

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

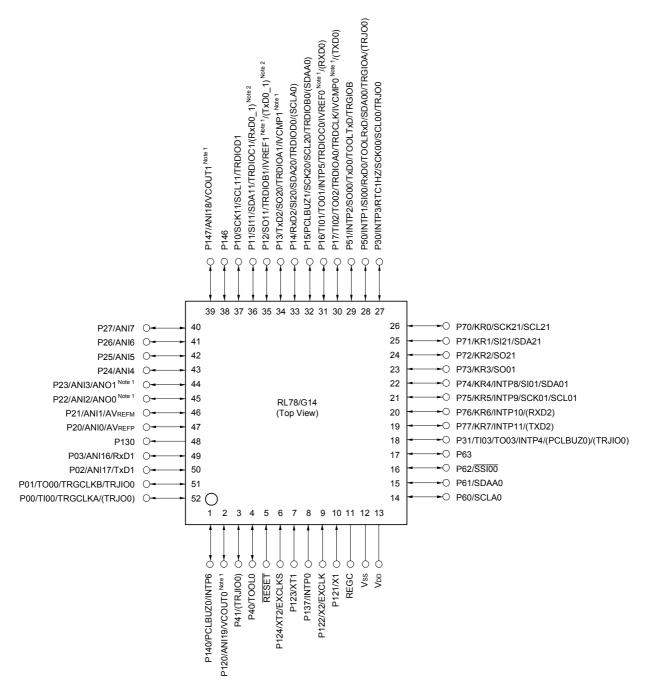
XFI

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	26
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 8x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	36-WFLGA
Supplier Device Package	36-WFLGA (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104ceala-u0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(4/5)


Pin count	Package	Fields of Application Note	Ordering Part Number
	64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)	A	R5F104LCAFA#V0, R5F104LDAFA#V0, R5F104LEAFA#V0, R5F104LFAFA#V0, R5F104LGAFA#V0, R5F104LHAFA#V0, R5F104LJAFA#V0
			R5F104LCAFA#X0, R5F104LDAFA#X0, R5F104LEAFA#X0, R5F104LFAFA#X0, R5F104LGAFA#X0, R5F104LHAFA#X0, R5F104LJAFA#X0
			R5F104LKAFA#30, R5F104LLAFA#30
			R5F104LKAFA#50, R5F104LLAFA#50
		D	R5F104LCDFA#V0, R5F104LDDFA#V0, R5F104LEDFA#V0, R5F104LFDFA#V0, R5F104LGDFA#V0, R5F104LHDFA#V0, R5F104LJDFA#V0
			R5F104LCDFA#X0, R5F104LDDFA#X0, R5F104LEDFA#X0, R5F104LFDFA#X0, R5F104LGDFA#X0, R5F104LHDFA#X0, R5F104LJDFA#X0
		G	R5F104LCGFA#V0, R5F104LDGFA#V0, R5F104LEGFA#V0, R5F104LFGFA#V0, R5F104LGGFA#V0, R5F104LHGFA#V0, R5F104LJGFA#V0
			R5F104LCGFA#X0, R5F104LDGFA#X0, R5F104LEGFA#X0, R5F104LFGFA#X0, R5F104LGGFA#X0, R5F104LHGFA#X0, R5F104LJGFA#X0
			R5F104LKGFA#30, R5F104LLGFA#30
			R5F104LKGFA#50, R5F104LLGFA#50
	64-pin plastic LFQFP (10 \times 10 mm, 0.5 mm pitch)	A	R5F104LCAFB#V0, R5F104LDAFB#V0, R5F104LEAFB#V0, R5F104LFAFB#V0, R5F104LGAFB#V0, R5F104LHAFB#V0, R5F104LJAFB#V0
	(·····)		R5F104LCAFB#X0, R5F104LDAFB#X0, R5F104LEAFB#X0, R5F104LFAFB#X0,
			R5F104LGAFB#X0, R5F104LHAFB#X0, R5F104LJAFB#X0
			R5F104LKAFB#30, R5F104LLAFB#30
		D	R5F104LKAFB#50, R5F104LLAFB#50 R5F104LCDFB#V0, R5F104LDDFB#V0, R5F104LEDFB#V0, R5F104LFDFB#V0,
		D	R5F104LGDFB#V0, R5F104LHDFB#V0, R5F104LJDFB#V0
			R5F104LCDFB#X0, R5F104LDDFB#X0, R5F104LEDFB#X0, R5F104LFDFB#X0, R5F104LGDFB#X0, R5F104LHDFB#X0, R5F104LJDFB#X0
		G	R5F104LCGFB#V0, R5F104LDGFB#V0, R5F104LEGFB#V0, R5F104LFGFB#V0, R5F104LGGFB#V0, R5F104LHGFB#V0, R5F104LJGFB#V0
			R5F104LCGFB#X0, R5F104LDGFB#X0, R5F104LEGFB#X0, R5F104LFGFB#X0, R5F104LGGFB#X0, R5F104LHGFB#X0, R5F104LJGFB#X0
			R5F104LKGFB#30, R5F104LLGFB#30
			R5F104LKGFB#50, R5F104LLGFB#50
	64-pin plastic FLGA (5 × 5 mm, 0.5 mm pitch)	A	R5F104LCALA#U0, R5F104LDALA#U0, R5F104LEALA#U0, R5F104LFALA#U0, R5F104LGALA#U0, R5F104LHALA#U0, R5F104LJALA#U0
			R5F104LCALA#W0, R5F104LDALA#W0, R5F104LEALA#W0, R5F104LFALA#W0, R5F104LGALA#W0, R5F104LHALA#W0, R5F104LJALA#W0
			R5F104LKALA#U0, R5F104LLALA#U0
			R5F104LKALA#W0, R5F104LLALA#W0
		G	R5F104LCGLA#U0, R5F104LDGLA#U0, R5F104LEGLA#U0, R5F104LFGLA#U0, R5F104LGGLA#U0, R5F104LHGLA#U0, R5F104LJGLA#U0, R5F104LKGLA#U0, R5F104LLGLA#U0
			R5F104LCGLA#W0, R5F104LDGLA#W0, R5F104LEGLA#W0, R5F104LFGLA#W0,
			R5F104LGGLA#W0, R5F104LHGLA#W0, R5F104LJGLA#W0, R5F104LKGLA#W0, R5F104LLGLA#W0
	64-pin plastic LQFP (14 \times 14 mm, 0.8 mm pitch)	A	R5F104LCAFP#V0, R5F104LDAFP#V0, R5F104LEAFP#V0, R5F104LFAFP#V0, R5F104LGAFP#V0, R5F104LHAFP#V0, R5F104LJAFP#V0
			R5F104LCAFP#X0, R5F104LDAFP#X0, R5F104LEAFP#X0, R5F104LFAFP#X0, R5F104LGAFP#X0, R5F104LHAFP#X0, R5F104LJAFP#X0
		D	R5F104LCDFP#V0, R5F104LDDFP#V0, R5F104LEDFP#V0, R5F104LFDFP#V0, R5F104LGDFP#V0, R5F104LHDFP#V0, R5F104LJDFP#V0
			R5F104LCDFP#X0, R5F104LDDFP#X0, R5F104LEDFP#X0, R5F104LFDFP#X0, R5F104LGDFP#X0, R5F104LHDFP#X0, R5F104LJDFP#X0
		G	R5F104LCGFP#V0, R5F104LDGFP#V0, R5F104LEGFP#V0, R5F104LFGFP#V0, R5F104LGGFP#V0, R5F104LHGFP#V0, R5F104LJGFP#V0
			R5F104LCGFP#X0, R5F104LDGFP#X0, R5F104LEGFP#X0, R5F104LFGFP#X0, R5F104LGGFP#X0, R5F104LHGFP#X0, R5F104LJGFP#X0

Note For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

1.3.7 52-pin products

• 52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch)

Note 1. Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

(R20UT2944).

 Note
 The flash library uses RAM in self-programming and rewriting of the data flash memory.

 The target products and start address of the RAM areas used by the flash library are shown below.

 R5F104xL (x = G, L, M, P): Start address F3F00H

 For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family

1	0	in	1
(2	12	J

		10 nin	(2/2				
lteres		48-pin	64-pin				
Item		R5F104Gx	R5F104Lx				
	4	(x = K, L)	(x = K, L)				
Clock output/buzzer outp	out	2 2					
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.4					
		(Main system clock: fMAIN = 20 MHz operation • 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.09					
		(Subsystem clock: fsuB = 32.768 kHz opera					
8/10-bit resolution A/D c	onverter	10 channels	12 channels				
D/A converter		2 channels					
Comparator		2 channels					
Serial interface		[48-pin products]					
ochar interface		CSI: 2 channels/UART (UART supporting LI	N-bus): 1 channel/simplified I ² C: 2 channels				
		CSI: 1 channel/UART: 1 channel/simplified I					
		CSI: 2 channels/UART: 1 channel/simplified					
		[64-pin products]					
		• CSI: 2 channels/UART (UART supporting LI	N-bus): 1 channel/simplified I ² C: 2 channels				
		CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels					
		CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels					
	I ² C bus	1 channel	1 channel				
Data transfer controller (DTC)	32 sources	33 sources				
Event link controller (EL	C)	Event input: 22					
		Event trigger output: 9					
Vectored interrupt	Internal	24	24				
sources	External	10	13				
Key interrupt	·	6	8				
Reset		Reset by RESET pin					
		Internal reset by watchdog timer					
		Internal reset by power-on-reset					
		Internal reset by voltage detector	Nut				
		Internal reset by illegal instruction execution Note					
		 Internal reset by RAM parity error Internal reset by illegal-memory access 					
Power-on-reset circuit			to 195°C)				
Power-on-reset circuit		• Power-on-reset: 1.51 ±0.04 V (TA = -40 to +85°C) 1.51 ±0.06 V (TA = -40 to +105°C)					
		• Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (TA = -40	,				
		1.50 ±0.06 V (TA = -40	to +105°C)				
Voltage detector		1.63 V to 4.06 V (14 stages)					
On-chip debug function		Provided					
Power supply voltage		VDD = 1.6 to 5.5 V (TA = -40 to +85°C)					
		VDD = 2.4 to 5.5 V (TA = -40 to +105°C)					
Operating ambient temp	erature	$T_A = -40$ to $+85^{\circ}C$ (A: Consumer applications,					
		TA = -40 to +105°C (G: Industrial applications)				

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

RENESAS

[80-pin, 100-pin products (code flash memory 384 KB to 512 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

			(1/2)				
		80-pin	100-pin				
Item Code flash memory (KB) Data flash memory (KB)	R5F104Mx	R5F104Px					
		(x = K, L)	(x = K, L)				
Code flash me	emory (KB)	384 to 512	384 to 512				
Data flash me	mory (KB)	8	8				
RAM (KB)		32 to 48 Note	32 to 48 Note				
Address space	e	1 MB					
Main system clock	High-speed system clock	LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V),					
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mode: 1 to 16 MHz (V_{DD} = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (V_{DD} = 1.8 to 5.5 V),					
Subsystem clo	ock	XT1 (crystal) oscillation, external subsystem cl	ock input (EXCLKS) 32.768 kHz				
Low-speed on	-chip oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V					
General-purpo	ose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)					
Minimum instr	uction execution time	0.03125 μ s (High-speed on-chip oscillator clock: fi H = 32 MHz operation)					
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)					
		30.5 µs (Subsystem clock: fsub = 32.768 kHz operation)					
Instruction set		 Multiplication (8 bits × 8 bits, 16 bits × 16 bits) Multiplication and Accumulation (16 bits × 16 	, Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) bits + 32 bits)				
I/O port	Total	74	92				
	CMOS I/O	64	82				
	CMOS input	KB) 384 to 512 KB) 8 32 to 48 Note 1 MB n-speed system k X1 (crystal/ceramic) oscillation, external main system (high-speed main) mode: 1 to 20 MHz (VDD = LV (low-speed main) mode: 1 to 16 MHz (VDD = LV (low-voltage main) mode: 1 to 8 MHz (VDD = LV (low-voltage main) mode: 1 to 32 MHz (VDD = LV (low-voltage main) mode: 1 to 34 MHz (VDD = LV (low-voltage main) mode: 1 to 4 MHz (VDD = LV (low-totage main) mode: 1 to 4 MHz (VDD = LV (low-totage main) mode: 1 to 4 MHz (VDD = LV (low-totage main) mode: 1 to 4 MHz (VDD = LV (low-totage main) mode: 1 to 4 MHz (VDD = LV (low-totage main) mode: 1 to 4 MHz (VDD = LV (low-totage main) mode:	5				
	CMOS output	1	1				
	N-ch open-drain I/O (6 V tolerance)	4	4				
Timer	16-bit timer	12 channels (TAU: 8 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)					
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output						
	RTC output						

Note

In the case of the 48 KB, this is about 47 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/G14 User's Manual).

2. ELECTRICAL SPECIFICATIONS (TA = -40 to $+85^{\circ}$ C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications TA = -40 to +85°C

R5F104xxAxx

- D: Industrial applications TA = -40 to +85°C R5F104xxDxx
- G: Industrial applications when TA = -40 to +105°C products is used in the range of TA = -40 to +85°C R5F104xxGxx
- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

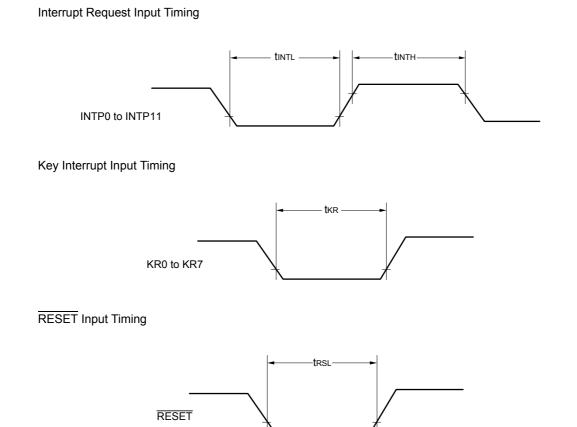
$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
	Ceramic resonator/	$2.7~V \leq V \text{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	1.0		16.0	
		$1.8~\text{V} \leq \text{V}\text{DD} < 2.4~\text{V}$	1.0		8.0	
		$1.6~V \leq V_{DD} < 1.8~V$	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

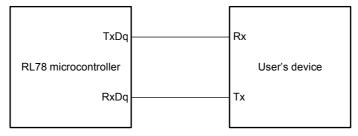
- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

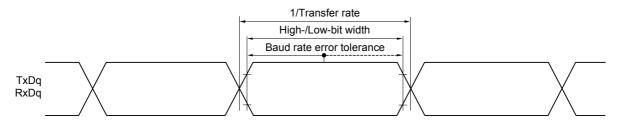
2.2.2 On-chip oscillator characteristics


(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	Conditions		MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator clock frequency		-20 to +85°C	$1.8~V \leq V\text{DD} \leq 5.5~V$	-1.0		+1.0	%
accuracy			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.0		+5.0	%
		-40 to -20°C	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 5.5 \text{ V}$	-1.5		+1.5	%
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.


Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.



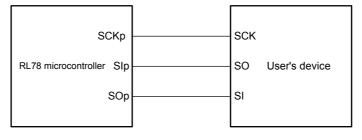
UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

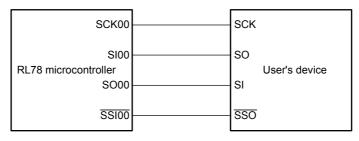
Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 2. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

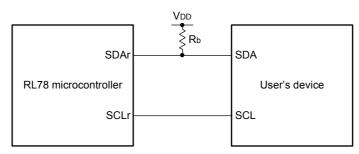

Description	Symbol		0					1)((),		Unit	
Parameter	Symbol		Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SSI00 setup time	tssik	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	120		120		120		ns	
			$1.8~V \leq EV_{DD0} \leq 5.5~V$	200		200		200		ns	
			$1.7~V \leq EV_{DD0} \leq 5.5~V$	400		400		400		ns	
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		400		400		ns	
		DAPmn = 1	$2.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns	
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns	
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns	
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		1/fмск + 400		1/fмск + 400		ns	
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns	
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns	
				$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		1/fмск + 400		1/fмск + 400		ns	
		DAPmn = 1	$2.7~V \leq EV_{DD0} \leq 5.5~V$	120		120		120		ns	
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	200		200		200		ns	
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		400		400		ns	
			1.6 V ≤ EVDD0 ≤ 5.5 V	—		400		400		ns	

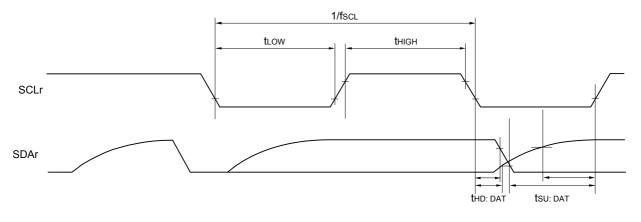
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

CSI mode connection diagram (during communication at same potential)


CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))


Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance

- **Remark 2.** r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 3 to 5, 14),
 - h: POM number (h = 0, 1, 3 to 5, 7, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

Parameter	Symbol	ol Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 135 Note 3		1/fmck + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	1/fмск + 190 Note 3		1/fmck + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 190 Note 3		1/f _{MCK} + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_{b} \leq 2.0 \; V \; ^{Note 2}, \\ C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$	1/fмск + 190 Note 3		1/fmck + 190 Note 3		1/fмск + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
			0	355	0	355	0	355	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
		$ \begin{split} & 1.8 \; \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \; \text{V}, \\ & 1.6 \; \text{V} \leq \text{V}_{b} \leq 2.0 \; \text{V} \; ^{\text{Note 2}}, \\ & \text{C}_{b} = 100 \; \text{pF}, \; \text{R}_{b} = 5.5 \; \text{k}\Omega \end{split} $	0	405	0	405	0	405	ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

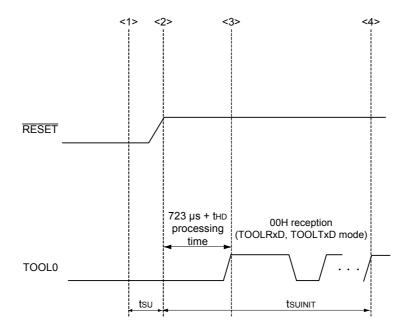
(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Note 1. The value must also be equal to or less than fmck/4.

Note 2. Use it with $EV_{DD0} \ge V_b$.

Note 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".


Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

2.10 Timing of Entry to Flash Memory Programming Modes

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
How long from when an external reset ends until the initial communication settings are specified	tsuinit	POR and LVD reset must end before the external reset ends.			100	ms
How long from when the TOOL0 pin is placed at the low level until an external reset ends	tsu	POR and LVD reset must end before the external reset ends.	10			μs
How long the TOOL0 pin must be kept at the low level after an external reset ends (excluding the processing time of the firmware to control the flash memory)	thd	POR and LVD reset must end before the external reset ends.	1			ms

<1> The low level is input to the TOOL0 pin.

<2> The external reset ends (POR and LVD reset must end before the external reset ends).

<3> The TOOL0 pin is set to the high level.

<4> Setting of the flash memory programming mode by UART reception and complete the baud rate setting.

Remark tsuinit. The segment shows that it is necessary to finish specifying the initial communication settings within 100 ms from when the external resets end.

tsu: How long from when the TOOL0 pin is placed at the low level until a pin reset ends

tHD: How long to keep the TOOL0 pin at the low level from when the external resets end (excluding the processing time of the firmware to control the flash memory)

3.1 Absolute Maximum Ratings

Absolute Maximum Ratings

		0 1111		(172)
Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8	V
			and -0.3 to V _{DD} +0.3 Note 1	
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P47, P50 to P57, P64 to P67,	and -0.3 to VDD +0.3 Note 2	
		P70 to P77, P80 to P87, P100 to P102,		
		P110, P111, P120, P140 to P147		
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137,	-0.3 to V _{DD} +0.3 Note 2	V
		P150 to P156, EXCLK, EXCLKS, RESET		
Output voltage	V01	P00 to P06, P10 to P17, P30, P31,	-0.3 to EVDD0 +0.3	V
		P40 to P47, P50 to P57, P60 to P67,	and -0.3 to VDD +0.3 Note 2	
		P70 to P77, P80 to P87, P100 to P102,		
		P110, P111, P120, P130, P140 to P147		
	V02	P20 to P27, P150 to P156	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI20	-0.3 to EVDD0 +0.3	V
			and -0.3 to AVREF(+) +0.3 Notes 2, 3	v
	VAI2	ANI0 to ANI14	-0.3 to VDD +0.3	V
			and -0.3 to AVREF(+) +0.3 Notes 2, 3	v

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 μF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

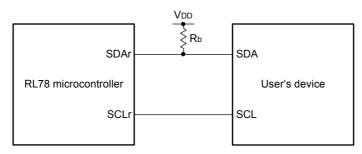
- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

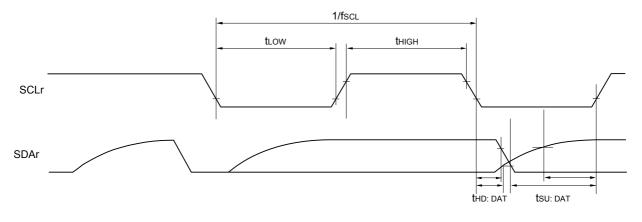
Remark 3. Vss: Reference voltage

(1/2)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C



Interrupt Request Input Timing


RESET

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance

- **Remark 2.** r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 3 to 5, 14),
 - h: POM number (h = 0, 1, 3 to 5, 7, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

The smaller maximum transfer rate derived by using fMck/12 or the following expression is the valid maximum transfer Note 5. rate.

Expression for calculating the transfer rate when 2.4 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

1

Maximum transfer rate =
$$\frac{1.5}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$

Baud rate e

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{1.5}{V_b})\}$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- This value as an example is calculated when the conditions described in the "Conditions" column are met. Note 6. Refer to Note 5 above to calculate the maximum transfer rate under conditions of the customer.
- Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin Caution products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

(7) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

1	$x = -40$ to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0	0 V)
	$(-40 10 + 103 C, 2.4 V \le LVDD0 - LVDD1 \le VDD \le 3.3 V, V33 - LV330 - LV331 - 0$	J V J

Parameter	Symbol	Conditions		HS (high-spee	Unit	
				MIN.	MAX.	
SCKp cycle time Note 1	tксү2	$\begin{array}{l} 4.0 \ V \leq E \ V_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V \end{array}$	24 MHz < fмск	28/f мск		ns
			$20 \text{ MHz} < f_{\text{MCK}} \leq 24 \text{ MHz}$	24/fмск		ns
			$8 \text{ MHz} < f_{MCK} \le 20 \text{ MHz}$	20/fмск		ns
			$4 \text{ MHz} < f_{\text{MCK}} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$\begin{array}{c} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$	24 MHz < fмск	40/fмск		ns
			$20 \text{ MHz} < f_{\text{MCK}} \leq 24 \text{ MHz}$	32/fмск		ns
			$16 \text{ MHz} < f_{\text{MCK}} \le 20 \text{ MHz}$	28/fмск		ns
			8 MHz < fmck \leq 16 MHz	24/fмск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		ns
			fмск ≤ 4 MHz	12/fмск		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{b} \leq 2.0 \text{ V}$	24 MHz < fмск	96/fмск		ns
			$20 \text{ MHz} < \text{fmck} \le 24 \text{ MHz}$	72/fмск		ns
			$16 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	64/fмск		ns
			8 MHz < fmck \leq 16 MHz	52/f мск		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	32/fмск		ns
			fмск ≤ 4 MHz	20/fмск		ns
SCKp high-/low-level	tкн2, tкL2	$4.0 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}, 2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$		tĸcy2/2 - 24		ns
width		$2.7 \ V \leq EV_{DD0} < 4.0 \ V, \ 2.3 \ V \leq V_b \leq 2.7 \ V$		tkcy2/2 - 36		ns
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V$		tксү2/2 - 100		ns
SIp setup time	tsik2	$4.0~V \leq EV_{DD0} \leq 5.5~V,~2.7~V \leq V_b \leq 4.0~V$		1/fмск + 40		ns
(to SCKp↑) Note 2		$2.7 \text{ V} \leq EV_{DD0} < 4.0 \text{ V}, \ 2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$		1/fмск + 40		ns
		$2.4~V \leq EV_{DD0} < 3.3~V,~1.6~V \leq V_b \leq 2.0~V$		1/fмск + 60		ns
SIp hold time (from SCKp↑) ^{Note 3}	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output ^{Note 4}	tkso2	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$			2/fмск + 240	ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$			2/fмск + 428	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ Rv = 5.5 \ k\Omega \end{array}$			2/fмск + 1146	ns

(Notes, Caution, and Remarks are listed on the next page.)

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI14, ANI16 to ANI20

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD = EVDD1 \leq VDD, Vss = EVss0 = EVss1 = 0 V,

Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM = 0 V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8			bit
Conversion time	tCONV	8-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error:Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.Integral linearity error:Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.Differential linearity error:Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

