

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

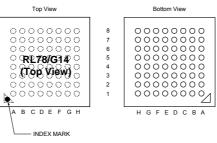
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	16KB (16K × 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104faafp-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


(4/5)

Pin count	Package	Fields of Application Note	Ordering Part Number
1 pins	64-pin plastic LQFP (12 × 12 mm, 0.65 mm pitch)	A	R5F104LCAFA#V0, R5F104LDAFA#V0, R5F104LEAFA#V0, R5F104LFAFA#V0, R5F104LGAFA#V0, R5F104LHAFA#V0, R5F104LJAFA#V0
			R5F104LCAFA#X0, R5F104LDAFA#X0, R5F104LEAFA#X0, R5F104LFAFA#X0, R5F104LGAFA#X0, R5F104LHAFA#X0, R5F104LJAFA#X0
			R5F104LKAFA#30, R5F104LLAFA#30
			R5F104LKAFA#50, R5F104LLAFA#50
		D	R5F104LCDFA#V0, R5F104LDDFA#V0, R5F104LEDFA#V0, R5F104LFDFA#V0, R5F104LGDFA#V0, R5F104LHDFA#V0, R5F104LJDFA#V0
			R5F104LCDFA#X0, R5F104LDDFA#X0, R5F104LEDFA#X0, R5F104LFDFA#X0, R5F104LGDFA#X0, R5F104LHDFA#X0, R5F104LJDFA#X0
		G	R5F104LCGFA#V0, R5F104LDGFA#V0, R5F104LEGFA#V0, R5F104LFGFA#V0, R5F104LGGFA#V0, R5F104LHGFA#V0, R5F104LJGFA#V0
			R5F104LCGFA#X0, R5F104LDGFA#X0, R5F104LEGFA#X0, R5F104LFGFA#X0, R5F104LGGFA#X0, R5F104LHGFA#X0, R5F104LJGFA#X0
			R5F104LKGFA#30, R5F104LLGFA#30
			R5F104LKGFA#50, R5F104LLGFA#50
	64-pin plastic LFQFP (10 \times 10 mm, 0.5 mm pitch)	A	R5F104LCAFB#V0, R5F104LDAFB#V0, R5F104LEAFB#V0, R5F104LFAFB#V0, R5F104LGAFB#V0, R5F104LHAFB#V0, R5F104LJAFB#V0
	(····)		R5F104LCAFB#X0, R5F104LDAFB#X0, R5F104LEAFB#X0, R5F104LFAFB#X0,
			R5F104LGAFB#X0, R5F104LHAFB#X0, R5F104LJAFB#X0
			R5F104LKAFB#30, R5F104LLAFB#30
		D	R5F104LKAFB#50, R5F104LLAFB#50 R5F104LCDFB#V0, R5F104LDDFB#V0, R5F104LEDFB#V0, R5F104LFDFB#V0,
		D	R5F104LGDFB#V0, R5F104LHDFB#V0, R5F104LJDFB#V0
			R5F104LCDFB#X0, R5F104LDDFB#X0, R5F104LEDFB#X0, R5F104LFDFB#X0, R5F104LGDFB#X0, R5F104LHDFB#X0, R5F104LJDFB#X0
		G	R5F104LCGFB#V0, R5F104LDGFB#V0, R5F104LEGFB#V0, R5F104LFGFB#V0, R5F104LGGFB#V0, R5F104LHGFB#V0, R5F104LJGFB#V0
			R5F104LCGFB#X0, R5F104LDGFB#X0, R5F104LEGFB#X0, R5F104LFGFB#X0, R5F104LGGFB#X0, R5F104LHGFB#X0, R5F104LJGFB#X0
			R5F104LKGFB#30, R5F104LLGFB#30
			R5F104LKGFB#50, R5F104LLGFB#50
	64-pin plastic FLGA (5 × 5 mm, 0.5 mm pitch)	A	R5F104LCALA#U0, R5F104LDALA#U0, R5F104LEALA#U0, R5F104LFALA#U0, R5F104LGALA#U0, R5F104LHALA#U0, R5F104LJALA#U0
			R5F104LCALA#W0, R5F104LDALA#W0, R5F104LEALA#W0, R5F104LFALA#W0, R5F104LGALA#W0, R5F104LHALA#W0, R5F104LJALA#W0
			R5F104LKALA#U0, R5F104LLALA#U0
			R5F104LKALA#W0, R5F104LLALA#W0
		G	R5F104LCGLA#U0, R5F104LDGLA#U0, R5F104LEGLA#U0, R5F104LFGLA#U0, R5F104LGGLA#U0, R5F104LHGLA#U0, R5F104LJGLA#U0, R5F104LKGLA#U0, R5F104LLGLA#U0
			R5F104LCGLA#W0, R5F104LDGLA#W0, R5F104LEGLA#W0, R5F104LFGLA#W0,
			R5F104LGGLA#W0, R5F104LHGLA#W0, R5F104LJGLA#W0, R5F104LKGLA#W0, R5F104LLGLA#W0
	64-pin plastic LQFP (14 \times 14 mm, 0.8 mm pitch)	A	R5F104LCAFP#V0, R5F104LDAFP#V0, R5F104LEAFP#V0, R5F104LFAFP#V0, R5F104LGAFP#V0, R5F104LHAFP#V0, R5F104LJAFP#V0
			R5F104LCAFP#X0, R5F104LDAFP#X0, R5F104LEAFP#X0, R5F104LFAFP#X0, R5F104LGAFP#X0, R5F104LHAFP#X0, R5F104LJAFP#X0
		D	R5F104LCDFP#V0, R5F104LDDFP#V0, R5F104LEDFP#V0, R5F104LFDFP#V0, R5F104LGDFP#V0, R5F104LHDFP#V0, R5F104LJDFP#V0
			R5F104LCDFP#X0, R5F104LDDFP#X0, R5F104LEDFP#X0, R5F104LFDFP#X0, R5F104LGDFP#X0, R5F104LHDFP#X0, R5F104LJDFP#X0
		G	R5F104LCGFP#V0, R5F104LDGFP#V0, R5F104LEGFP#V0, R5F104LFGFP#V0, R5F104LGGFP#V0, R5F104LHGFP#V0, R5F104LJGFP#V0
			R5F104LCGFP#X0, R5F104LDGFP#X0, R5F104LEGFP#X0, R5F104LFGFP#X0, R5F104LGGFP#X0, R5F104LHGFP#X0, R5F104LJGFP#X0

Note For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14.

Caution The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

• 64-pin plastic FLGA (5 × 5 mm, 0.5 mm pitch)

	А	В	С	D	E	F	G	н	
8	EVDD0	EVsso	P121/X1	P122/X2/ EXCLK	P137/INTP0	P123/XT1	P124/XT2/ EXCLKS	P120/ANI19/ VCOUT0 Note 1	8
7	P60/SCLA0	Vdd	Vss	REGC	RESET	P01/TO00/ TRGCLKB/ TRJIO0	P00/TI00/ TRGCLKA/ (TRJO0)	P140/ PCLBUZ0/ INTP6	7
6	P61/SDAA0	P62/SSI00	P63	P40/TOOL0	P41/(TRJIO0)	P43/(INTP9)	P02/ANI17/ SO10/TxD1	P141/ PCLBUZ1/ INTP7	6
5	P77/KR7/ INTP11/(TXD2)	P31/TI03/ TO03/INTP4/ (PCLBUZ0)/ (TRJIO0)	P53/(INTP2)	P42/(INTP8)	P03/ANI16/ SI10/RxD1/ SDA10	P04/SCK10/ SCL10	P130	P20/ANI0/ AVrefp	5
4	P75/KR5/ INTP9/ SCK01/ SCL01	P76/KR6/ INTP10/ (RXD2)	P52/(INTP1)	P54/(INTP3)	P16/TI01/ TO01/INTP5/ TRDIOC0/ IVREF0 Note 1/ (SI00)/(RXD0)	P21/ANI1/ AVrefm	P22/ANI2/ ANO0 Note 1	P23/ANI3/ ANO1 ^{Note 1}	4
3	P70/KR0/ SCK21/ SCL21	P73/KR3/ SO01	P74/KR4/ INTP8/SI01/ SDA01	P17/TI02/TO02/ TRDIOA0/ TRDCLK/ IVCMP0 Note 1/ (SO00)/(TXD0)	P15/SCK20/ SCL20/ TRDIOB0/ (SDAA0)	P12/SO11/ TRDIOB1/ IVREF1 Note 1/ (INTP5)/ (TxD0_1) Note 2	P24/ANI4	P26/ANI6	3
2	P30/INTP3/ RTC1HZ/ SCK00/ SCL00/TRJO0	P72/KR2/ SO21	P71/KR1/ SI21/SDA21	P06/(INTP11)/ (TRJIO0)	P14/RxD2/ SI20/SDA20/ TRDIOD0/ (SCLA0)	P11/SI11/ SDA11/ TRDIOC1/ (RxD0_1) Note 2	P25/ANI5	P27/ANI7	2
1	P05/(INTP10)	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/ TRGIOA/ (TRJO0)	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	P55/ (PCLBUZ1)/ (SCK00)/ (INTP4)	P13/TxD2/ SO20/ TRDIOA1/ IVCMP1 Note 1	P10/SCK11/ SCL11/ TRDIOD1	P146	P147/ANI18/ VCOUT1 Note 1	1
	А	В	С	D	E	F	G	Н	

Note 1. Mounted on the 96 KB or more code flash memory products.

Note 2. Mounted on the 384 KB or more code flash memory products.

Caution 1. Make EVsso pin the same potential as VSS pin.

Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.

Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.

Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

	(PIORU, 1) are set to				(1/2)			
		30-pin	32-pin	36-pin	40-pin			
	Item	R5F104Ax (x = F, G)	R5F104Bx (x = F, G)	R5F104Cx (x = F, G)	R5F104Ex (x = F to H)			
Code flash mer	mory (KB)	96 to 128	96 to 128	96 to 128	96 to 192			
Data flash men	nory (KB)	8	8	8	8			
RAM (KB)		12 to 16 Note	12 to 16 Note	12 to 16 Note	12 to 20 Note			
Address space		1 MB						
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (Vbb = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (Vbb = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (Vbb = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (Vbb = 1.6 to 5.5 V)						
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)						
Subsystem clo	ck	— XT1 (crysta external sul clock input 32.768 kHz						
Low-speed on-	chip oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V						
General-purpos	se register	8 bits $ imes$ 32 registers (8 bits	s \times 8 registers \times 4 banks)					
Minimum instru	iction execution time	$0.03125\mu s$ (High-speed of	on-chip oscillator clock: fін	= 32 MHz operation)				
		0.05 µs (High-speed syste	em clock: fmx = 20 MHz op	eration)				
		— 30.5 μs (Subsystem clock: fs∪в = 32.768 kl operation)						
Instruction set		Multiplication and Accur		+ 32 bits)	,			
I/O port	Total	26	28	32	36			
	CMOS I/O	21	22	26	28			
	CMOS input	3	3	3	5			
	CMOS output	—	_	_	-			
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3			
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer F	RJ: 1 channel, Timer RD: 2	channels, Timer RG: 1 c	hannel)			
	Watchdog timer	1 channel						
	Real-time clock (RTC)	1 channel						
	12-bit interval timer	1 channel						
	Timer output	Timer outputs: 13 channe PWM outputs: 9 channels						
	RTC output		_		1 • 1 Hz (subsystem clock: fs⊍B = 32.768 kHz)			

(Note is listed on the next page.)

[48-pin, 64-pin products (code flash memory 384 KB to 512 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

	(0, 1) are set to uun		(1/2				
		48-pin	64-pin				
I	tem	R5F104Gx	R5F104Lx				
		(x = K, L)	(x = K, L)				
Code flash memory	(KB)	384 to 512	384 to 512				
Data flash memory (KB)	8	8				
RAM (KB)		32 to 48 ^{Note}	32 to 48 Note				
Address space		1 MB					
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external m HS (high-speed main) mode: 1 to 20 MHz HS (high-speed main) mode: 1 to 16 MHz LS (low-speed main) mode: 1 to 8 MHz (LV (low-voltage main) mode: 1 to 4 MHz (z (VDD = 2.7 to 5.5 V), z (VDD = 2.4 to 5.5 V), (VDD = 1.8 to 5.5 V), (VDD = 1.6 to 5.5 V)				
	High-speed on-chip oscillator clock (fін)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)					
Subsystem clock		XT1 (crystal) oscillation, external subsystem	XT1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz				
Low-speed on-chip of	oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V					
General-purpose reg	jister	8 bits \times 32 registers (8 bits \times 8 registers \times 4	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)				
Minimum instruction	execution time	$0.03125\ \mu\text{s}$ (High-speed on-chip oscillator	clock: fiн = 32 MHz operation)				
		0.05 μ s (High-speed system clock: fMx = 2	0 MHz operation)				
		30.5 μs (Subsystem clock: fsuв = 32.768 kHz operation)					
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8 Multiplication (8 bits × 8 bits, 16 bits × 16 bits) Multiplication and Accumulation (16 bits > Rotate, barrel shift, and bit manipulation etc. 	oits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 × 16 bits + 32 bits)				
I/O port	Total	44	58				
	CMOS I/O	34	48				
	CMOS input	5	5				
	CMOS output	1	1				
	N-ch open-drain I/O (6 V tolerance)	4	4				
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Tir	ner RD: 2 channels, Timer RG: 1 channel)				
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output	Timer outputs: 14 channels PWM outputs: 9 channels					
	RTC output	1 • 1 Hz (subsystem clock: fsub = 32.768 kH	z)				

(Note is listed on the next page.)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				20.0 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			70.0	mA
		P102, P120, P130, P140 to P145	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			15.0	mA
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			9.0	mA
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			4.5	mA
		Total of P05, P06, P10 to P17,	$4.0~\text{V} \leq EV_{\text{DD0}} \leq 5.5~\text{V}$			80.0	mA
		P30, P31, P50 to P57,	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			35.0	mA
		P60 to P67, P70 to P77, P80 to P87, P100, P101, P110,	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			20.0	mA
		P111, P146, P147 (When duty \leq 70% ^{Note 3})	1.6 V ≤ EVDD0 < 1.8 V			10.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				150.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			5.0	mA

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoL = 10.0 mA
 - Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

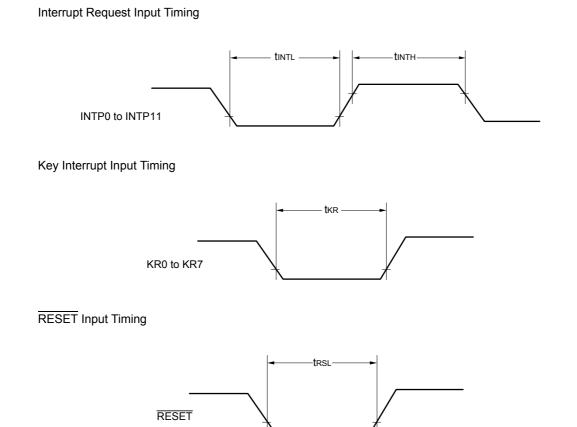
However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\text{@1}} \text{ MHz to } 32 \text{ MHz}$


2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{@}1}$ MHz to 8 MHz

LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	Conditions		HS (high-s main) mo		LS (low-speed mode	d main)	LV (low-vol main) mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tkcy1 ≥ 4/fclk	$2.7~V \leq E_{VDD0} \leq 5.5~V$	125		500		1000		ns
			$2.4~V \leq EV_{DD0} \leq 5.5~V$	250		500		1000		ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	500		500		1000		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1000		1000		1000		ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	—		1000		1000		ns
SCKp high-/low-level	tкнı,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
width	tĸ∟ı	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү1/2 - 38		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			tксү1/2 - 100		tксү1/2 - 100		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	—		tксү1/2 - 100		tксү1/2 - 100		ns
SIp setup time	tsıĸı	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		44		110		110		ns
(to SCKp↑) Note 1		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		44		110		110		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		75		110		110		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		110		110		110		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	220		220		220		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	—		220		220		ns
SIp hold time	tksi1	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	19		19		19		ns
(from SCKp [↑]) Note 2		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	—		19		19		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ C = 30 pF Note 4			25		25		25	ns
		$1.6 V \le EV_{DD0}$ C = 30 pF Note			_		25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)

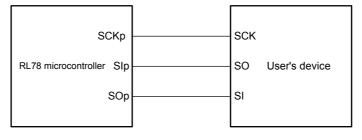
Remark 2. fMck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1),

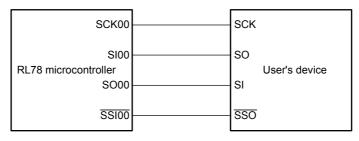
n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)

Remark 2. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))


Description	0		0					1)((),		11.2
Parameter	Symbol		Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage mode	e main)	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	120		120		120		ns
			$1.8~V \leq EV_{DD0} \leq 5.5~V$	200		200		200		ns
			$1.7~V \leq EV_{DD0} \leq 5.5~V$	400		400		400		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		400		400		ns
		DAPmn = 1	$2.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		1/fмск + 400		1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	—		1/fмск + 400		1/fмск + 400		ns
l		DAPmn = 1	$2.7~V \leq EV_{DD0} \leq 5.5~V$	120		120		120		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	200		200		200		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		400		400		ns
			1.6 V ≤ EVDD0 ≤ 5.5 V	—		400		400		ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) **Remark 2.** m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

2.6.6 LVD circuit characteristics

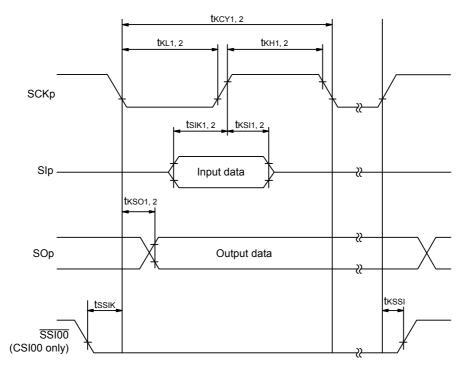
(1) Reset Mode and Interrupt Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

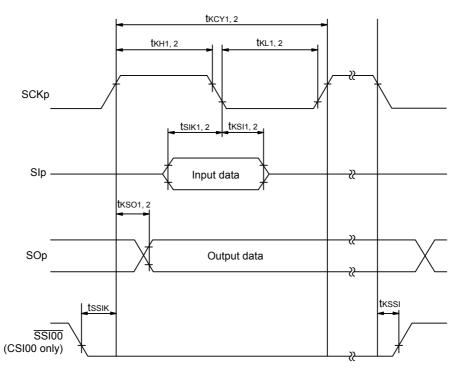
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage	Supply voltage level	VLVD0	Rising edge	3.98	4.06	4.14	V
detection			Falling edge	3.90	3.98	4.06	V
threshold		VLVD1	Rising edge	3.68	3.75	3.82	V
			Falling edge	3.60	3.67	3.74	V
		VLVD2	Rising edge	3.07	3.13	3.19	V
			Falling edge	3.00	3.06	3.12	V
		VLVD3	Rising edge	2.96	3.02	3.08	V
			Falling edge	2.90	2.96	3.02	V
		VLVD4	Rising edge	2.86	2.92	2.97	V
			Falling edge	2.80	2.86	2.91	V
		Vlvd5	Rising edge	2.76	2.81	2.87	V
			Falling edge	2.70	2.75	2.81	V
		VLVD6	Rising edge	2.66	2.71	2.76	V
			Falling edge	2.60	2.65	2.70	V
		VLVD7	Rising edge	2.56	2.61	2.66	V
			Falling edge	2.50	2.55	2.60	V
		VLVD8	Rising edge	2.45	2.50	2.55	V
			Falling edge	2.40	2.45	2.50	V
		VLVD9	Rising edge	2.05	2.09	2.13	V
			Falling edge	2.00	2.04	2.08	V
		VLVD10	Rising edge	1.94	1.98	2.02	V
			Falling edge	1.90	1.94	1.98	V
		VLVD11	Rising edge	1.84	1.88	1.91	V
			Falling edge	1.80	1.84	1.87	V
		VLVD12	Rising edge	1.74	1.77	1.81	V
			Falling edge	1.70	1.73	1.77	V
		VLVD13	Rising edge	1.64	1.67	1.70	V
			Falling edge	1.60	1.63	1.66	V
Minimum pu	lse width	t∟w		300			μs
Detection de	lay time					300	μs

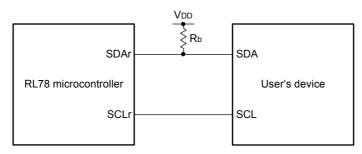
Items	Symbol	Conditi	ons		MIN.	TYP.	MAX.	Unit
Input leakage cur- rent, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVDD0				1	μΑ
	Ilih2	P20 to P27, P137, P150 to P156, RESET	VI = VDD				1	μA
	Ішнз	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μA
				In resonator con- nection			10	μA
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVsso				-1	μΑ
	Ilil2	P20 to P27, P137, P150 to P156, RESET	VI = Vss				-1	μA
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μA
				In resonator con- nection			-10	μA
On-chip pull-up resistance	Ru	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVsso	, In input port	10	20	100	kΩ

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

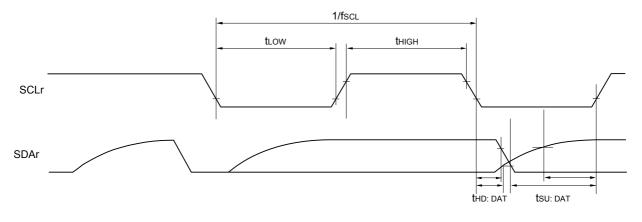

(5/5)

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C


CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)



Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance

- **Remark 2.** r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 3 to 5, 14),
 - h: POM number (h = 0, 1, 3 to 5, 7, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions		HS (high-spe	ed main) mode	Unit
					MAX.	
Transfer rate		transmission	$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		Note 1	bps
		Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.6 Note 2	Mbps	
			$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$		Note 3	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 4	Mbps
			$2.4 V \le EV_{DD0} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Note 5	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 6	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EVDD0 \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{Transfer rate}) \times Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** The smaller maximum transfer rate derived by using fMck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

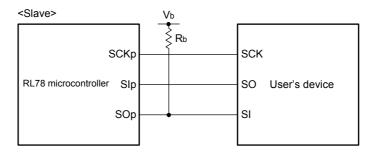
Maximum transfer rate = -

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1

al value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times 100 [\%]}$$

Baud rate error (theoretical value) =


* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 4.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

RENESAS

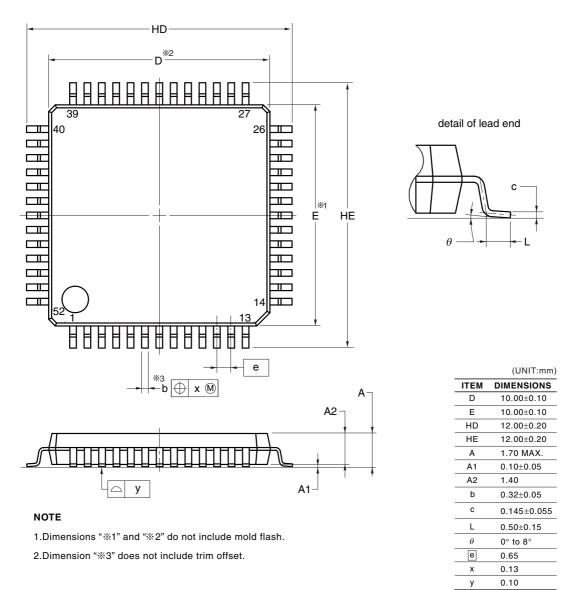
- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

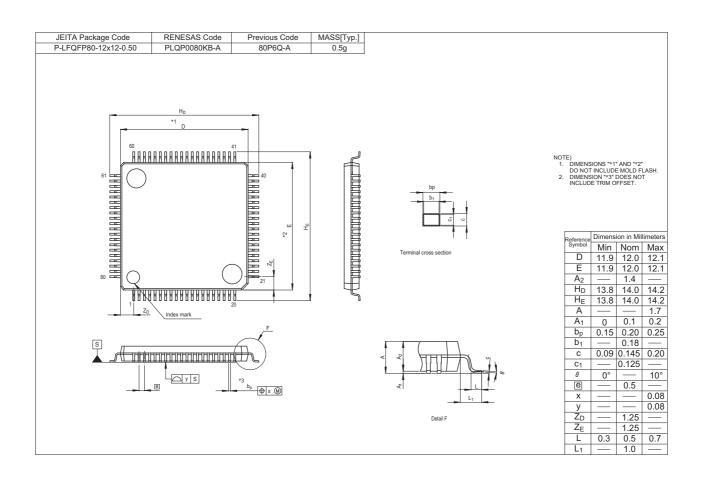
m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))

Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.


Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

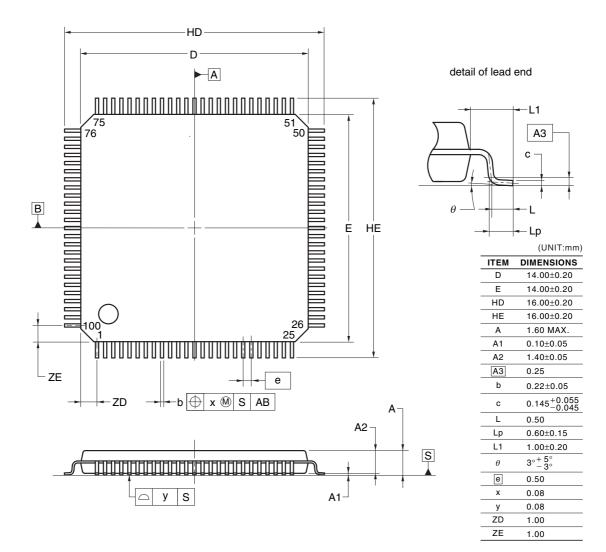
4.7 52-pin products

R5F104JCAFA, R5F104JDAFA, R5F104JEAFA, R5F104JFAFA, R5F104JGAFA, R5F104JHAFA, R5F104JJAFA R5F104JCDFA, R5F104JDDFA, R5F104JEDFA, R5F104JFDFA, R5F104JGDFA, R5F104JHDFA, R5F104JJDFA R5F104JCGFA, R5F104JDGFA, R5F104JEGFA, R5F104JFGFA, R5F104JGGFA, R5F104JHGFA, R5F104JJGFA


JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP52-10x10-0.65	PLQP0052JA-A	P52GB-65-GBS-1	0.3

© 2012 Renesas Electronics Corporation. All rights reserved.

R5F104MKAFB, R5F104MLAFB R5F104MKGFB, R5F104MLGFB



4.10 100-pin products

R5F104PFAFB, R5F104PGAFB, R5F104PHAFB, R5F104PJAFB R5F104PFDFB, R5F104PGDFB, R5F104PHDFB, R5F104PJDFB R5F104PFGFB, R5F104PGGFB, R5F104PHGFB, R5F104PJGFB

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LFQFP100-14x14-0.50	PLQP0100KE-A	P100GC-50-GBR-1	0.69

©2012 Renesas Electronics Corporation. All rights reserved.

