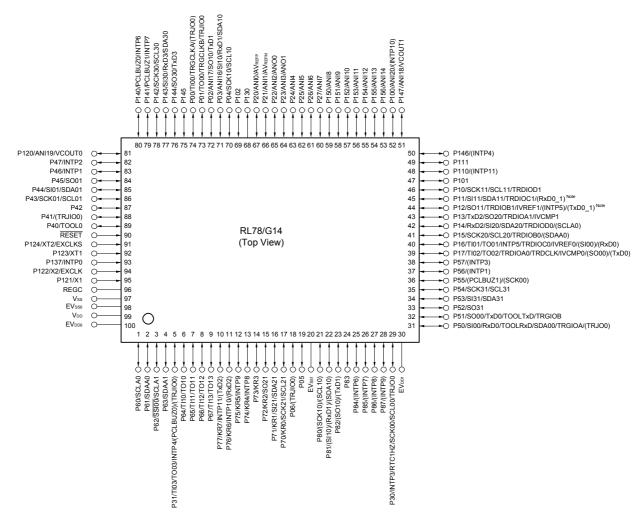


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

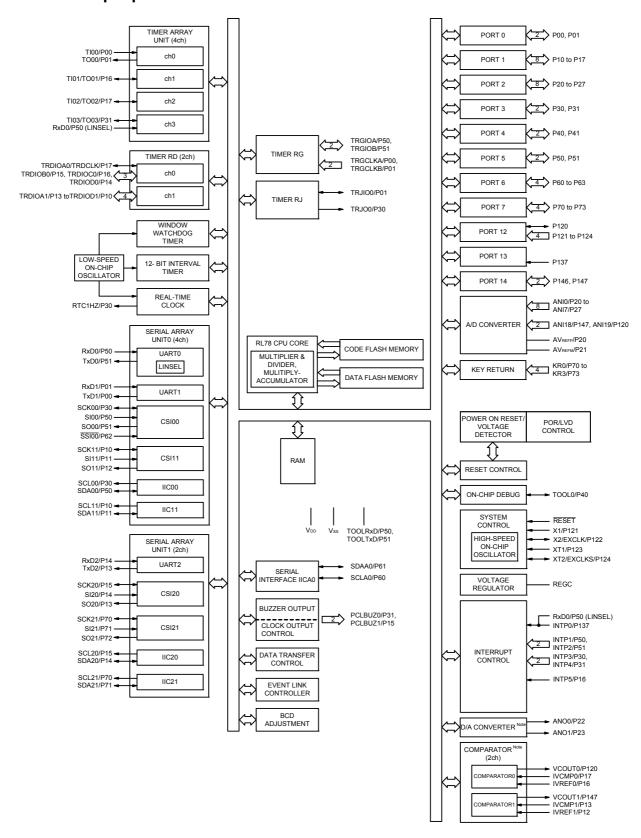
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.


Applications of "<u>Embedded - Microcontrollers</u>"

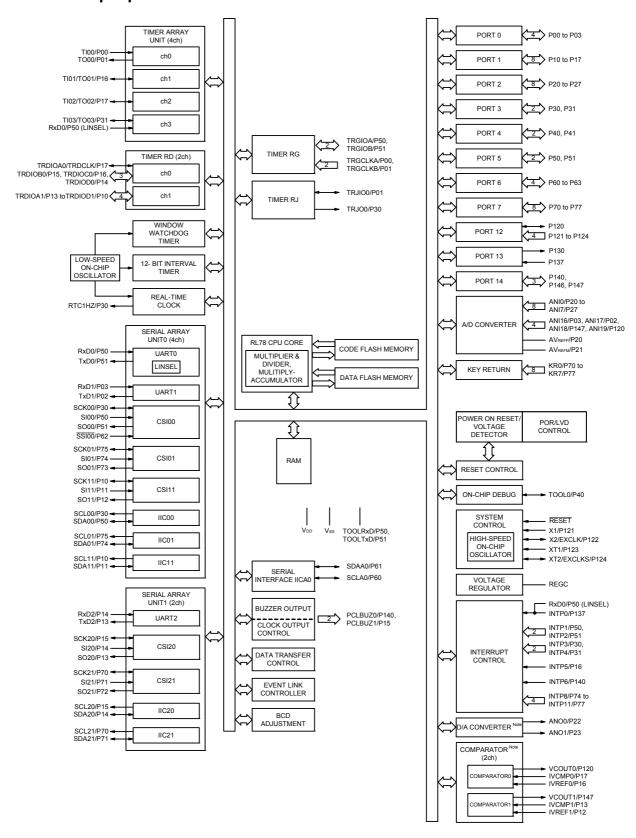
Details	
Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	22
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104bggfp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


• 100-pin plastic LQFP (14 × 20 mm, 0.65 mm pitch)

Note Mounted on the 384 KB or more code flash memory products.


- Caution 1. Make EVsso, EVss1 pins the same potential as Vss pin.
- Caution 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the Vss, EVss0 and EVss1 pins to separate ground lines.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.5.5 44-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.7 **52-pin products**

Note Mounted on the 96 KB or more code flash memory products.

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

(2/2)

					(2/2)				
		44-pin	48-pin	52-pin	64-pin				
	Item	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx				
		(x = F to H, J)	(x = F to H, J)	(x = F to H, J)	(x = F to H, J)				
Clock output/buz	zer output	2	2	2	2				
		(Main system clock: • 256 Hz, 512 Hz, 1.02	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 						
8/10-bit resolutio	n A/D converter	10 channels	10 channels	12 channels	12 channels				
D/A converter		2 channels		ı					
Comparator		2 channels							
Serial interface	120 1	CSI: 1 channel/UAR CSI: 2 channels/UAF [48-pin, 52-pin product CSI: 2 channels/UAF CSI: 1 channel/UAR CSI: 2 channels/UAF	 CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels [48-pin, 52-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels 						
	I ² C bus	1 channel	1 channel	1 channel	1 channel				
Data transfer cor	troller (DTC)	31 sources	32 sources		33 sources				
Event link contro	ller (ELC)	Event input: 22 Event trigger output: 9							
Vectored inter-	Internal	24	24	24	24				
rupt sources	External	7	10	12	13				
Key interrupt	1	4	6	8	8				
Power-on-reset of	circuit	 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access Power-on-reset: 1.51 ±0.04 V (TA = -40 to +85°C) 1.51 ±0.06 V (TA = -40 to +105°C) Power-down-reset: 1.50 ±0.04 V (TA = -40 to +85°C) 							
Voltage detector		1 63 V to 4 06 V (14 s	1.50 ±0.06 V (TA = -40 to +105°C)						
On-chip debug fu	ınction	1.63 V to 4.06 V (14 stages) Provided							
Power supply vol		V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)							
Operating ambie	nt temperature		Consumer applications, : Industrial applications	, D: Industrial applicatio)	ns),				

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(2/2)

			(212)			
		80-pin	100-pin			
lt.	tem	R5F104Mx	R5F104Px			
		(x = F to H, J)	(x = F to H, J)			
Clock output/buzz	zer output	2	2			
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 				
8/10-bit resolution	A/D converter	17 channels	20 channels			
D/A converter		2 channels	2 channels			
Comparator		2 channels	2 channels			
Serial interface		[80-pin, 100-pin products] • CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I ² C: 2 channels • CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels • CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels • CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels				
	I ² C bus	2 channels	2 channels			
Data transfer con	troller (DTC)	39 sources	39 sources			
Event link controller (ELC)		Event input: 26 Event trigger output: 9				
Vectored inter-	Internal	32	32			
rupt sources	External	13	13			
Key interrupt	1	8	8			
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access				
Power-on-reset circuit		• Power-on-reset: 1.51 ±0.04 V (TA = -40 1.51 ±0.06 V (TA = -40 • Power-down-reset: 1.50 ±0.04 V (TA = -40 1.50 ±0.06 V (TA = -40	to +105°C) to +85°C)			
Voltage detector		1.63 V to 4.06 V (14 stages)				
On-chip debug fu	nction	Provided				
Power supply volt	age	V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)				
Operating ambier	nt temperature	TA = -40 to +85°C (A: Consumer applications, D: Industrial applications), TA = -40 to +105°C (G: Industrial applications)				

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$

 $2.4~V \leq V_{DD} \leq 5.5~V \textcircled{@}1~MHz$ to 16 MHz

LS (low-speed main) mode: 1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
 Remark 3. fH: High-speed on-chip oscillator clock frequency (32 MHz max.)
 Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Cond	ditions	HS (high-spee	d main)	LS (low-speed mode	d main)	LV (low-voltag mode	e main)	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	tkcy2	4.0 V ≤ EVDD0 ≤ 5.5 V	20 MHz < fmck	8/fмск		_		_		ns
time Note 5			fмcк ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		2.7 V ≤ EVDD0 ≤ 5.5 V	16 MHz < fmck	8/fмск		_		_		ns
			fмcк ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		2.4 V ≤ EVDD0 ≤ 5.5 V		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		1.8 V ≤ EVDD0 ≤ 5.5 V		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		1.7 V ≤ EV _{DD0} ≤ 5.5 V		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		1.6 V ≤ EV _{DD0} ≤ 5.5 V		_		6/fмск and 1500		6/fмск and 1500		ns
SCKp high-/	. •			tkcy2/2 - 7		tkcy2/2 - 7		tkcy2/2 - 7		ns
1.8 V ≤ E	2.7 V ≤ EVDD0 ≤ 5.5 V	tkcy2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns		
	1.8 V ≤ EVDD0 ≤ 5.5 V		tkcy2/2 - 18		tkcy2/2 - 18		tkcy2/2 - 18		ns	
	1.7 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 66		tkcy2/2 - 66		tkcy2/2 - 66		ns	
		1.6 V ≤ EVDD0 ≤ 5.5 V		_		tkcy2/2 - 66		tkcy2/2 - 66		ns
SIp setup time	tsık2	2.7 V ≤ EVDD0 ≤ 5.5 V		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		1.8 V ≤ EVDD0 ≤ 5.5 V		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		1.7 V ≤ EVDD0 ≤ 5.5 V		1/fмск + 40		1/fмск + 40		1/fмск + 40		ns
		1.6 V ≤ EVDD0 ≤ 5.5 V		_		1/fмск + 40		1/fмск + 40		ns
SIp hold time	tks12	1.8 V ≤ EVDD0 ≤ 5.5 V		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		1.7 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns
		1.6 V ≤ EVDD0 ≤ 5.5 V		_		1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	2.7 V ≤ EV _{DD0} ≤ 5.5 V		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3		2.4 V ≤ EV _{DD0} ≤ 5.5 V		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns	
			1.8 V ≤ EV _{DD0} ≤ 5.5 V		2/fмcк + 100		2/fмск + 110		2/fмск + 110	ns
			1.7 V ≤ EV _{DD0} ≤ 5.5 V		2/fмcк + 220		2/fмск + 220		2/fмск + 220	ns
		_	1.6 V ≤ EV _{DD0} ≤ 5.5 V		_		2/fмск + 220		2/fмск + 220	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SOp output lines.
- **Note 5.** The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

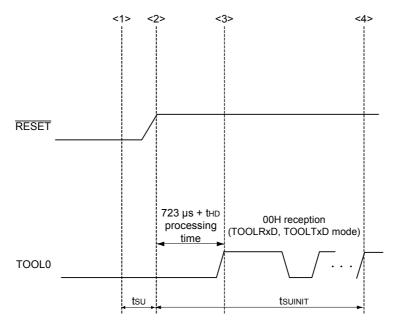
Parameter	Symbol	Conditions	HS (high-speed r	main)	LS (low-speed m	nain)	LV (low-voltage r mode	main)	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/fmck + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$ \begin{aligned} 2.7 & \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b & = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/fmck + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DDO}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned} $	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$ \begin{aligned} 2.7 & \ V \leq EV_{DDO} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} &\text{Note 2}, \\ &C_{\text{b}} = 100 \text{ pF}, &R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	0	305	0	305	0	305	ns
		$ \begin{aligned} &2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ &C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned} $	0	305	0	305	0	305	ns
		$ \begin{aligned} &4.0 \; \text{V} \leq \text{EV} \text{DD0} \leq 5.5 \; \text{V}, \\ &2.7 \; \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \; \text{V}, \\ &\text{C}_{\text{b}} = 100 \; \text{pF}, \; \text{R}_{\text{b}} = 2.8 \; \text{k} \Omega \end{aligned} $	0	355	0	355	0	355	ns
		$ \begin{aligned} &2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega \end{aligned} $	0	355	0	355	0	355	ns
		$\begin{split} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \stackrel{\text{Note 2}}{\sim}, \\ &C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{split}$	0	405	0	405	0	405	ns

Note 1. The value must also be equal to or less than fMCK/4.

Caution

Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)


Note 2. Use it with $EVDD0 \ge V_b$.

Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

2.10 Timing of Entry to Flash Memory Programming Modes

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thD	POR and LVD reset must end before the external reset ends.	1			ms

- <1> The low level is input to the TOOL0 pin.
- <2> The external reset ends (POR and LVD reset must end before the external reset ends).
- <3> The TOOL0 pin is set to the high level.
- <4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends
thd: How long to keep the TOOL0 pin at the low level from when the external resets end
(excluding the processing time of the firmware to control the flash memory)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				8.5 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	4.0 V ≤ EVDD0 ≤ 5.5 V			40.0	mA
		P102, P120, P130, P140 to P145	2.7 V ≤ EVDD0 < 4.0 V			15.0	mA
		(When duty ≤ 70% Note 3)	2.4 V ≤ EVDD0 < 2.7 V			9.0	mA
		P30, P31, P50 to P57, P60 to P67, P70 to P77	4.0 V ≤ EVDD0 ≤ 5.5 V			40.0	mA
			2.7 V ≤ EVDD0 < 4.0 V			35.0	mA
			2.4 V ≤ EVDD0 < 2.7 V			20.0	mA
		Total of all pins (When duty ≤ 70% Note 3)				80.0	mA
	lOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	2.4 V ≤ VDD ≤ 5.5 V			5.0	mA

- Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.
- Note 2. Do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IoL \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IoL = 10.0 mA Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(4/5)

Items	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -3.0 mA	EVDD0 - 0.7			V
		P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	2.7 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -2.0 mA	EVDD0 - 0.6			V
			2.4 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -1.5 mA	EVDD0 - 0.5			V
	VOH2	P20 to P27, P150 to P156	2.4 V ≤ VDD ≤ 5.5 V, IOH2 = -100 μA	VDD - 0.5			V
Output voltage, low	VOL1	P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, lol1 = 8.5 mA			0.7	V
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110,	2.7 V ≤ EVDD0 ≤ 5.5 V, loL1 = 3.0 mA			0.6	V
		P111, P120, P130, P140 to P147	2.7 V ≤ EVDD0 ≤ 5.5 V, loL1 = 1.5 mA			0.4	V
			2.4 V ≤ EVDD0 ≤ 5.5 V, IOL1 = 0.6 mA			0.4	V
	VOL2	P20 to P27, P150 to P156	$2.4~V \le V_{DD} \le 5.5~V$, $I_{OL2} = 400~\mu A$			0.4	V
	Vol3	P60 to P63	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 15.0 mA			2.0	V
			4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 5.0 mA			0.4	V
			2.7 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 3.0 mA			0.4	V
			2.4 V ≤ EVDD0 ≤ 5.5 V, loL3 = 2.0 mA			0.4	V

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(4) Peripheral Functions (Common to all products)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscilla- tor operating current	IFIL Note 1				0.20		μΑ
RTC operating current	I _{RTC} Notes 1, 2, 3				0.02		μΑ
12-bit interval timer operat- ing current	IT Notes 1, 2, 4			0.02		μΑ	
Watchdog timer operating current	I _{WDT} Notes 1, 2, 5	fi∟ = 15 kHz		0.22		μΑ	
A/D converter operating current	I _{ADC} Notes 1, 6	When conversion at maximum Normal mode, speed AVREFP = VDD = 5.0 V			1.3	1.7	mA
			Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μΑ
Temperature sensor operating current	ITMPS Note 1				75.0		μΑ
D/A converter operating current	IDAC Notes 1, 11, 13	Per D/A converter channel			1.5	mA	
Comparator operating cur-	ICMP Notes 1, 12, 13	V _{DD} = 5.0 V,	Window mode		12.5		μА
rent		Regulator output voltage = 2.1 V	Comparator high-speed mode		6.5		μΑ
			Comparator low-speed mode		1.7		μΑ
		V _{DD} = 5.0 V,	Window mode		8.0		μΑ
		Regulator output voltage = 1.8 V	Comparator high-speed mode		4.0		μΑ
			Comparator low-speed mode		1.3		μΑ
LVD operating current	I _{LVD} Notes 1, 7				0.08		μΑ
Self-programming operating current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	I _{BGO} Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	I _{SNOZ} Note 1	ADC operation	The mode is performed Note 10		0.50	1.10	mA
			The A/D conversion operations are performed, Low voltage mode, AVREFP = VDD = 3.0 V		1.20	2.04	
		CSI/UART operation			0.70	1.54	
		DTC operation			3.10		

- Note 1. Current flowing to VDD.
- Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.
- Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.
- Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Cond	ditions	HS (high-speed	main) mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	4.0 V ≤ EV _{DD0} ≤ 5.5 V	20 MHz < fmck	16/ƒмск		ns
			fмcк ≤ 20 MHz	12/fмск		ns
		2.7 V ≤ EVDD0 ≤ 5.5 V	16 MHz < fмcк	16/fмск		ns
			fмcк ≤ 16 MHz	12/fмск		ns
		2.4 V ≤ EVDD0 ≤ 5.5 V		12/fмск and 1000		ns
SCKp high-/low-level width	tkH2, tkL2	4.0 V ≤ EV _{DD0} ≤ 5.5 V	4.0 V ≤ EV _{DD0} ≤ 5.5 V			ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tkcy2/2 - 16		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 36		ns
SIp setup time (to SCKp↑) Note 1	tsık2	2.7 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 40		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 2	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note 4	2.7 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 66	ns
			2.4 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 113	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SOp output lines.
- **Note 5.** The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(1/2)

Parameter	Symbol		Conditions	HS (high-s	peed main) mode	Unit
				MIN.	MAX.	•
Transfer rate		reception	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}$		f _{MCK} /12 Note 1	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		f _{MCK} /12 Note 1	bps
			Theoretical value of the maximum transfer rate f _{MCK} = f _{CLK} Note 3		2.6	Mbps
			$2.4 \text{ V} \le \text{EVddo} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V}$		f _{MCK} /12 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		2.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. The following conditions are required for low voltage interface when EVDD0 < VDD.

 $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.7 \text{ V: MAX. } 1.3 \text{ Mbps}$

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fclk) are:

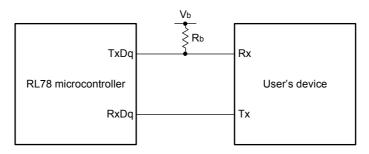
HS (high-speed main) mode: 32 MHz (2.7 V \leq VDD \leq 5.5 V)

16 MHz (2.4 V \leq VDD \leq 5.5 V)

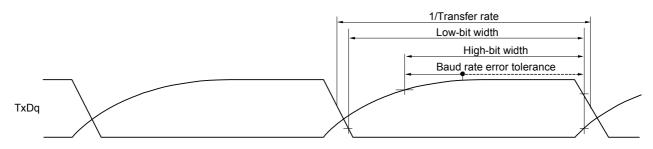
Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

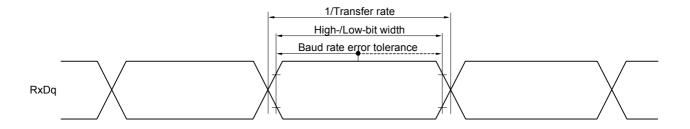
Remark 1. Vb [V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)


Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,


n: Channel number (mn = 00 to 03, 10 to 13)


Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

UART mode connection diagram (during communication at different potential)

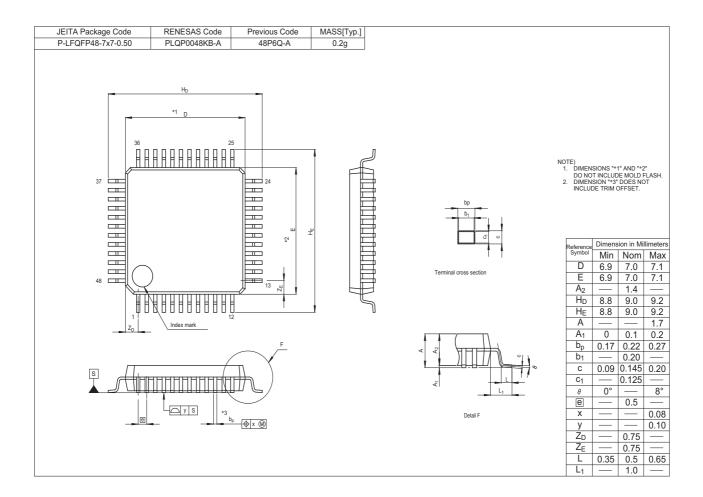
UART mode bit width (during communication at different potential) (reference)

- **Remark 1.** $Rb[\Omega]$: Communication line (TxDq) pull-up resistance,
 - Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage
- Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).
 - m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))
- Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

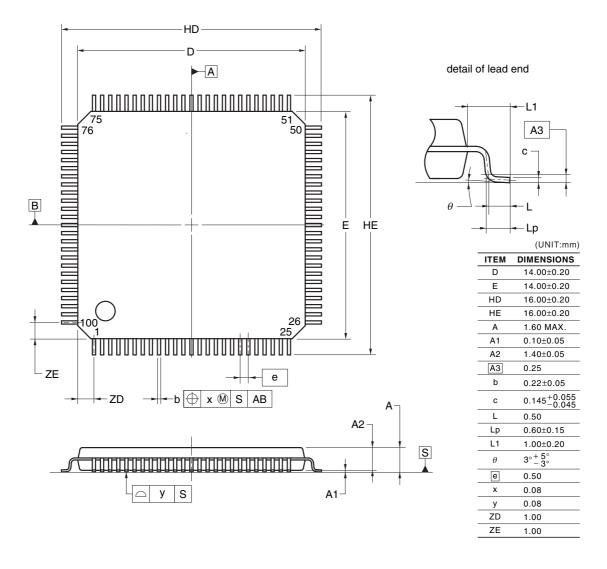
(2/3)


Parameter	Symbol	Conditions	HS (high-spee	ed main) mode	Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑) Note	tsıkı	$ 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega $	162		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DDO}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	354		ns
		$2.4 \ V \le EV_{DD0} < 3.3 \ V,$ $1.6 \ V \le V_b \le 2.0 \ V,$ $C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega$	958		ns
SIp hold time (from SCKp \uparrow) Note	tksi1	$ 4.0 \text{ V} \leq \text{EV}_{\text{DDO}} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 1.4 \text{ k}\Omega $	38		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	38		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DDO}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$	38		ns
Delay time from SCKp↓ to SOp output Note	tkso1	$4.0 \text{ V} \le \text{EV}_{\text{DDO}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 1.4 \text{ k}\Omega$		200	ns
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_{b} \leq 2.7 \ V, \\ C_{b} &= 30 \ pF, \ R_{b} = 2.7 \ k \Omega \end{split}$		390	ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V}, \\ 1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 30 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega$		966	ns

Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the page after the next page.)


R5F104GKAFB, R5F104GLAFB R5F104GKGFB, R5F104GLGFB

4.10 100-pin products

R5F104PFAFB, R5F104PGAFB, R5F104PHAFB, R5F104PJAFB R5F104PFDFB, R5F104PGDFB, R5F104PHDFB, R5F104PJDFB R5F104PFGFB, R5F104PGGFB, R5F104PHGFB, R5F104PJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP100-14x14-0.50	PLQP0100KE-A	P100GC-50-GBR-1	0.69

©2012 Renesas Electronics Corporation. All rights reserved.

АЗ

-Lp

(UNIT:mm)

20.00±0.20

14.00±0.20

22.00±0.20

16.00±0.20

1.60 MAX. 0.10±0.05

1.40±0.05

 $0.32^{+0.08}_{-0.07}$ 0.145+0.055

 0.60 ± 0.15

 1.00 ± 0.20 3°+5°

0.25

0.50

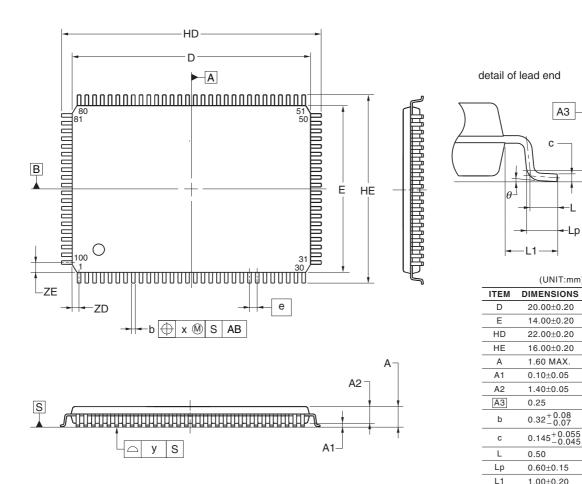
0.65 0.13

0.10

0.575

0.825

 θ е


У

ZD

ZΕ

R5F104PFAFA, R5F104PGAFA, R5F104PHAFA, R5F104PJAFA R5F104PFDFA, R5F104PGDFA, R5F104PHDFA, R5F104PJDFA R5F104PFGFA, R5F104PGGFA, R5F104PHGFA, R5F104PJGFA R5F104PKAFA, R5F104PLAFA R5F104PKGFA, R5F104PLGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP100-14x20-0.65	PLQP0100JC-A	P100GF-65-GBN-1	0.92

©2012 Renesas Electronics Corporation. All rights reserved.