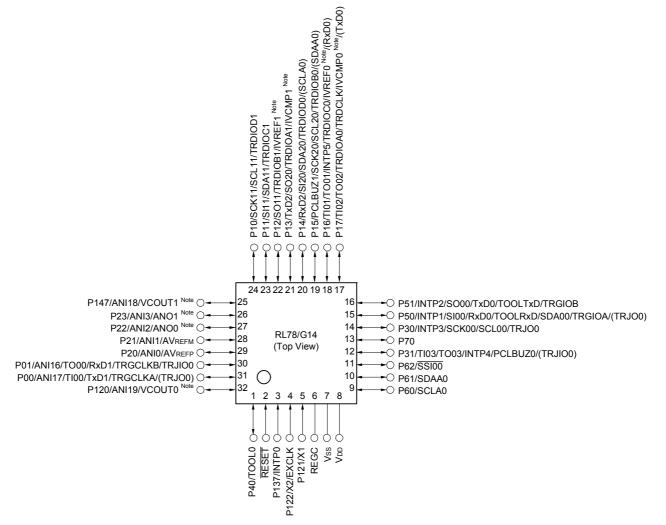


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

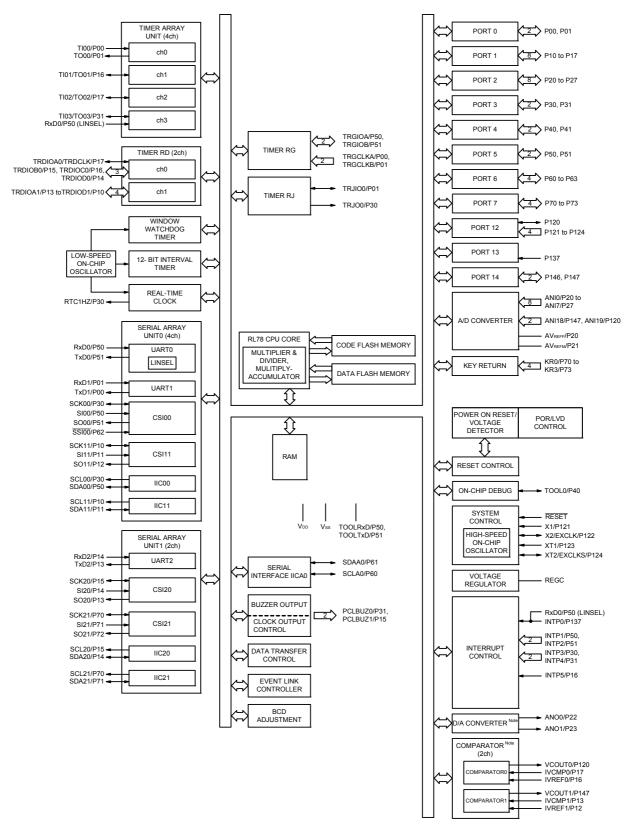
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104fcafp-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong


• 32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)

- Note Mounted on the 96 KB or more code flash memory products.
- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.5.5 44-pin products

Note Mounted on the 96 KB or more code flash memory products.

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

[48-pin, 64-pin products (code flash memory 384 KB to 512 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

	(0, 1) are set to uun		(1/2					
		48-pin	64-pin					
I	tem	R5F104Gx	R5F104Lx					
		(x = K, L)	(x = K, L)					
Code flash memory	(KB)	384 to 512	384 to 512					
Data flash memory (KB)	8	8					
RAM (KB)		32 to 48 ^{Note}	32 to 48 Note					
Address space		1 MB						
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external m HS (high-speed main) mode: 1 to 20 MHz HS (high-speed main) mode: 1 to 16 MHz LS (low-speed main) mode: 1 to 8 MHz (LV (low-voltage main) mode: 1 to 4 MHz (z (VDD = 2.7 to 5.5 V), z (VDD = 2.4 to 5.5 V), (VDD = 1.8 to 5.5 V), (VDD = 1.6 to 5.5 V)					
	High-speed on-chip oscillator clock (fін)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)						
Subsystem clock		XT1 (crystal) oscillation, external subsystem	(T1 (crystal) oscillation, external subsystem clock input (EXCLKS) 32.768 kHz					
Low-speed on-chip of	oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V						
General-purpose reg	jister	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)						
Minimum instruction	execution time	$0.03125\ \mu\text{s}$ (High-speed on-chip oscillator	clock: fiн = 32 MHz operation)					
		0.05 μ s (High-speed system clock: fMx = 2	0 MHz operation)					
		30.5 µs (Subsystem clock: fsub = 32.768 k	Hz operation)					
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8 Multiplication (8 bits × 8 bits, 16 bits × 16 bits) Multiplication and Accumulation (16 bits > Rotate, barrel shift, and bit manipulation etc. 	oits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 × 16 bits + 32 bits)					
I/O port	Total	44	58					
	CMOS I/O	34	48					
	CMOS input	5	5					
	CMOS output	1	1					
	N-ch open-drain I/O (6 V tolerance)	4	4					
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Tir	ner RD: 2 channels, Timer RG: 1 channel)					
	Watchdog timer	1 channel						
	Real-time clock (RTC)	1 channel						
	12-bit interval timer	1 channel						
	Timer output	Timer outputs: 14 channels PWM outputs: 9 channels						
	RTC output	1 • 1 Hz (subsystem clock: fsub = 32.768 kH	z)					

(Note is listed on the next page.)

1	ი	in	١
(2	12)

		80-pin	(2/2) 100-pin		
	tem	· · · · · · · · · · · · · · · · · · ·	•		
1	tem	R5F104Mx (x = K, L)	R5F104Px (x = K, L)		
Clock output/buzz	zer output	2	2		
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2. (Main system clock: fMAIN = 20 MHz operati 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.09 (Subsystem clock: fSUB = 32.768 kHz operation) 	1		
8/10-bit resolution	n A/D converter	17 channels	20 channels		
D/A converter		2 channels	2 channels		
Comparator		2 channels	2 channels		
Serial interface		[80-pin, 100-pin products] • CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I ² C: 2 channels • CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels • CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels • CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels			
	I ² C bus	2 channels	2 channels		
Data transfer con	troller (DTC)	39 sources	39 sources		
Event link control	ler (ELC)	Event input: 26 Event trigger output: 9	1		
Vectored inter-	Internal	32	32		
rupt sources	External	13	13		
Key interrupt		8	8		
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Internal reset by RAM parity error Internal reset by illegal-memory access 	ן Note		
Power-on-reset c	ircuit	• Power-on-reset: $1.51 \pm 0.04 \text{ V}$ (TA = -40 1.51 $\pm 0.06 \text{ V}$ (TA = -40 • Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (TA = -40 1.50 $\pm 0.06 \text{ V}$ (TA = -40	0 to +105°C) 0 to +85°C)		
Voltage detector		1.63 V to 4.06 V (14 stages)			
On-chip debug fu	nction	Provided			
Power supply vol	tage	V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)			
Operating ambier	nt temperature	$T_A = -40$ to +85°C (A: Consumer applications $T_A = -40$ to +105°C (G: Industrial applications			

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or onchip debug emulator.

2. ELECTRICAL SPECIFICATIONS (TA = -40 to $+85^{\circ}$ C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$

R5F104xxAxx

- D: Industrial applications TA = -40 to +85°C R5F104xxDxx
- G: Industrial applications when TA = -40 to +105°C products is used in the range of TA = -40 to +85°C R5F104xxGxx
- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.

2.1 **Absolute Maximum Ratings**

Absolute Maximum Ratings

Absolute Maximum R	atings			(1/2)
Parameter	Symbols	Conditions	Ratings	Unit
Supply voltage	Vdd		-0.5 to +6.5	V
	EVDD0, EVDD1	EVDD0 = EVDD1	-0.5 to +6.5	V
	EVsso, EVss1	EVsso = EVss1	-0.5 to +0.3	V
REGC pin input voltage	VIREGC	REGC	-0.3 to +2.8 and -0.3 to V _{DD} +0.3 ^{Note 1}	V
Input voltage	VI1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	-0.3 to EVDD0 +0.3 and -0.3 to VDD +0.3 Note 2	V
	VI2	P60 to P63 (N-ch open-drain)	-0.3 to +6.5	V
	Vı3	P20 to P27, P121 to P124, P137, P150 to P156, EXCLK, EXCLKS, RESET	-0.3 to VDD +0.3 Note 2	V
Output voltage	Vo1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P60 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	-0.3 to EVDD0 +0.3 and -0.3 to VDD +0.3 Note 2	V
	V02	P20 to P27, P150 to P156	-0.3 to VDD +0.3 Note 2	V
Analog input voltage	VAI1	ANI16 to ANI20	-0.3 to EVDD0 +0.3 and -0.3 to AVREF(+) +0.3 Notes 2, 3	V
	VAI2	ANI0 to ANI14	-0.3 to VDD +0.3 and -0.3 to AVREF(+) +0.3 Notes 2, 3	V

Note 1. Connect the REGC pin to Vss via a capacitor (0.47 to 1 µF). This value regulates the absolute maximum rating of the REGC pin. Do not use this pin with voltage applied to it.

Note 2. Must be 6.5 V or lower.

Note 3. Do not exceed AVREF (+) + 0.3 V in case of A/D conversion target pin.

- Caution Product quality may suffer if the absolute maximum rating is exceeded even momentarily for any parameter. That is, the absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions that ensure that the absolute maximum ratings are not exceeded.
- Remark 1. Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 2. AVREF (+): + side reference voltage of the A/D converter.

Remark 3. Vss: Reference voltage

- Note 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\text{@1}} \text{ MHz to } 32 \text{ MHz}$

2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{@}1}$ MHz to 8 MHz

LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply cur-	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.93	3.32	mA
rent Note 1	Note 2		mode Note 7	fiн = 32 MHz ^{Note 4}	VDD = 3.0 V		0.93	3.32	
				fносо = 32 MHz,	VDD = 5.0 V		0.5	2.63	1
				fiн = 32 MHz ^{Note 4}	VDD = 3.0 V		0.5	2.63	1
				fносо = 48 MHz,	VDD = 5.0 V		0.72	2.60	1
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.72	2.60	1
				fносо = 24 MHz,	VDD = 5.0 V		0.42	2.03	1
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.42	2.03	1
				fносо = 16 MHz,	VDD = 5.0 V		0.39	1.50	
				fiн = 16 MHz ^{Note 4}	VDD = 3.0 V		0.39	1.50	1
			LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		270	800	μA
			mode Note 7	fiH = 8 MHz Note 4	VDD = 2.0 V		270	800	1
			LV (low-voltage main)	fносо = 4 MHz,	VDD = 3.0 V		450	755	μA
			mode Note 7	fiH = 4 MHz Note 4	VDD = 2.0 V		450	755	1
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.69	mA
	mode Note 7	VDD = 5.0 V	Resonator connection		0.41	1.91	1		
		f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.69	1		
		VDD = 3.0 V	Resonator connection		0.41	1.91	1		
		f _{MX} = 10 MHz Note 3,	f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.94	1	
	V _{DD} = 5.0 V	VDD = 5.0 V	Resonator connection		0.26	1.02	1		
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.94	1
				VDD = 3.0 V	Resonator connection		0.26	1.02	1
			LS (low-speed main)	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	610	μA
			mode Note 7	VDD = 3.0 V	Resonator connection		150	660	1
				f _{MX} = 8 MHz Note 3,	Square wave input		110	610	1
				VDD = 2.0 V	Resonator connection		150	660	1
			Subsystem clock oper-	fsub = 32.768 kHz Note 5,	Square wave input		0.31		μA
			ation	TA = -40°C	Resonator connection		0.50		1
				fsub = 32.768 kHz Note 5,	Square wave input		0.38	0.76	1
				TA = +25°C	Resonator connection		0.57	0.95	1
				fsue = 32.768 kHz Note 5,	Square wave input		0.47	3.59	1
				TA = +50°C	Resonator connection		0.70	3.78	1
				fsub = 32.768 kHz Note 5,	Square wave input		0.80	6.20	1
				TA = +70°C	Resonator connection		1.00	6.39	1
				fsub = 32.768 kHz Note 5,	Square wave input		1.65	10.56	1
				TA = +85°C	Resonator connection		1.84	10.75	1
	IDD3	STOP mode	TA = -40°C				0.19		μA
	Note 6	Note 8	TA = +25°C				0.30	0.59	1
			T _A = +50°C				0.41	3.42	1
			TA = +70°C				0.80	6.03	1
			TA = +85°C				1.53	10.39	1

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(Notes and Remarks are listed on the next page.)

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	Symbol Conditions		HS (high-speed main) mode		peed main) ode	LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Ì
SIp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	23		110		110		ns
		$\label{eq:VDD0} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	10		10		10		ns
		$\label{eq:VDD0} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		10		10		10	ns
		$\begin{array}{l} 2.7 \ V \leq {\sf EV}_{{\sf DD0}} < 4.0 \ {\sf V}, \\ 2.3 \ V \leq {\sf V}_b \leq 2.7 \ {\sf V}, \\ {\sf C}_b = 20 \ {\sf pF}, \ {\sf R}_b = 2.7 \ {\sf k}\Omega \end{array}$		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

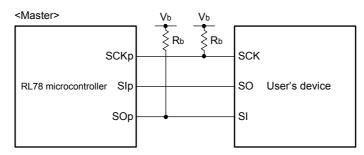
Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)


Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number

Remark 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

(mn = 00))

CSI mode connection diagram (during communication at different potential

- **Remark 1.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

2.5.2 Serial interface IICA

(1) I²C standard mode

```
(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)
```

Parameter	Symbol	C	Conditions		peed main) ode		beed main) bde	•	ltage main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fscl	Standard mode:	$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
frequency	fc∟κ ≥ 1 MHz	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	0	100	0	100	0	100	kHz	
			$1.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.6~V \leq EV_{\text{DD0}} \leq 5.5~V$	-	_	0	100	0	100	kHz
Setup time of	tsu: sta	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
restart condition		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	-	_	4.7		4.7		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4.0		4.0		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_	4.0		4.0		μs
Hold time when	t∟ow	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4.7		4.7		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	-	I			4.7		μs
Hold time when	tніgн	$2.7 V \leq EV_{DD0} \leq 5$	5.5 V	4.0		4.0		4.0		μs
SCLA0 = "H"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4.0		4.0		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 3$	5.5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V		- 	4.0		4.0		μs

 $(\ensuremath{\textit{Notes}}, \ensuremath{\textit{Caution}}, \ensuremath{\text{and}} \ensuremath{\textit{Remark}}$ are listed on the next page.)

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Symbol Conditions		peed main) ode	LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	250		250		ns
Data hold time (transmission) Note 2	thd: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	—		3.45	0	3.45	μs
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.0		4.0		μs
Bus-free time	t BUF	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.7		4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DE DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb = 400 pF, Rb = 2.7 k Ω

(2) I²C fast mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol Conditions		Conditions	· · ·	h-speed mode	``	v-speed mode		-voltage mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fc∟k ≥ 3.5 MHz	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	400	0	400	0	400	kHz
Setup time of restart condi-	tsu: sta	$2.7~V \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
tion		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Hold time Note 1	thd: STA	$2.7~V \leq EV_{DD0} \leq$	$2.7~V \leq EV_{DD0} \leq 5.5~V$			0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7~V \leq EV_{DD0} \leq 5.5~V$		1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs
Hold time when SCLA0 = "H"	tніgн	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			100		100		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			100		100		ns
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Note 2		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AVREFP}, \text{Reference voltage (-)} = \text{AVREFM} = 0 \text{ V})$

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \le AV_{REFP} \le 5.5~V$		1.2	±5.0	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5		1.2	±8.5	LSB
Conversion time	tCONV	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5			±0.60	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 5}}$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 5}}$			±6.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.0	LSB
		$EVDD0 \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6~V \leq AV_{REFP} \leq 5.5~V$ Note 5			±2.5	LSB
Analog input voltage	Vain	ANI16 to ANI20		0		AVREFP and EVDD0	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

 Overall error:
 Add ±1.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/ Differential linearity error:
 Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

 Note 4.
 When AVREFP < EVDD0 ≤ VDD, the MAX. values are as follows.</td>

 Overall error:
 Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.20%FSR to the MAX. value when AVREFP = VDD.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

Note 5. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

RL78/G14

2.6.2 Temperature sensor characteristics/internal reference voltage characteristic

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V, HS (high-speed main) mode)

2.6.3 D/A converter characteristics

(TA = -40 to +85°C, 1.6 V \leq EVsso = EVss1 \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 M Ω	$1.8~V \le V \text{DD} \le 5.5~V$			±2.5	LSB
		Rload = 8 M Ω	$1.8~V \le V_{DD} \le 5.5~V$			±2.5	LSB
Settling time	t SET	Cload = 20 pF	$2.7~V \leq V_{DD} \leq 5.5~V$			3	μs
			$1.6 \text{ V} \leq \text{V}_{\text{DD}} < 2.7 \text{ V}$			6	μs

3.3 DC Characteristics

3.3.1 Pin characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EVDD0 = EVDD1 \le VDD \le 5.5 \text{ V}, \text{ VSS} = EVSS0 = EVSS1 = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high ^{Note 1}	Юн1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-3.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-30.0	mA
		(When duty $< 70\%$ Note 3)	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-10.0	mA
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-5.0	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-30.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-19.0	mA
		P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty ≤ 70% ^{Note 3})	2.4 V ≤ EVDD0 < 2.7 V			-10.0	mA
Іон2		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			-60.0	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-0.1 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4~V \le V \text{DD} \le 5.5~V$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IOH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions		HS (high-speed	Unit	
				MIN.	MAX.	
SCKp cycle time Note 5	tксү2	$4.0~V \leq EV_{DD0} \leq 5.5~V$	20 MHz < fмск	16/fмск		ns
			fмск ≤ 20 MHz	12/fмск		ns
		$2.7~V \leq EV_{DD0} \leq 5.5~V$	16 MHz < fмск	16/fмск		ns
			fмск ≤ 16 MHz	12/fмск		ns
		$2.4~V \leq EV_{DD0} \leq 5.5~V$		12/fмск and 1000		ns
SCKp high-/low-level width	tкн2, tкL2	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү2/2 - 14		ns
		$2.7~V \leq EV_{DD0} \leq 5.5~V$		tксү2/2 - 16		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү2/2 - 36		ns
SIp setup time (to SCKp↑) Note 1	tsık2	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		1/fмск + 40		ns
		$2.4~V \leq EV_{DD0} \leq 5.5~V$		1/fмск + 60		ns
SIp hold time (from SCKp [↑]) Note 2	tKSI2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 3	tĸso2	C = 30 pF Note 4	$2.7~V \leq EV_{DD0} \leq 5.5~V$		2/fмск + 66	ns
			$2.4~V \leq EV_{DD0} \leq 5.5~V$		2/fмск + 113	ns

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)

Remark 2. fMck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(4) During communication at same potential (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq EV	$VDD0 = EVDD1 \le VDD$	≤ 5.5 V, Vss = EVss₀ = EVss₁ = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	main) mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 2.4 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 3 \ \text{k}\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$\begin{array}{l} 2.4V \leq EV_{DD0} \leq 5.5 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 3 \; k\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ Cb = 100 pF, Rb = 3 k Ω	4600		ns
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/f _{MCK} + 220 Note 2		ns
		$\begin{array}{l} 2.4V \leq EV_{DD0} \leq 5.5 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 3 \; k\Omega \end{array}$	1/fMCK + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} \texttt{=} 100 \ pF, \ R_{b} \texttt{=} 3 \ k\Omega \end{array}$	0	1420	ns

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)

REVISION HISTORY

RL78/G14 Datasheet

Devi	Dete		Description
Rev.	Date	Page	Summary
2.00	Oct 25, 2013	112 to 169	Addition of CHAPTER 3 ELECTRICAL SPECIFICATIONS
		171 to 187	Modification of 4.1 30-pin products to 4.10 100-pin products
3.00	Feb 07, 2014	All	Addition of products with maximum 512 KB flash ROM and 48 KB RAM
		1	Modification of 1.1 Features
		2	Modification of ROM, RAM capacities and addition of note 3
		3	Modification of Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14
		6 to 8	Addition of part number
		15, 16	Modification of 1.3.6 48-pin products
		17	Modification of 1.3.7 52-pin products
		18, 19	Modification of 1.3.8 64-pin products
		20	Modification of 1.3.9 80-pin products
		21, 22	Modification of 1.3.10 100-pin products
		35, 37, 39, 41, 43, 45, 47	Modification of operating ambient temperature in 1.6 Outline of Functions
		42, 43	Addition of table of 48-pin, 52-pin, 64-pin products (code flash memory 384 KB to 512 KB)
		46, 47	Addition of table of 80-pin, 100-pin products (code flash memory 384 KB to 512 KB)
		65 to 68	Addition of (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products
		118	Modification of 2.7 Data Memory Retention Characteristics
		137 to 140	Addition of (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products
		180	Modification of 3.7 Data Memory Retention Characteristics
		189, 190	Addition and modification of 4.6 48-pin products
		191	Modification of 4.7 52-pin products
		193 to 195	Addition and modification of 4.8 64-pin products
		198, 199	Addition and modification of 4.9 80-pin products
		201, 202	Addition and modification of 4.10 100-pin products
3.20	Jan 05, 2015	p.2	Deletion of R5F104JK and R5F104JL from the list of ROM and RAM capacities and modification of note
		p.6	Deletion of ordering part numbers of R5F104JK and R5F104JL from 52-pin plastic LQFP package in 1.2 Ordering Information
		p.6 to 8	Deletion of note 2 in 1.2 Ordering Information
		p.17	Deletion of note 2 in 1.3.7 52-pin products
		p.36, 39, 42, 45, 48, 50, 52	Modification of description in 1.6 Outline of Functions
		p.46, 48	Deletion of description of 52-pin in 1.6 Outline of Functions
		p.47	Modification of note of 1.6 Outline of Functions
		p.62, 64, 66, 68, 70, 72	Modification of specifications in 2.3.2 Supply current characteristics