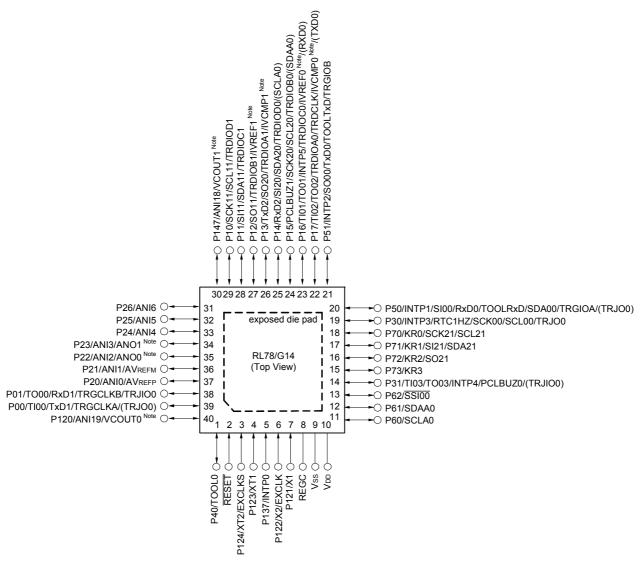



Welcome to **E-XFL.COM** 

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


| Details                    |                                                                                 |
|----------------------------|---------------------------------------------------------------------------------|
| Product Status             | Discontinued at Digi-Key                                                        |
| Core Processor             | RL78                                                                            |
| Core Size                  | 16-Bit                                                                          |
| Speed                      | 32MHz                                                                           |
| Connectivity               | CSI, I <sup>2</sup> C, LINbus, UART/USART                                       |
| Peripherals                | DMA, LVD, POR, PWM, WDT                                                         |
| Number of I/O              | 22                                                                              |
| Program Memory Size        | 128KB (128K x 8)                                                                |
| Program Memory Type        | FLASH                                                                           |
| EEPROM Size                | 8K x 8                                                                          |
| RAM Size                   | 16K x 8                                                                         |
| Voltage - Supply (Vcc/Vdd) | 1.6V ~ 5.5V                                                                     |
| Data Converters            | A/D 8x8/10b; D/A 2x8b                                                           |
| Oscillator Type            | Internal                                                                        |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                   |
| Package / Case             | 32-LQFP                                                                         |
| Supplier Device Package    | 32-LQFP (7x7)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104bgdfp-v0 |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

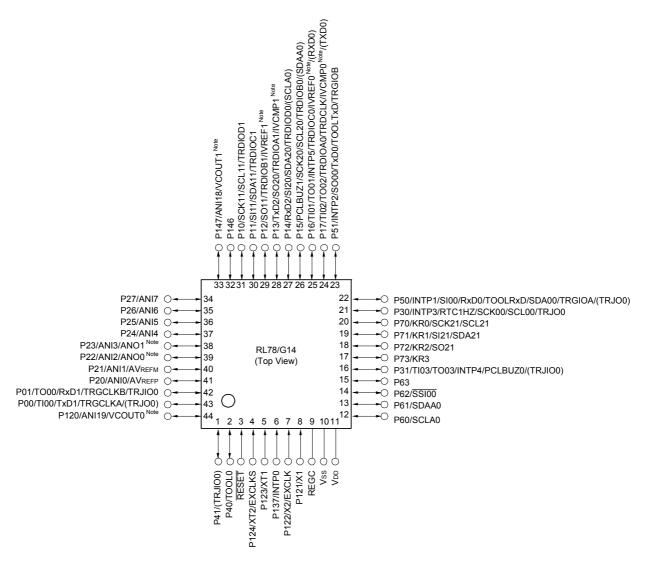
## 1.3.4 40-pin products

• 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)



Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1  $\mu$ F).

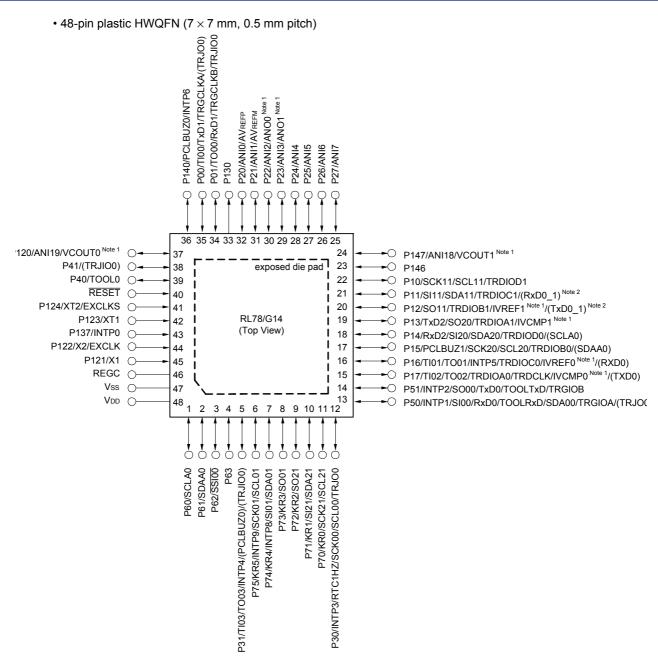

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

Remark 3. It is recommended to connect an exposed die pad to Vss.

## 1.3.5 44-pin products

• 44-pin plastic LQFP (10 × 10 mm, 0.8 mm pitch)




Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1  $\mu$ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).



- Note 1. Mounted on the 96 KB or more code flash memory products.
- Note 2. Mounted on the 384 KB or more code flash memory products.
- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1  $\mu$ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).
- Remark 3. It is recommended to connect an exposed die pad to Vss.

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.



[80-pin, 100-pin products (code flash memory 384 KB to 512 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

|                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 80-pin                                                                                                                                                                                                                                                                                                                                                                                             | 100-pin                              |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                | Item                                   | R5F104Mx                                                                                                                                                                                                                                                                                                                                                                                           | R5F104Px                             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                |                                        | (x = K, L)                                                                                                                                                                                                                                                                                                                                                                                         | (x = K, L)                           |  |  |  |  |
| Code flash me                                                                                                                                                                                                                                                                                                                                                                                  | mory (KB)                              | 384 to 512                                                                                                                                                                                                                                                                                                                                                                                         | 384 to 512                           |  |  |  |  |
| Data flash mer                                                                                                                                                                                                                                                                                                                                                                                 | mory (KB)                              | 8                                                                                                                                                                                                                                                                                                                                                                                                  | 8                                    |  |  |  |  |
| RAM (KB)                                                                                                                                                                                                                                                                                                                                                                                       |                                        | 32 to 48 <sup>Note</sup>                                                                                                                                                                                                                                                                                                                                                                           | 32 to 48 <sup>Note</sup>             |  |  |  |  |
| Address space                                                                                                                                                                                                                                                                                                                                                                                  | :                                      | 1 MB                                                                                                                                                                                                                                                                                                                                                                                               |                                      |  |  |  |  |
| Main system clock                                                                                                                                                                                                                                                                                                                                                                              | High-speed system clock                | X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)                                                                        |                                      |  |  |  |  |
| High-speed on-chip oscillator clock (fiн)  HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V),  HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V),  LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V),  LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)  Subsystem clock  XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz |                                        |                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |  |  |  |  |
| Subsystem clo                                                                                                                                                                                                                                                                                                                                                                                  | ck                                     | XT1 (crystal) oscillation, external subsystem c                                                                                                                                                                                                                                                                                                                                                    | lock input (EXCLKS) 32.768 kHz       |  |  |  |  |
| Low-speed on-                                                                                                                                                                                                                                                                                                                                                                                  | chip oscillator clock                  | 15 kHz (TYP.): VDD = 1.6 to 5.5 V                                                                                                                                                                                                                                                                                                                                                                  |                                      |  |  |  |  |
| General-purpo                                                                                                                                                                                                                                                                                                                                                                                  | se register                            | 8 bits × 32 registers (8 bits × 8 registers × 4 banks)                                                                                                                                                                                                                                                                                                                                             |                                      |  |  |  |  |
| Minimum instru                                                                                                                                                                                                                                                                                                                                                                                 | uction execution time                  | 0.03125 μs (High-speed on-chip oscillator clo                                                                                                                                                                                                                                                                                                                                                      | ck: fiн = 32 MHz operation)          |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 0.05 μs (High-speed system clock: fмx = 20 M                                                                                                                                                                                                                                                                                                                                                       | Hz operation)                        |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                |                                        | 30.5 μs (Subsystem clock: fsub = 32.768 kHz                                                                                                                                                                                                                                                                                                                                                        | operation)                           |  |  |  |  |
| Instruction set                                                                                                                                                                                                                                                                                                                                                                                |                                        | <ul> <li>Data transfer (8/16 bits)</li> <li>Adder and subtractor/logical operation (8/16 bits)</li> <li>Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits)</li> <li>Multiplication and Accumulation (16 bits × 16 bits + 32 bits)</li> <li>Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc.</li> </ul> |                                      |  |  |  |  |
| I/O port                                                                                                                                                                                                                                                                                                                                                                                       | Total                                  | 74                                                                                                                                                                                                                                                                                                                                                                                                 | 92                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | CMOS I/O                               | 64                                                                                                                                                                                                                                                                                                                                                                                                 | 82                                   |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | CMOS input                             | 5                                                                                                                                                                                                                                                                                                                                                                                                  | 5                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | CMOS output                            | 1                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                    |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | N-ch open-drain I/O<br>(6 V tolerance) | 4                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                    |  |  |  |  |
| Timer                                                                                                                                                                                                                                                                                                                                                                                          | 16-bit timer                           | 12 channels<br>(TAU: 8 channels, Timer RJ: 1 channel, Timer                                                                                                                                                                                                                                                                                                                                        | RD: 2 channels, Timer RG: 1 channel) |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | Watchdog timer                         | 1 channel                                                                                                                                                                                                                                                                                                                                                                                          |                                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | Real-time clock (RTC)                  | 1 channel                                                                                                                                                                                                                                                                                                                                                                                          |                                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | 12-bit interval timer                  | 1 channel                                                                                                                                                                                                                                                                                                                                                                                          |                                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | Timer output                           | Timer outputs: 18 channels PWM outputs: 12 channels                                                                                                                                                                                                                                                                                                                                                |                                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                | RTC output                             | 1 • 1 Hz (subsystem clock: fsub = 32.768 kHz)                                                                                                                                                                                                                                                                                                                                                      |                                      |  |  |  |  |

Note

In the case of the 48 KB, this is about 47 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/G14 User's Manual).

#### 2.2 Oscillator Characteristics

## 2.2.1 X1, XT1 characteristics

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

| Resonator                                  | Resonator          | Conditions                                       | MIN. | TYP.   | MAX. | Unit |
|--------------------------------------------|--------------------|--------------------------------------------------|------|--------|------|------|
| X1 clock oscillation frequency (fx) Note   | Ceramic resonator/ | $2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$ | 1.0  |        | 20.0 | MHz  |
|                                            | crystal resonator  | 2.4 V ≤ V <sub>DD</sub> < 2.7 V                  | 1.0  |        | 16.0 |      |
|                                            |                    |                                                  | 1.0  |        | 8.0  |      |
|                                            |                    | 1.6 V ≤ V <sub>DD</sub> < 1.8 V                  | 1.0  |        | 4.0  |      |
| XT1 clock oscillation frequency (fxT) Note | Crystal resonator  |                                                  | 32   | 32.768 | 35   | kHz  |

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

## 2.2.2 On-chip oscillator characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$ 

| Oscillators                                                 | Parameters | C            | conditions                                       | MIN. | TYP. | MAX. | Unit |
|-------------------------------------------------------------|------------|--------------|--------------------------------------------------|------|------|------|------|
| High-speed on-chip oscillator clock frequency<br>Notes 1, 2 | fı⊢        |              | 1                                                |      | 32   | MHz  |      |
| High-speed on-chip oscillator clock frequency               |            | -20 to +85°C | $1.8 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$ | -1.0 |      | +1.0 | %    |
| accuracy                                                    |            |              | 1.6 V ≤ V <sub>DD</sub> < 1.8 V                  | -5.0 |      | +5.0 | %    |
|                                                             |            | -40 to -20°C | 1.8 V ≤ VDD < 5.5 V                              | -1.5 |      | +1.5 | %    |
|                                                             |            |              | 1.6 V ≤ V <sub>DD</sub> < 1.8 V                  | -5.5 |      | +5.5 | %    |
| Low-speed on-chip oscillator clock frequency                | fı∟        |              |                                                  |      | 15   |      | kHz  |
| Low-speed on-chip oscillator clock frequency accuracy       |            |              |                                                  | -15  |      | +15  | %    |

**Note 1.** High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.



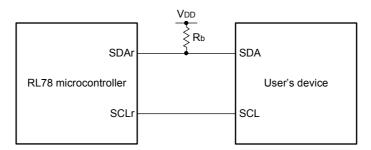
- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode:  $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$ 

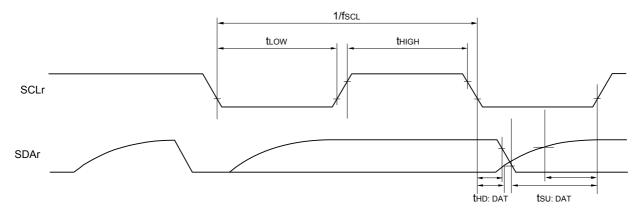
 $2.4~V \leq V_{DD} \leq 5.5~V \textcircled{@}1~MHz$  to 16 MHz

LS (low-speed main) mode: 1.8 V  $\leq$  VDD  $\leq$  5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V  $\leq$  VDD  $\leq$  5.5 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
  Remark 3. fH: High-speed on-chip oscillator clock frequency (32 MHz max.)
  Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C


# (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products (TA = -40 to +85°C, 1.6 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)


| Parameter   | Symbol |           |                                  | Conditions                                                  |                         | MIN. | TYP.  | MAX.  | Unit |
|-------------|--------|-----------|----------------------------------|-------------------------------------------------------------|-------------------------|------|-------|-------|------|
| Supply cur- | IDD2   | HALT mode | HS (high-speed main)             | fHOCO = 64 MHz,                                             | V <sub>DD</sub> = 5.0 V |      | 0.93  | 3.32  | mA   |
| rent Note 1 | Note 2 |           | mode Note 7                      | fih = 32 MHz Note 4                                         | V <sub>DD</sub> = 3.0 V |      | 0.93  | 3.32  |      |
|             |        |           |                                  | fHOCO = 32 MHz,                                             | V <sub>DD</sub> = 5.0 V |      | 0.5   | 2.63  |      |
|             |        |           |                                  | fih = 32 MHz Note 4                                         | V <sub>DD</sub> = 3.0 V |      | 0.5   | 2.63  |      |
|             |        |           |                                  | fносо = 48 MHz,                                             | V <sub>DD</sub> = 5.0 V |      | 0.72  | 2.60  |      |
|             |        |           |                                  | fiH = 24 MHz Note 4                                         | V <sub>DD</sub> = 3.0 V |      | 0.72  | 2.60  |      |
|             |        |           |                                  | fHOCO = 24 MHz,                                             | V <sub>DD</sub> = 5.0 V |      | 0.42  | 2.03  |      |
|             |        |           |                                  | fih = 24 MHz Note 4                                         | V <sub>DD</sub> = 3.0 V |      | 0.42  | 2.03  |      |
|             |        |           |                                  | fHOCO = 16 MHz,                                             | V <sub>DD</sub> = 5.0 V |      | 0.39  | 1.50  |      |
|             |        |           |                                  | fih = 16 MHz Note 4                                         | V <sub>DD</sub> = 3.0 V |      | 0.39  | 1.50  |      |
|             |        |           | LS (low-speed main)              | fносо = 8 MHz,                                              | V <sub>DD</sub> = 3.0 V |      | 270   | 800   | μΑ   |
|             |        |           | mode Note 7                      | fih = 8 MHz Note 4                                          | V <sub>DD</sub> = 2.0 V |      | 270   | 800   |      |
|             |        |           | LV (low-voltage main)            | fHOCO = 4 MHz,                                              | V <sub>DD</sub> = 3.0 V |      | 450   | 755   | μА   |
|             |        |           | mode Note 7                      | fih = 4 MHz Note 4                                          | V <sub>DD</sub> = 2.0 V |      | 450   | 755   |      |
|             |        |           | HS (high-speed main)             | f <sub>MX</sub> = 20 MHz Note 3,                            | Square wave input       |      | 0.31  | 1.69  | mA   |
|             |        |           | mode Note 7                      | V <sub>DD</sub> = 5.0 V                                     | Resonator connection    |      | 0.41  | 1.91  |      |
|             |        |           |                                  | f <sub>MX</sub> = 20 MHz Note 3,                            | Square wave input       |      | 0.31  | 1.69  |      |
|             |        |           |                                  | V <sub>DD</sub> = 3.0 V                                     | Resonator connection    |      | 0.41  | 1.91  |      |
|             |        |           | f <sub>MX</sub> = 10 MHz Note 3, | Square wave input                                           |                         | 0.21 | 0.94  |       |      |
|             |        |           | V <sub>DD</sub> = 5.0 V          | Resonator connection                                        |                         | 0.26 | 1.02  |       |      |
|             |        |           |                                  | f <sub>MX</sub> = 10 MHz Note 3,<br>V <sub>DD</sub> = 3.0 V | Square wave input       |      | 0.21  | 0.94  |      |
|             |        |           |                                  |                                                             | Resonator connection    |      | 0.26  | 1.02  |      |
|             |        |           | LS (low-speed main)              | ow-speed main) f <sub>MX</sub> = 8 MHz <sup>Note 3</sup> ,  | Square wave input       |      | 110   | 610   | μΑ   |
|             |        |           | mode Note 7                      | V <sub>DD</sub> = 3.0 V                                     | Resonator connection    |      | 150   | 660   |      |
|             |        |           |                                  | f <sub>MX</sub> = 8 MHz Note 3,                             | Square wave input       |      | 110   | 610   |      |
|             |        |           |                                  | V <sub>DD</sub> = 2.0 V                                     | Resonator connection    |      | 150   | 660   |      |
|             |        |           | Subsystem clock oper-            | fsuB = 32.768 kHz Note 5,                                   | Square wave input       |      | 0.31  |       | μΑ   |
|             |        |           | ation                            | TA = -40°C                                                  | Resonator connection    |      | 0.50  |       |      |
|             |        |           |                                  | fsuB = 32.768 kHz Note 5,                                   | Square wave input       |      | 0.38  | 0.76  |      |
|             |        |           |                                  | TA = +25°C                                                  | Resonator connection    |      | 0.57  | 0.95  |      |
|             |        |           |                                  | fsuB = 32.768 kHz Note 5,                                   | Square wave input       |      | 0.47  | 3.59  |      |
|             |        |           |                                  | TA = +50°C                                                  | Resonator connection    |      | 0.70  | 3.78  |      |
|             |        |           |                                  | fsuB = 32.768 kHz Note 5,                                   | Square wave input       |      | 0.80  | 6.20  |      |
|             |        |           |                                  | T <sub>A</sub> = +70°C                                      | Resonator connection    |      | 1.00  | 6.39  |      |
|             |        |           | fsuB = 32.768 kHz Note 5,        | Square wave input                                           |                         | 1.65 | 10.56 |       |      |
|             |        |           |                                  | T <sub>A</sub> = +85°C                                      | Resonator connection    |      | 1.84  | 10.75 |      |
|             | IDD3   | STOP mode | TA = -40°C                       |                                                             |                         |      | 0.19  |       | μА   |
|             | Note 6 | Note 8    | T <sub>A</sub> = +25°C           |                                                             |                         |      | 0.30  | 0.59  |      |
|             |        |           | TA = +50°C                       |                                                             |                         |      | 0.41  | 3.42  |      |
|             |        |           | T <sub>A</sub> = +70°C           |                                                             |                         |      | 0.80  | 6.03  |      |
|             |        |           | T <sub>A</sub> = +85°C           |                                                             |                         |      | 1.53  | 10.39 |      |

(Notes and Remarks are listed on the next page.)

## Simplified I<sup>2</sup>C mode connection diagram (during communication at same potential)



## Simplified I<sup>2</sup>C mode serial transfer timing (during communication at same potential)



 $\textbf{Remark 1.} \ \ R_b[\Omega]: \ Communication \ line \ (SDAr) \ pull-up \ resistance, \ C_b[F]: \ Communication \ line \ (SDAr, SCLr) \ load \ capacitance$ 

**Remark 2.** r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 3 to 5, 14), h: POM number (h = 0, 1, 3 to 5, 7, 14)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

# (7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

(TA = -40 to +85°C, 2.7 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

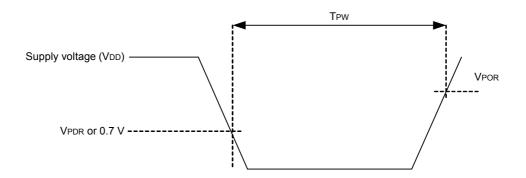
| Parameter                                                                                                                                          | Symbol |                                                                                                                                                         | Conditions                                                                                                                                                                                                                                  | HS (high-s<br>main) mo |              | LS (low-speed mode |              | LV (low-vo<br>main) mo | •    | Unit |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|--------------------|--------------|------------------------|------|------|
|                                                                                                                                                    |        |                                                                                                                                                         |                                                                                                                                                                                                                                             | MIN.                   | MAX.         | MIN.               | MAX.         | MIN.                   | MAX. |      |
| SCKp cycle time                                                                                                                                    | tkcy1  | tkcy1 ≥ 2/fcLk                                                                                                                                          | $\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ \text{C}_{\text{b}} &= 20 \text{ pF, R}_{\text{b}} = 1.4 \text{ k}\Omega \end{aligned}$ | 200                    |              | 1150               |              | 1150                   |      | ns   |
|                                                                                                                                                    |        |                                                                                                                                                         | $\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V, \\ Cb &= 20 \ pF, \ Rb = 2.7 \ k\Omega \end{split}$                                                                                                   | 300                    |              | 1150               |              | 1150                   |      | ns   |
| SCKp high-level width                                                                                                                              | tkH1   | $4.0 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 2$ $C_{\text{b}} = 20 \text{ pF, Rb}$                          | I.0 V,                                                                                                                                                                                                                                      | tксү1/2 - 50           |              | tксү1/2 - 50       |              | tксү1/2 - 50           |      | ns   |
|                                                                                                                                                    |        | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le V_b \le 2.7 \text{ V},$ $C_b = 20 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ |                                                                                                                                                                                                                                             | tkcy1/2 - 120          |              | tkcy1/2 - 120      |              | tkcy1/2 - 120          |      | ns   |
| $ \begin{array}{c cccc} SCKp \ low-level & t_{KL1} & 4.0 \ V \leq EV_{DI} \\ width & 2.7 \ V \leq V_b \leq \\ & C_b = 20 \ pF, \ F_c \end{array} $ |        | 4.0 V,                                                                                                                                                  | tксү1/2 - 7                                                                                                                                                                                                                                 |                        | tксү1/2 - 50 |                    | tксү1/2 - 50 |                        | ns   |      |
|                                                                                                                                                    | 2.3 V  |                                                                                                                                                         | $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 20 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$                                                   |                        |              | tксү1/2 - 50       |              | tксү1/2 - 50           |      | ns   |
| SIp setup time<br>(to SCKp↑) Note 1                                                                                                                | tsık1  | $4.0 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF}, \text{Rb}$                     | 4.0 V,                                                                                                                                                                                                                                      | 58                     |              | 479                |              | 479                    |      | ns   |
|                                                                                                                                                    |        | $2.7 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF, Rb}$                            | 2.7 V,                                                                                                                                                                                                                                      | 121                    |              | 479                |              | 479                    |      | ns   |
| SIp hold time<br>(from SCKp†) Note 1                                                                                                               | tksii  | $4.0 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF, Rb}$                            | 4.0 V,                                                                                                                                                                                                                                      | 10                     |              | 10                 |              | 10                     |      | ns   |
|                                                                                                                                                    |        | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}}$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF, Rb}$                            | 2.7 V,                                                                                                                                                                                                                                      | 10                     |              | 10                 |              | 10                     |      | ns   |
| Delay time from<br>SCKp↓ to SOp out-<br>put Note 1                                                                                                 | tkso1  | $4.0 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.7 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF, Rb}$                            | 4.0 V,                                                                                                                                                                                                                                      |                        | 60           |                    | 60           |                        | 60   | ns   |
|                                                                                                                                                    |        | $2.7 \text{ V} \leq \text{EV}_{\text{DDO}}$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq$ $C_{\text{b}} = 20 \text{ pF, Rb}$                            | 2.7 V,                                                                                                                                                                                                                                      |                        | 130          |                    | 130          |                        | 130  | ns   |

 $(\textbf{Notes},\,\textbf{Caution},\, \text{and}\,\, \textbf{Remarks} \,\, \text{are listed on the next page.})$ 

## 2.6.4 Comparator

(TA = -40 to +85°C, 1.6 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, Vss = EVss0 = EVss1 = 0 V)

| Parameter                                     | Symbol | Col                                                             | nditions                                  | MIN. | TYP.     | MAX.                    | Unit |
|-----------------------------------------------|--------|-----------------------------------------------------------------|-------------------------------------------|------|----------|-------------------------|------|
| Input voltage range                           | Ivref  |                                                                 |                                           | 0    |          | EV <sub>DD0</sub> - 1.4 | V    |
|                                               | Ivcmp  |                                                                 |                                           | -0.3 |          | EV <sub>DD0</sub> + 0.3 | V    |
|                                               |        | V <sub>DD</sub> = 3.0 V<br>Input slew rate > 50 mV/μs           | Comparator high-speed mode, standard mode |      |          | 1.2                     | μs   |
|                                               |        |                                                                 | Comparator high-speed mode, window mode   |      |          | 2.0                     | μs   |
|                                               |        |                                                                 | Comparator low-speed mode, standard mode  |      | 3.0      | 5.0                     | μs   |
| High-electric-potential reference voltage     | VTW+   | Comparator high-speed mode                                      | e, window mode                            |      | 0.76 VDD |                         | V    |
| Low-electric-potential ref-<br>erence voltage | VTW-   | Comparator high-speed mode                                      | e, window mode                            |      | 0.24 VDD |                         | V    |
| Operation stabilization wait time             | tсмр   |                                                                 |                                           | 100  |          |                         | μs   |
| Internal reference voltage<br>Note            | VBGR   | $2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{ HS (h}$ | nigh-speed main) mode                     | 1.38 | 1.45     | 1.50                    | V    |


Note Not usable in LS (low-speed main) mode, LV (low-voltage main) mode, sub-clock operation, or STOP mode.

## 2.6.5 POR circuit characteristics

#### $(TA = -40 \text{ to } +85^{\circ}\text{C}, Vss = 0 \text{ V})$

| Parameter                     | Symbol | Conditions                              | MIN. | TYP. | MAX. | Unit |
|-------------------------------|--------|-----------------------------------------|------|------|------|------|
| Power on/down reset threshold | VPOR   | Voltage threshold on VDD rising         | 1.47 | 1.51 | 1.55 | V    |
|                               | VPDR   | Voltage threshold on VDD falling Note 1 | 1.46 | 1.50 | 1.54 | V    |
| Minimum pulse width Note 2    | Tpw    |                                         | 300  |      |      | μs   |

- **Note 1.** However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 2.4 AC Characteristics.
- Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).



## (2) Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR  $\leq$  VDD  $\leq$  5.5 V, Vss = 0 V)

| Parameter         | Symbol |                     | Cond                                                | litions                      | MIN. | TYP. | MAX. | Unit |
|-------------------|--------|---------------------|-----------------------------------------------------|------------------------------|------|------|------|------|
| Voltage detection | VLVDA0 | VPOC2,              | VPOC1, VPOC0 = 0, 0, 0, fa                          | lling reset voltage          | 1.60 | 1.63 | 1.66 | V    |
| threshold         | VLVDA1 |                     | LVIS1, LVIS0 = 1, 0                                 | Rising release reset voltage | 1.74 | 1.77 | 1.81 | V    |
|                   |        |                     |                                                     | Falling interrupt voltage    | 1.70 | 1.73 | 1.77 | V    |
|                   | VLVDA2 |                     | LVIS1, LVIS0 = 0, 1                                 | Rising release reset voltage | 1.84 | 1.88 | 1.91 | V    |
|                   |        |                     |                                                     | Falling interrupt voltage    | 1.80 | 1.84 | 1.87 | V    |
|                   | VLVDA3 |                     | LVIS1, LVIS0 = 0, 0                                 | Rising release reset voltage | 2.86 | 2.92 | 2.97 | V    |
|                   |        |                     |                                                     | Falling interrupt voltage    | 2.80 | 2.86 | 2.91 | V    |
|                   | VLVDB0 | VPOC2,              | VPOC1, VPOC0 = 0, 0, 1, fa                          | lling reset voltage          | 1.80 | 1.84 | 1.87 | V    |
|                   | VLVDB1 |                     | LVIS1, LVIS0 = 1, 0                                 | Rising release reset voltage | 1.94 | 1.98 | 2.02 | V    |
|                   |        |                     |                                                     | Falling interrupt voltage    | 1.90 | 1.94 | 1.98 | V    |
|                   | VLVDB2 |                     | LVIS1, LVIS0 = 0, 1                                 | Rising release reset voltage | 2.05 | 2.09 | 2.13 | V    |
|                   |        |                     |                                                     | Falling interrupt voltage    | 2.00 | 2.04 | 2.08 | V    |
|                   | VLVDB3 |                     | LVIS1, LVIS0 = 0, 0                                 | Rising release reset voltage | 3.07 | 3.13 | 3.19 | V    |
|                   |        |                     |                                                     | Falling interrupt voltage    | 3.00 | 3.06 | 3.12 | V    |
|                   | VLVDC0 | VPOC2,              | POC2, VPOC1, VPOC0 = 0, 1, 0, falling reset voltage |                              |      | 2.45 | 2.50 | V    |
|                   | VLVDC1 | LVIS1, LVIS0 = 1, 0 |                                                     | Rising release reset voltage | 2.56 | 2.61 | 2.66 | V    |
|                   |        |                     |                                                     | Falling interrupt voltage    | 2.50 | 2.55 | 2.60 | V    |
|                   | VLVDC2 |                     | LVIS1, LVIS0 = 0, 1                                 | Rising release reset voltage | 2.66 | 2.71 | 2.76 | V    |
|                   |        |                     |                                                     | Falling interrupt voltage    | 2.60 | 2.65 | 2.70 | V    |
|                   | VLVDC3 |                     | LVIS1, LVIS0 = 0, 0                                 | Rising release reset voltage | 3.68 | 3.75 | 3.82 | V    |
|                   |        |                     |                                                     | Falling interrupt voltage    | 3.60 | 3.67 | 3.74 | V    |
|                   | VLVDD0 | VPOC2,              | VPOC1, VPOC0 = 0, 1, 1, fa                          | lling reset voltage          | 2.70 | 2.75 | 2.81 | V    |
|                   | VLVDD1 |                     | LVIS1, LVIS0 = 1, 0                                 | Rising release reset voltage | 2.86 | 2.92 | 2.97 | V    |
|                   |        |                     |                                                     | Falling interrupt voltage    | 2.80 | 2.86 | 2.91 | V    |
|                   | VLVDD2 | 1                   | LVIS1, LVIS0 = 0, 1                                 | Rising release reset voltage | 2.96 | 3.02 | 3.08 | V    |
|                   |        |                     |                                                     | Falling interrupt voltage    | 2.90 | 2.96 | 3.02 | V    |
|                   | VLVDD3 | 1                   | LVIS1, LVIS0 = 0, 0                                 | Rising release reset voltage | 3.98 | 4.06 | 4.14 | V    |
|                   |        |                     |                                                     | Falling interrupt voltage    | 3.90 | 3.98 | 4.06 | V    |

# 2.6.7 Power supply voltage rising slope characteristics

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = 0 \text{ V})$ 

| Parameter                         | Symbol | Conditions | MIN. | TYP. | MAX. | Unit |
|-----------------------------------|--------|------------|------|------|------|------|
| Power supply voltage rising slope | SVDD   |            |      |      | 54   | V/ms |

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

#### 3.2 Oscillator Characteristics

## 3.2.1 X1, XT1 characteristics

#### $(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

| Resonator                                  | Resonator          | Conditions                                       | MIN. | TYP.   | MAX. | Unit |
|--------------------------------------------|--------------------|--------------------------------------------------|------|--------|------|------|
| X1 clock oscillation frequency (fx) Note   | Ceramic resonator/ | $2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$ | 1.0  |        | 20.0 | MHz  |
|                                            | crystal resonator  | 2.4 V ≤ V <sub>DD</sub> < 2.7 V                  | 1.0  |        | 16.0 |      |
| XT1 clock oscillation frequency (fxT) Note | Crystal resonator  |                                                  | 32   | 32.768 | 35   | kHz  |

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user.

Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

## 3.2.2 On-chip oscillator characteristics

#### $(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le VDD \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

| Oscillators                                                 | Parameters | Conditions    |                                                  | MIN. | TYP. | MAX. | Unit |
|-------------------------------------------------------------|------------|---------------|--------------------------------------------------|------|------|------|------|
| High-speed on-chip oscillator clock frequency<br>Notes 1, 2 | fін        |               |                                                  |      |      | 32   | MHz  |
| High-speed on-chip oscillator clock frequency               |            | -20 to +85°C  | $2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$ | -1.0 |      | +1.0 | %    |
| accuracy                                                    |            | -40 to -20°C  | $2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$ | -1.5 |      | +1.5 | %    |
|                                                             |            | +85 to +105°C | $2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$ | -2.0 |      | +2.0 | %    |
| Low-speed on-chip oscillator clock frequency                | fıL        |               |                                                  |      | 15   |      | kHz  |
| Low-speed on-chip oscillator clock frequency accuracy       |            |               |                                                  | -15  |      | +15  | %    |

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

#### (TA = -40 to +105°C, 2.4 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/5)

| Items                      | Symbol | Conditions                                                                                                                                                                  |                                   | MIN. | TYP. | MAX.           | Unit |
|----------------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------|------|----------------|------|
| Output current, low Note 1 | loL1   | Per pin for P00 to P06,<br>P10 to P17, P30, P31,<br>P40 to P47, P50 to P57,<br>P64 to P67, P70 to P77,<br>P80 to P87, P100 to P102, P110,<br>P111, P120, P130, P140 to P147 |                                   |      |      | 8.5<br>Note 2  | mA   |
|                            |        | Per pin for P60 to P63                                                                                                                                                      |                                   |      |      | 15.0<br>Note 2 | mA   |
|                            |        | Total of P00 to P04, P40 to P47, 4                                                                                                                                          | 4.0 V ≤ EVDD0 ≤ 5.5 V             |      |      | 40.0           | mA   |
|                            |        | 2.7 V ≤ EV <sub>DD0</sub> < 4.0 V                                                                                                                                           |                                   |      | 15.0 | mA             |      |
|                            |        | (When duty ≤ 70% Note 3)                                                                                                                                                    | 2.4 V ≤ EVDD0 < 2.7 V             |      |      | 9.0            | mA   |
|                            |        | Total of P05, P06, P10 to P17,                                                                                                                                              | 4.0 V ≤ EVDD0 ≤ 5.5 V             |      |      | 40.0           | mA   |
|                            |        | P30, P31, P50 to P57,                                                                                                                                                       | 2.7 V ≤ EV <sub>DD0</sub> < 4.0 V |      |      | 35.0           | mA   |
|                            |        | P60 to P67, P70 to P77,<br>P80 to P87, P100, P101, P110,<br>P111, P146, P147<br>(When duty ≤ 70% Note 3)                                                                    | 2.4 V ≤ EVDD0 < 2.7 V             |      |      | 20.0           | mA   |
| lo <sub>L2</sub>           |        | Total of all pins<br>(When duty ≤ 70% <sup>Note 3</sup> )                                                                                                                   |                                   |      |      | 80.0           | mA   |
|                            | lOL2   | IOL2 Per pin for P20 to P27,<br>P150 to P156                                                                                                                                |                                   |      |      | 0.4<br>Note 2  | mA   |
|                            |        | Total of all pins<br>(When duty ≤ 70% Note 3)                                                                                                                               | 2.4 V ≤ VDD ≤ 5.5 V               |      |      | 5.0            | mA   |

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.
- Note 2. Do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor  $\leq 70\%$ .

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins =  $(IoL \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IoL = 10.0 mA Total output current of pins =  $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$  mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

**Remark** Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

#### (4) Peripheral Functions (Common to all products)

## (TA = -40 to +105°C, 2.4 V $\leq$ EVDD0 = EVDD1 $\leq$ VDD $\leq$ 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

| Parameter                                           | Symbol                         | Conditions                                                   |                                                                                     | MIN. | TYP. | MAX.  | Unit |
|-----------------------------------------------------|--------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------|------|------|-------|------|
| Low-speed on-chip oscilla-<br>tor operating current | IFIL Note 1                    |                                                              |                                                                                     |      | 0.20 |       | μΑ   |
| RTC operating current                               | I <sub>RTC</sub> Notes 1, 2, 3 |                                                              |                                                                                     |      | 0.02 |       | μΑ   |
| 12-bit interval timer operat-<br>ing current        | IT Notes 1, 2, 4               |                                                              |                                                                                     |      | 0.02 |       | μΑ   |
| Watchdog timer operating current                    | I <sub>WDT</sub> Notes 1, 2, 5 | fi∟ = 15 kHz                                                 |                                                                                     |      | 0.22 |       | μΑ   |
| A/D converter operating current                     | I <sub>ADC</sub> Notes 1, 6    | When conversion at maximum speed                             | Normal mode,<br>AVREFP = VDD = 5.0 V                                                |      | 1.3  | 1.7   | mA   |
|                                                     |                                |                                                              | Low voltage mode,<br>AVREFP = VDD = 3.0 V                                           |      | 0.5  | 0.7   | mA   |
| A/D converter reference voltage current             | IADREF Note 1                  |                                                              |                                                                                     |      | 75.0 |       | μА   |
| Temperature sensor operating current                | ITMPS Note 1                   |                                                              |                                                                                     |      | 75.0 |       | μΑ   |
| D/A converter operating current                     | IDAC Notes 1, 11, 13           | Per D/A converter channel                                    |                                                                                     |      |      | 1.5   | mA   |
| Comparator operating cur-                           | ICMP Notes 1, 12, 13           | V <sub>DD</sub> = 5.0 V,<br>Regulator output voltage = 2.1 V | Window mode                                                                         |      | 12.5 |       | μА   |
| rent                                                |                                |                                                              | Comparator high-speed mode                                                          |      | 6.5  |       | μΑ   |
|                                                     |                                |                                                              | Comparator low-speed mode                                                           |      | 1.7  |       | μΑ   |
|                                                     |                                | VDD = 5.0 V,                                                 | Window mode                                                                         |      | 8.0  |       | μΑ   |
|                                                     |                                | Regulator output voltage = 1.8 V                             | Comparator high-speed mode                                                          |      | 4.0  |       | μΑ   |
|                                                     |                                |                                                              | Comparator low-speed mode                                                           |      | 1.3  |       | μΑ   |
| LVD operating current                               | I <sub>LVD</sub> Notes 1, 7    |                                                              |                                                                                     |      | 0.08 |       | μΑ   |
| Self-programming operating current                  | IFSP Notes 1, 9                |                                                              |                                                                                     |      | 2.50 | 12.20 | mA   |
| BGO operating current                               | I <sub>BGO</sub> Notes 1, 8    |                                                              |                                                                                     |      | 2.50 | 12.20 | mA   |
| SNOOZE operating current                            | I <sub>SNOZ</sub> Note 1       | ADC operation                                                | The mode is performed Note 10                                                       |      | 0.50 | 1.10  | mA   |
|                                                     |                                |                                                              | The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V |      | 1.20 | 2.04  |      |
|                                                     |                                | CSI/UART operation                                           |                                                                                     |      | 0.70 | 1.54  |      |
|                                                     |                                | DTC operation                                                |                                                                                     |      | 3.10 |       |      |

- Note 1. Current flowing to VDD.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).

  The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- Note 8. Current flowing during programming of the data flash.
- Note 9. Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
- Note 11. Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- Note 12. Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

## (8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I<sup>2</sup>C mode)

(TA = -40 to +105°C, 2.4 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(1/2)

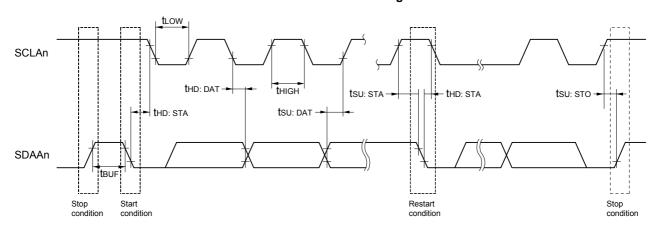
| Parameter                 | Symbol | Conditions                                                                                                                                                                                                                            | HS (high-spe | HS (high-speed main) mode |     |  |
|---------------------------|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------|-----|--|
|                           |        |                                                                                                                                                                                                                                       | MIN.         | MAX.                      |     |  |
| SCLr clock frequency      | fscL   | $ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $                                                                                    |              | 400 Note 1                | kHz |  |
|                           |        | $\begin{split} 2.7 & \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega \end{split}$            |              | 400 Note 1                | kHz |  |
|                           |        | $\begin{aligned} 4.0 & \text{V} \leq \text{EVDD0} \leq 5.5 \text{ V}, \\ 2.7 & \text{V} \leq \text{V}_b \leq 4.0 \text{ V}, \\ C_b = 100 \text{ pF, } R_b = 2.8 \text{ k}\Omega \end{aligned}$                                        |              | 100 Note 1                | kHz |  |
|                           |        | $\begin{split} 2.7 & \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{split}$ |              | 100 Note 1                | kHz |  |
|                           |        | $\begin{array}{l} 2.4 \; V \leq EV_{DDO} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$                                                                                     |              | 100 Note 1                | kHz |  |
| Hold time when SCLr = "L" | tLOW   | $ 4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V}, \\ C_b = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega $                                                                  | 1200         |                           | ns  |  |
|                           |        | $2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$<br>$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$<br>$C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$                                       | 1200         |                           | ns  |  |
|                           |        | $ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{aligned} $                                                                            | 4600         |                           | ns  |  |
|                           |        | $\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 100 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$                                                                                            | 4600         |                           | ns  |  |
|                           |        | $2.4 \text{ V} \leq \text{EVDDO} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_b \leq 2.0 \text{ V}, \\ C_b = 100 \text{ pF, } R_b = 5.5 \text{ k}\Omega$                                                                           | 4650         |                           | ns  |  |
| Hold time when SCLr = "H" | thigh  | $\begin{array}{l} 4.0 \; V \leq EV_{DDO} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$                                                                                   | 620          |                           | ns  |  |
|                           |        | $ 2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega $                                         | 500          |                           | ns  |  |
|                           |        | $\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF, Rb} = 2.8 \text{ k}\Omega \end{aligned}$            | 2700         |                           | ns  |  |
|                           |        | $2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF},  R_{\text{b}} = 2.7 \text{ k}\Omega$                                      | 2400         |                           | ns  |  |
|                           |        | $\begin{array}{c} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$                                                                                     | 1830         |                           | ns  |  |

#### 3.5.2 Serial interface IICA

(TA = -40 to +105°C, 2.4 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

| Parameter                            | Symbol   | Conditions                  | HS (high-speed main) mode |      | mode      | Unit |     |
|--------------------------------------|----------|-----------------------------|---------------------------|------|-----------|------|-----|
|                                      |          |                             | Standard mode             |      | Fast mode |      |     |
|                                      |          |                             | MIN.                      | MAX. | MIN.      | MAX. |     |
| SCLA0 clock frequency                | fscL     | Fast mode: fclk ≥ 3.5 MHz   | _                         | _    | 0         | 400  | kHz |
|                                      |          | Standard mode: fclk ≥ 1 MHz | 0                         | 100  | _         | _    | kHz |
| Setup time of restart condition      | tsu: sta |                             | 4.7                       |      | 0.6       |      | μs  |
| Hold time Note 1                     | thd: sta |                             | 4.0                       |      | 0.6       |      | μs  |
| Hold time when SCLA0 = "L"           | tLOW     |                             | 4.7                       |      | 1.3       |      | μs  |
| Hold time when SCLA0 = "H"           | tніgн    |                             | 4.0                       |      | 0.6       |      | μs  |
| Data setup time (reception)          | tsu: dat |                             | 250                       |      | 100       |      | ns  |
| Data hold time (transmission) Note 2 | thd: dat |                             | 0                         | 3.45 | 0         | 0.9  | μs  |
| Setup time of stop condition         | tsu: sto |                             | 4.0                       |      | 0.6       |      | μs  |
| Bus-free time                        | tbuf     |                             | 4.7                       |      | 1.3       |      | μs  |

**Note 1.** The first clock pulse is generated after this period when the start/restart condition is detected.


Note 2. The maximum value (MAX.) of thd: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C<sub>b</sub> (communication line capacitance) and the value of R<sub>b</sub> (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode:  $C_b$  = 400 pF,  $R_b$  = 2.7 k $\Omega$ Fast mode:  $C_b$  = 320 pF,  $R_b$  = 1.1 k $\Omega$ 

#### **IICA** serial transfer timing

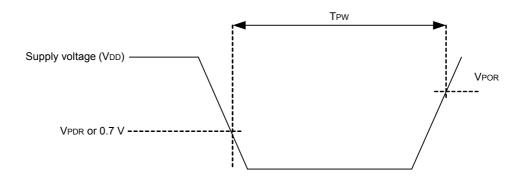


Remark n = 0, 1

## 3.6.4 Comparator

(TA = -40 to +105°C, 2.4 V  $\leq$  EVDD0 = EVDD1  $\leq$  VDD  $\leq$  5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

| Parameter                                     | Symbol | Col                                                      | nditions                                  | MIN. | TYP.     | MAX.                    | Unit |
|-----------------------------------------------|--------|----------------------------------------------------------|-------------------------------------------|------|----------|-------------------------|------|
| Input voltage range                           | Ivref  |                                                          |                                           |      |          | EVDD0 - 1.4             | V    |
|                                               | Ivcmp  |                                                          |                                           | -0.3 |          | EV <sub>DD0</sub> + 0.3 | V    |
| Output delay                                  | td     | V <sub>DD</sub> = 3.0 V<br>Input slew rate > 50 mV/μs    | Comparator high-speed mode, standard mode |      |          | 1.2                     | μs   |
|                                               |        |                                                          | Comparator high-speed mode, window mode   |      |          | 2.0                     | μs   |
|                                               |        |                                                          | Comparator low-speed mode, standard mode  |      | 3.0      | 5.0                     | μs   |
| High-electric-potential reference voltage     | VTW+   | Comparator high-speed mode, window mode                  |                                           |      | 0.76 VDD |                         | V    |
| Low-electric-potential ref-<br>erence voltage | VTW-   | Comparator high-speed mode, window mode                  |                                           |      | 0.24 VDD |                         | V    |
| Operation stabilization wait time             | tсмр   |                                                          |                                           | 100  |          |                         | μs   |
| Internal reference voltage<br>Note            | VBGR   | $2.4~V \le V_{DD} \le 5.5~V$ , HS (high-speed main) mode |                                           | 1.38 | 1.45     | 1.50                    | ٧    |


Note Not usable in sub-clock operation or STOP mode.

## 3.6.5 POR circuit characteristics

#### $(TA = -40 \text{ to } +105^{\circ}\text{C}, Vss = 0 \text{ V})$

| Parameter                     | Symbol | Conditions                              | MIN. | TYP. | MAX. | Unit |
|-------------------------------|--------|-----------------------------------------|------|------|------|------|
| Power on/down reset threshold | VPOR   | Voltage threshold on VDD rising         | 1.45 | 1.51 | 1.57 | V    |
|                               | VPDR   | Voltage threshold on VDD falling Note 1 | 1.44 | 1.50 | 1.56 | V    |
| Minimum pulse width Note 2    | Tpw    |                                         | 300  |      |      | μs   |

- **Note 1.** However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 3.4 AC Characteristics.
- Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).



| REVISION | LICTODY |
|----------|---------|
| KEVISION | HISTORT |

# RL78/G14 Datasheet

|              |                                    | Description                                                                                                                                                                                                                                                                                                      |
|--------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date         | Page                               | Summary                                                                                                                                                                                                                                                                                                          |
| Oct 25, 2013 | 112 to 169                         | Addition of CHAPTER 3 ELECTRICAL SPECIFICATIONS                                                                                                                                                                                                                                                                  |
|              | 171 to 187                         | Modification of 4.1 30-pin products to 4.10 100-pin products                                                                                                                                                                                                                                                     |
| Feb 07, 2014 | All                                | Addition of products with maximum 512 KB flash ROM and 48 KB RAM                                                                                                                                                                                                                                                 |
|              | 1                                  | Modification of 1.1 Features                                                                                                                                                                                                                                                                                     |
|              | 2                                  | Modification of ROM, RAM capacities and addition of note 3                                                                                                                                                                                                                                                       |
|              | 3                                  | Modification of Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14                                                                                                                                                                                                                                   |
|              | 6 to 8                             | Addition of part number                                                                                                                                                                                                                                                                                          |
|              | 15, 16                             | Modification of 1.3.6 48-pin products                                                                                                                                                                                                                                                                            |
|              | 17                                 | Modification of 1.3.7 52-pin products                                                                                                                                                                                                                                                                            |
|              | 18, 19                             | Modification of 1.3.8 64-pin products                                                                                                                                                                                                                                                                            |
|              | 20                                 | Modification of 1.3.9 80-pin products                                                                                                                                                                                                                                                                            |
|              | 21, 22                             | Modification of 1.3.10 100-pin products                                                                                                                                                                                                                                                                          |
|              | 35, 37, 39,<br>41, 43, 45,<br>47   | Modification of operating ambient temperature in 1.6 Outline of Functions                                                                                                                                                                                                                                        |
|              | 42, 43                             | Addition of table of 48-pin, 52-pin, 64-pin products (code flash memory 384 KB to 512 KB)                                                                                                                                                                                                                        |
|              | 46, 47                             | Addition of table of 80-pin, 100-pin products (code flash memory 384 KB to 512 KB)                                                                                                                                                                                                                               |
|              | 65 to 68                           | Addition of (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products                                                                                                                                                                                                                                              |
|              | 118                                | Modification of 2.7 Data Memory Retention Characteristics                                                                                                                                                                                                                                                        |
|              | 137 to 140                         | Addition of (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products                                                                                                                                                                                                                                              |
|              | 180                                | Modification of 3.7 Data Memory Retention Characteristics                                                                                                                                                                                                                                                        |
|              | 189, 190                           | Addition and modification of 4.6 48-pin products                                                                                                                                                                                                                                                                 |
|              | 191                                | Modification of 4.7 52-pin products                                                                                                                                                                                                                                                                              |
|              | 193 to 195                         | Addition and modification of 4.8 64-pin products                                                                                                                                                                                                                                                                 |
|              | 198, 199                           | Addition and modification of 4.9 80-pin products                                                                                                                                                                                                                                                                 |
|              | 201, 202                           | Addition and modification of 4.10 100-pin products                                                                                                                                                                                                                                                               |
| Jan 05, 2015 | p.2                                | Deletion of R5F104JK and R5F104JL from the list of ROM and RAM capacities and modification of note                                                                                                                                                                                                               |
|              | p.6                                | Deletion of ordering part numbers of R5F104JK and R5F104JL from 52-pin plastic LQFP package in 1.2 Ordering Information                                                                                                                                                                                          |
|              | p.6 to 8                           | Deletion of note 2 in 1.2 Ordering Information                                                                                                                                                                                                                                                                   |
|              | p.17                               | Deletion of note 2 in 1.3.7 52-pin products                                                                                                                                                                                                                                                                      |
|              | p.36, 39,<br>42, 45, 48,<br>50, 52 | Modification of description in 1.6 Outline of Functions                                                                                                                                                                                                                                                          |
|              | p.46, 48                           | Deletion of description of 52-pin in 1.6 Outline of Functions                                                                                                                                                                                                                                                    |
|              | p.47                               | Modification of note of 1.6 Outline of Functions                                                                                                                                                                                                                                                                 |
|              | p.62, 64,<br>66, 68, 70,<br>72     | Modification of specifications in 2.3.2 Supply current characteristics                                                                                                                                                                                                                                           |
|              | Feb 07, 2014                       | Oct 25, 2013 112 to 169 171 to 187  Feb 07, 2014 All 1 2 3 6 to 8 15, 16 17 18, 19 20 21, 22 35, 37, 39, 41, 43, 45, 47 42, 43 46, 47 65 to 68 118 137 to 140 180 189, 190 191 193 to 195 198, 199 201, 202  Jan 05, 2015 p.2 p.6 p.6 to 8 p.17 p.36, 39, 42, 45, 48, 50, 52 p.46, 48 p.47 p.62, 64, 66, 68, 70, |