

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Col	nditions	MIN.	TYP.	MAX.	Unit
Input voltage range	Ivref			0		EVDD0 - 1.4	V
	Ivcmp			-0.3		EV _{DD0} + 0.3	V
Output delay	td	V _{DD} = 3.0 V Input slew rate > 50 mV/μs	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode	e, window mode		0.76 VDD		V
Low-electric-potential ref- erence voltage	VTW-	Comparator high-speed mode	e, window mode		0.24 VDD		V
Operation stabilization wait time	tсмр			100			μs
Internal reference voltage Note	VBGR	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{ HS (h}$	nigh-speed main) mode	1.38	1.45	1.50	٧


Note Not usable in sub-clock operation or STOP mode.

3.6.5 POR circuit characteristics

$(TA = -40 \text{ to } +105^{\circ}\text{C}, Vss = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset threshold	VPOR	Voltage threshold on VDD rising	1.45	1.51	1.57	V
	VPDR	Voltage threshold on VDD falling Note 1	1.44	1.50	1.56	V
Minimum pulse width Note 2	Tpw		300			μs

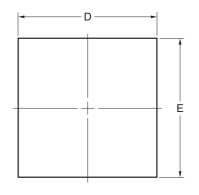
- **Note 1.** However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 3.4 AC Characteristics.
- Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

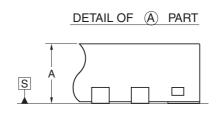
R5F104GAANA, R5F104GCANA, R5F104GDANA, R5F104GEANA, R5F104GFANA, R5F104GGANA,

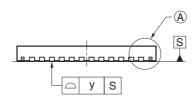
R5F104GHANA, R5F104GJANA

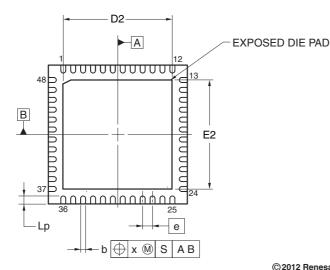
R5F104GADNA, R5F104GCDNA, R5F104GDDNA, R5F104GEDNA, R5F104GFDNA, R5F104GGDNA,

R5F104GHDNA, R5F104GJDNA


R5F104GAGNA, R5F104GCGNA, R5F104GDGNA, R5F104GEGNA, R5F104GFGNA, R5F104GGGNA,

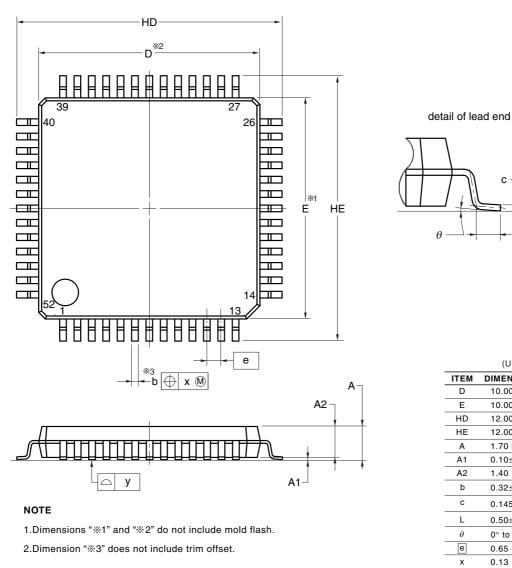

R5F104GHGNA, R5F104GJGNA


R5F104GKANA, R5F104GLANA


R5F104GKGNA, R5F104GLGNA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-HWQFN48-7x7-0.50	PWQN0048KB-A	48PJN-A P48K8-50-5B4-5	0.13

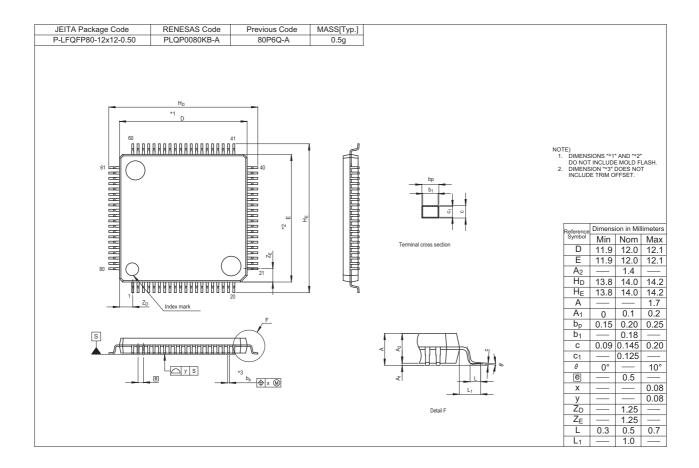
Referance Symbol	Dimension in Millimeters				
	Min	Nom	Max		
D	6.95	7.00	7.05		
E	6.95	7.00	7.05		
Α	0.70	0.75	0.80		
b	0.18	0.25	0.30		
е		0.50	_		
Lp	0.30	0.40	0.50		
х			0.05		
у			0.05		


ITEM		D2		E2			
		MIN	NOM	MAX	MIN	NOM	MAX
EXPOSED DIE PAD VARIATIONS	Α	5.45	5.50	5.55	5.45	5.50	5.55

©2012 Renesas Electronics Corporation. All rights reserved.

4.7 52-pin products

R5F104JCAFA, R5F104JDAFA, R5F104JEAFA, R5F104JFAFA, R5F104JGAFA, R5F104JHAFA, R5F104JJAFA R5F104JCDFA, R5F104JDDFA, R5F104JEDFA, R5F104JFDFA, R5F104JDFA, R5F104JDFA R5F104JCGFA, R5F104JDGFA, R5F104JEGFA, R5F104JFGFA, R5F104JGGFA, R5F104JHGFA, R5F104JJGFA


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

	(UNIT:mm)
ITEM	DIMENSIONS
D	10.00±0.10
E	10.00±0.10
HD	12.00±0.20
HE	12.00±0.20
A	1.70 MAX.
A1	0.10±0.05
A2	1.40
b	0.32±0.05
С	0.145±0.055
L	0.50±0.15
θ	0° to 8°
е	0.65
х	0.13
у	0.10

© 2012 Renesas Electronics Corporation. All rights reserved.

R5F104MKAFB, R5F104MLAFB R5F104MKGFB, R5F104MLGFB

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza. No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Treireads Electronics from Knotig Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B. Menara Amcorp, Amco

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141