

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104faafp-v0


Email: info@E-XFL.COM

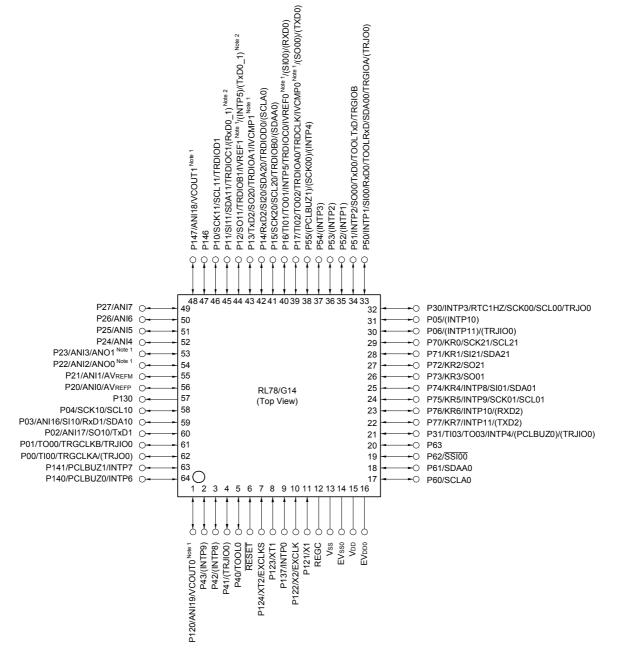
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Pin Configuration (Top View)

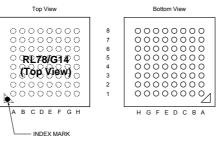
1.3.1 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.


Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}\text{)}.$

- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).


1.3.8 64-pin products

- 64-pin plastic LQFP (14 × 14 mm, 0.8 mm pitch)
- + 64-pin plastic LQFP (12 \times 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)

- Note 1. Mounted on the 96 KB or more code flash memory products.
- Note 2. Mounted on the 384 KB or more code flash memory products.
- Caution 1. Make EVsso pin the same potential as Vss pin.
- Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

• 64-pin plastic FLGA (5 × 5 mm, 0.5 mm pitch)

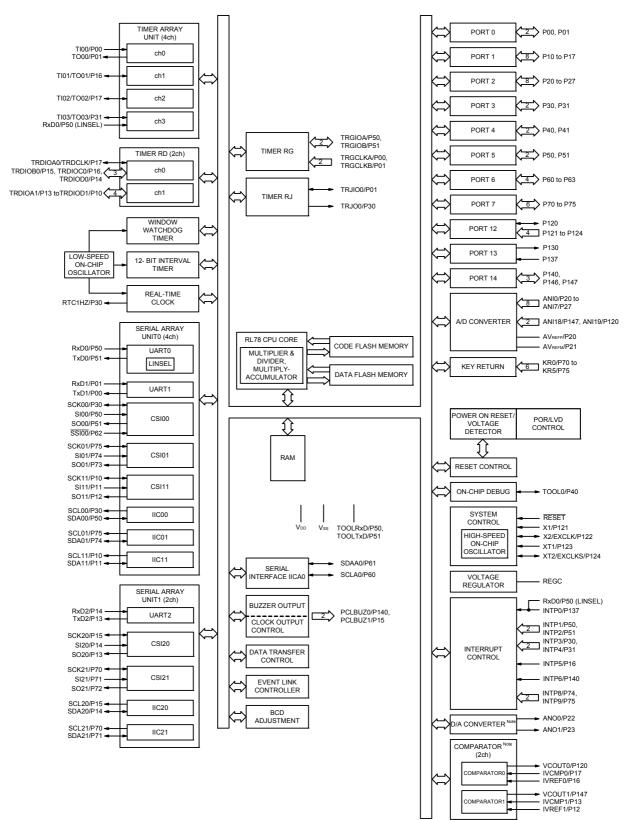
	А	В	С	D	E	F	G	н	
8	EVDD0	EVsso	P121/X1	P122/X2/ EXCLK	P137/INTP0	P123/XT1	P124/XT2/ EXCLKS	P120/ANI19/ VCOUT0 Note 1	8
7	P60/SCLA0	Vdd	Vss	REGC	RESET	P01/TO00/ TRGCLKB/ TRJIO0	P00/TI00/ TRGCLKA/ (TRJO0)	P140/ PCLBUZ0/ INTP6	7
6	P61/SDAA0	P62/SSI00	P63	P40/TOOL0	P41/(TRJIO0)	P43/(INTP9)	P02/ANI17/ SO10/TxD1	P141/ PCLBUZ1/ INTP7	6
5	P77/KR7/ INTP11/(TXD2)	P31/TI03/ TO03/INTP4/ (PCLBUZ0)/ (TRJIO0)	P53/(INTP2)	P42/(INTP8)	P03/ANI16/ SI10/RxD1/ SDA10	P04/SCK10/ SCL10	P130	P20/ANI0/ AVrefp	5
4	P75/KR5/ INTP9/ SCK01/ SCL01	P76/KR6/ INTP10/ (RXD2)	P52/(INTP1)	P54/(INTP3)	P16/TI01/ TO01/INTP5/ TRDIOC0/ IVREF0 Note 1/ (SI00)/(RXD0)	P21/ANI1/ AVrefm	P22/ANI2/ ANO0 Note 1	P23/ANI3/ ANO1 ^{Note 1}	4
3	P70/KR0/ SCK21/ SCL21	P73/KR3/ SO01	P74/KR4/ INTP8/SI01/ SDA01	P17/TI02/TO02/ TRDIOA0/ TRDCLK/ IVCMP0 Note 1/ (SO00)/(TXD0)	P15/SCK20/ SCL20/ TRDIOB0/ (SDAA0)	P12/SO11/ TRDIOB1/ IVREF1 Note 1/ (INTP5)/ (TxD0_1) Note 2	P24/ANI4	P26/ANI6	3
2	P30/INTP3/ RTC1HZ/ SCK00/ SCL00/TRJO0	P72/KR2/ SO21	P71/KR1/ SI21/SDA21	P06/(INTP11)/ (TRJIO0)	P14/RxD2/ SI20/SDA20/ TRDIOD0/ (SCLA0)	P11/SI11/ SDA11/ TRDIOC1/ (RxD0_1) Note 2	P25/ANI5	P27/ANI7	2
1	P05/(INTP10)	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/ TRGIOA/ (TRJO0)	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	P55/ (PCLBUZ1)/ (SCK00)/ (INTP4)	P13/TxD2/ SO20/ TRDIOA1/ IVCMP1 Note 1	P10/SCK11/ SCL11/ TRDIOD1	P146	P147/ANI18/ VCOUT1 Note 1	1
	А	В	С	D	E	F	G	Н	

Note 1. Mounted on the 96 KB or more code flash memory products.

Note 2. Mounted on the 384 KB or more code flash memory products.

Caution 1. Make EVsso pin the same potential as VSS pin.

Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.


Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.

Remark 3. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.5.6 48-pin products

Note Mounted on the 96 KB or more code flash memory products.

10	$\langle \mathbf{n} \rangle$
12	121
14	~ /

					(2/2		
		30-pin	32-pin	36-pin	40-pin		
ľ	tem	R5F104Ax (x = A, C to E)	R5F104Bx (x = A, C to E)	R5F104Cx (x = A, C to E)	R5F104Ex (x = A, C to E)		
Clock output/buzzer	output	2	2	2	2		
		 [30-pin, 32-pin, 36-pin pro 2.44 kHz, 4.88 kHz, 9.74 (Main system clock: fMAI [40-pin products] 2.44 kHz, 4.88 kHz, 9.74 (Main system clock: fMAI 256 Hz, 512 Hz, 1.024 k (Subsystem clock: fsub 	 δ kHz, 1.25 MHz, 2.5 MHz N = 20 MHz operation) δ kHz, 1.25 MHz, 2.5 MHz N = 20 MHz operation) KHz, 2.048 kHz, 4.096 kHz 		32.768 kHz		
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels		
Serial interface		CSI: 1 channel/UART: 1 CSI: 1 channel/UART: 1 [36-pin, 40-pin products]	channel/simplified I ² C: 1 channel/simplified I ² C: 1 JART supporting LIN-bus) channel/simplified I ² C: 1	channel : 1 channel/simplified I ² C: channel			
	I ² C bus	1 channel	1 channel	1 channel	1 channel		
Data transfer contro	ller (DTC)	28 sources 29 sources					
Event link controller	(ELC)	Event input: 19 Event input: 20 Event trigger output: 7 Event trigger output: 7					
Vectored interrupt	Internal	24	24	24	24		
sources	External	6	6	6	7		
Key interrupt				_	4		
Reset Power-on-reset circuit		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access					
		 Power-on-reset: 1.51 ±0.04 V (Ta = -40 to +85°C) 1.51 ±0.06 V (Ta = -40 to +105°C) Power-down-reset: 1.50 ±0.04 V (Ta = -40 to +85°C) 1.50 ±0.06 V (Ta = -40 to +105°C) 					
Voltage detector		1.63 V to 4.06 V (14 stage	es)				
On-chip debug funct	lion	Provided					
Power supply voltag	e	V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)					
Operating ambient t	emperature	T _A = -40 to +85°C (A: Con T _A = -40 to +105°C (G: Inc		dustrial applications),			

Note

The illegal instruction is generated when instruction code $\ensuremath{\mathsf{FFH}}$ is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

(2/2)	
(2)2)	

		44-pin	48-pin	52-pin	(2/) 64-pin			
	tem	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx			
		(x = F to H, J)	(x = F to H, J)	(x = F to H, J)	(x = F to H, J)			
Clock output/buz	zer output	2	2	2	2			
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 						
8/10-bit resolution	n A/D converter	10 channels	10 channels	12 channels	12 channels			
D/A converter		2 channels		1				
Comparator		2 channels						
Serial interface		 CSI: 1 channel/UAR CSI: 2 channels/UAF [48-pin, 52-pin product CSI: 2 channels/UAF CSI: 1 channel/UAR CSI: 2 channels/UAF [64-pin products] CSI: 2 channels/UAF 	RT: 1 channel/simplified ts] RT (UART supporting L T: 1 channel/simplified RT: 1 channel/simplified RT (UART supporting L RT: 1 channel/simplified	I ² C: 1 channel II ² C: 2 channels IN-bus): 1 channel/sim I ² C: 1 channel II ² C: 2 channels IN-bus): 1 channel/sim II ² C: 2 channels	plified I ² C: 2 channels plified I ² C: 2 channels			
	I ² C bus	1 channel	1 channel	1 channel	1 channel			
Data transfer con	troller (DTC)	31 sources	32 sources		33 sources			
Event link control	ller (ELC)	Event input: 22 Event trigger output: 9						
Vectored inter-	Internal	24	24	24	24			
rupt sources	External	7	10	12	13			
Key interrupt		4	6	8	8			
Reset Power-on-reset circuit		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access Power-on-reset: 1.51 ±0.04 V (TA = -40 to +85°C) 1.51 ±0.06 V (TA = -40 to +105°C) Power-down-reset: 1.50 ±0.04 V (TA = -40 to +105°C) 1.50 ±0.06 V (TA = -40 to +105°C) 						
								Voltage detector
On-chip debug fu		Provided	101 0700					
Power supply vol	tage	VDD = 1.6 to 5.5 V (TA = -40 to +85°C) VDD = 2.4 to 5.5 V (TA = -40 to +105°C)						
Operating ambie	nt temperature		Consumer applications : Industrial applications		ons),			

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

Absolute Maximum Ratings

(2/2)

					(2/	
Parameter	Symbols		Conditions	Ratings	Unit	
Output current, high	Іон1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA	
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA	
		-170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA	
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA	
		Total of all pins		-2	mA	
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA	
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA	
		170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA	
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA	
	Total of a pins			5	mA	
Operating ambient tem-	Та	In normal c	operation mode	-40 to +85	°C	
perature		In flash me	mory programming mode			
Storage temperature	Tstg			-65 to +150	°C	

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator). The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- **Note 6.** Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- **Note 8.** Current flowing during programming of the data flash.
- Note 9. Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
- **Note 11.** Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- **Note 12.** Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fcLK: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

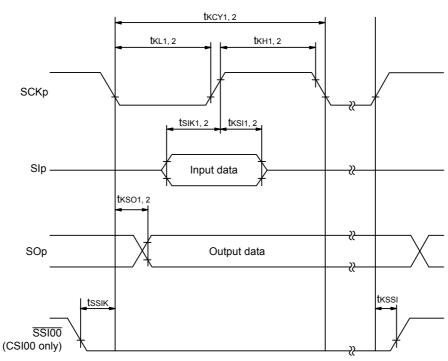
Parameter	Symbol	Symbol Conditions		HS (high-s main) mo		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkcy1 ≥ 4/fclk	$2.7~V \leq E_{VDD0} \leq 5.5~V$	125		500		1000		ns
			$2.4~V \leq EV_{DD0} \leq 5.5~V$	250		500		1000		ns
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	500		500		1000		ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	1000		1000		1000		ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	—		1000		1000		ns
SCKp high-/low-level	tкнı,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
width	tĸ∟1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 38		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			tксү1/2 - 100		tксү1/2 - 100		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		—		tксү1/2 - 100		tксү1/2 - 100		ns
SIp setup time	tsik1	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		44		110		110		ns
(to SCKp↑) Note 1		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		44		110		110		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		75		110		110		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		110		110		110		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		220		220		220		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		—		220		220		ns
SIp hold time	tksi1	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	19		19		19		ns
(from SCKp [↑]) Note 2		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	—		19		19		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$ C = 30 pF Note 4			25		25		25	ns
		$1.6 V \le EV_{DD0} \le 5.5 V$ C = 30 pF Note 4			_		25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

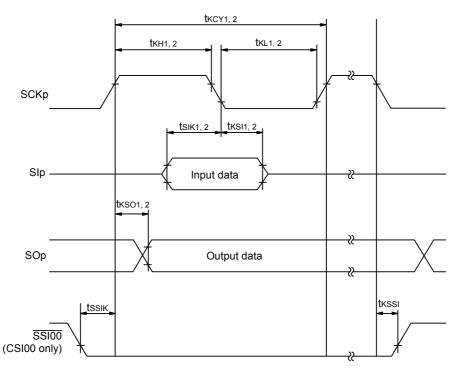
Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.


Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)


Remark 2. fMck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Parameter	Symbol Conditions		bol Conditions HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		transmission	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 kΩ, V_b = 2.7 V		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}$		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 kΩ, V_b = 2.3 V		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 kΩ, V_b = 1.6 V		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{EV}\text{DD0} \le 5.5 \text{ V}$ and $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

1

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{|V_b|})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

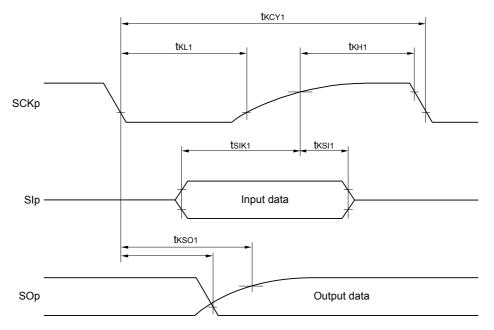
Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

Note 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

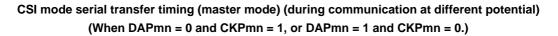
Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

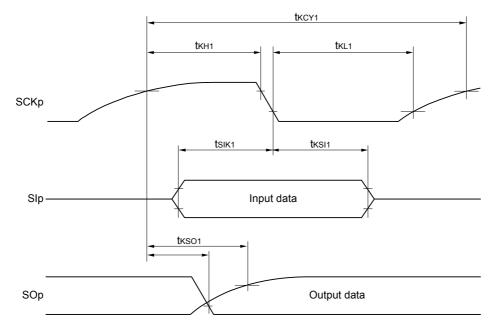
Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides


RL78/G14

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)


Parameter	Symbol	Conditions			HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ 2/fс∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	o		4.0 V,	tkcy1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2 \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,	tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		ns
SCKp low-level width			tксү1/2 - 7		tксү1/2 - 50		tксү1/2 - 50		ns	
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,	tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \; pF, \; R_{b} \end{array}$	4.0 V,	58		479		479		ns
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 20 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		10		10		10		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp out- put ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} = 20 \; pF, \; R_{b} \end{array}$	4.0 V,		60		60		60	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,		130		130		130	ns


(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(Notes, Caution, and Remarks are listed on the next page.)

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$		1.2	±7.0	LSB
			1.6 V \leq VDD \leq 5.5 V Note 3		1.2	±10.5	LSB
Conversion time	tconv	10-bit resolution	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.125		39	μs
		Target pin: ANI0 to ANI14, ANI16 to ANI20	$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	17		39	μs
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	57		95	μs
		10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage	$3.6 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	2.375		39	μs
			$2.7 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$	3.5625		39	μs
		(HS (high-speed main) mode)	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			$1.6~V \leq V_{DD} \leq 5.5~V~\text{Note}~3$			±0.85	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$1.8~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
			1.6 V \leq VDD \leq 5.5 V Note 3			±0.85	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{V}_{\text{DD}} \leq 5.5 \text{ V}$			±4.0	LSB
			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ Note 3			±6.5	LSB
Differential linearity error	DLE	10-bit resolution	$1.8~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			±2.0	LSB
Note 1			$1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ Note 3			±2.5	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI20				EV _{DD0}	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)			V _{BGR} Note 4		
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)			VTMPS25 Note 4		

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

Note 4. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Absolute Maximum Ratings

(2/2)

					(214
Parameter	Symbols		Conditions	Ratings	Unit
Output current, high	Юн1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	-70	mA
		-170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	-100	mA
	Іон2	Per pin	P20 to P27, P150 to P156	-0.5	mA
		Total of all pins		-2	mA
Output current, low	IOL1	Per pin	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	40	mA
		Total of all pins	P00 to P04, P40 to P47, P102, P120, P130, P140 to P145	70	mA
		170 mA	P05, P06, P10 to P17, P30, P31, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147	100	mA
	IOL2	Per pin	P20 to P27, P150 to P156	1	mA
		Total of all pins		5	mA
Operating ambient temperature	Та		pperation mode	-40 to +105	°C
Storage temperature	Tstg			-65 to +150	°C

Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVDD0		EVDD0	V
	VIH2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55, P80, P81, P142, P143	TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	2.2		EVDD0	V
			TTL input buffer $3.3 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	2.0		EVDD0	V
			TTL input buffer 2.4 V ≤ EV _{DD0} < 3.3 V	1.5		EVDD0	V
	VIH3	P20 to P27, P150 to P156		0.7 Vdd		Vdd	V
	VIH4	P60 to P63		0.7 EVDD0		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EXCLKS, RESET		0.8 Vdd		Vdd	V
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2		TTL input buffer $4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	0		0.8	V
	P80, P81, P142, P143	TTL input buffer $3.3 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$	0		0.5	V	
			TTL input buffer $2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}$	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3 Vdd	V
	VIL4	P60 to P63		0		0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EXCLKS, RESET		0		0.2 VDD	V

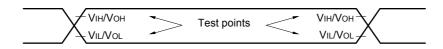
(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(3/5)

The maximum value of VIH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins. Remark

Caution



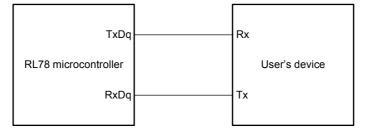
- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

3.5 Peripheral Functions Characteristics

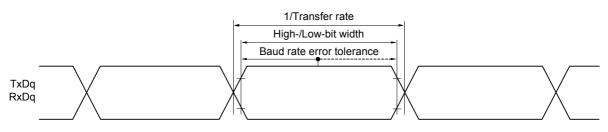
AC Timing Test Points

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)


$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate Note 1		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		fмск/12 Note 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 3$		2.6	Mbps


Note 1.Transfer rate in the SNOOZE mode is 4800 bps only.
However, the SNOOZE mode cannot be used when FRQSEL4 = 1.Note 2.The following conditions are required for low voltage interface when EVDD0 < VDD.
 $2.4 V \le EVDD0 < 2.7 V$: MAX. 1.3 MbpsNote 3.The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: 32 MHz (2.7 V $\le VDD \le 5.5 V$)
16 MHz (2.4 V $\le VDD \le 5.5 V$)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14) **Remark 2.** fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter Symbo	Symbol		Conditions	HS (high-speed main) mode		Unit
				MIN.	MAX.	
Transfer rate		transmission	$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		Note 1	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.6 Note 2	Mbps
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 4	Mbps
			$2.4 V \le EV_{DD0} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Note 5	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 6	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EVDD0 \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{Transfer rate}) \times Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** The smaller maximum transfer rate derived by using fMck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate = -

$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1

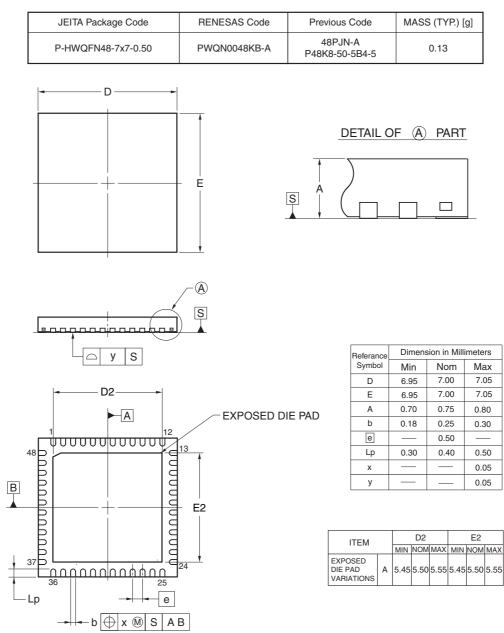
al value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times 100 [\%]}$$

Baud rate error (theoretical value) =

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 4.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

R5F104GAANA, R5F104GCANA, R5F104GDANA, R5F104GEANA, R5F104GFANA, R5F104GGANA, R5F104GHANA, R5F104GJANA


R5F104GADNA, R5F104GCDNA, R5F104GDDNA, R5F104GEDNA, R5F104GFDNA, R5F104GGDNA, R5F104GJDNA, R5F104GJDNA

R5F104GAGNA, R5F104GCGNA, R5F104GDGNA, R5F104GEGNA, R5F104GFGNA, R5F104GGGNA,

R5F104GHGNA, R5F104GJGNA

R5F104GKANA, R5F104GLANA

R5F104GKGNA, R5F104GLGNA

©2012 Renesas Electronics Corporation. All rights reserved.

