

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104fdafp-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RL78/G14 1. OUTLINE

[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

					(1/2)				
		44-pin	48-pin	52-pin	64-pin				
	Item	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx				
		(x = F to H, J)	(x = F to H, J)	(x = F to H, J)	(x = F to H, J)				
Code flash me	mory (KB)	96 to 256	96 to 256	96 to 256	96 to 256				
Data flash mer	mory (KB)	8	8	8	8				
RAM (KB)		12 to 24 Note 12 to 24 Note 12 to 24 Note 12 to 24 Note							
Address space	;	1 MB							
Main system clock	High-speed system clock	HS (high-speed main) HS (high-speed main) LS (low-speed main) n	scillation, external main mode: 1 to 20 MHz (V mode: 1 to 16 MHz (V node: 1 to 8 MHz (VD mode: 1 to 4 MHz (VD	DD = 2.7 to 5.5 V), DD = 2.4 to 5.5 V), DD = 1.8 to 5.5 V),	CCLK)				
	High-speed on-chip oscillator clock (fiн) HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)								
Subsystem clo	ck	XT1 (crystal) oscillatio	n, external subsystem o	clock input (EXCLKS) 3	2.768 kHz				
Low-speed on-	-chip oscillator clock	15 kHz (TYP.): V _{DD} = 1	1.6 to 5.5 V						
General-purpo	se register	8 bits × 32 registers (8 bits × 8 registers × 4 banks)							
Minimum instru	uction execution time	0.03125 μs (High-spee	ed on-chip oscillator clo	ck: fін = 32 MHz operat	ion)				
		0.05 μs (High-speed s	ystem clock: fmx = 20 M	1Hz operation)					
		30.5 μs (Subsystem cl	ock: fsuв = 32.768 kHz	operation)					
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 							
I/O port	Total	40	44	48	58				
	CMOS I/O	31	34	38	48				
	CMOS input	5	5	5	5				
	CMOS output	_	1	1	1				
	N-ch open-drain I/O (6 V tolerance)	4	4	4	4				
Timer	16-bit timer	8 channels (TAU: 4 channels, Tim	er RJ: 1 channel, Timer	RD: 2 channels, Timer	RG: 1 channel)				
	Watchdog timer	1 channel							
	Real-time clock (RTC)	1 channel							
	12-bit interval timer	1 channel							
	Timer output	Timer outputs: 14 channels PWM outputs: 9 channels							
		1 • 1 Hz (subsystem clock: fsub = 32.768 kHz)							

(Note is listed on the next page.)

RL78/G14 1. OUTLINE

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xL (x = G, L, M, P): Start address F3F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

RL78/G14 1. OUTLINE

[80-pin, 100-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

		80-pin	100-pin				
	Item	R5F104Mx	R5F104Px				
		(x = F to H, J)	(x = F to H, J)				
Code flash me	emory (KB)	96 to 256	96 to 256				
Data flash me	mory (KB)	8	8				
RAM (KB)		12 to 24 ^{Note}	12 to 24 Note				
Address spac	е	1 MB					
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main HS (high-speed main) mode: 1 to 20 MHz (V HS (high-speed main) mode: 1 to 16 MHz (V LS (low-speed main) mode: 1 to 8 MHz (VD LV (low-voltage main) mode: 1 to 4 MHz (VD	DD = 2.7 to 5.5 V), DD = 2.4 to 5.5 V), D = 1.8 to 5.5 V),				
	High-speed on-chip oscillator clock (fiн)	HS (high-speed main) mode: 1 to 32 MHz (V HS (high-speed main) mode: 1 to 16 MHz (V LS (low-speed main) mode: 1 to 8 MHz (VD LV (low-voltage main) mode: 1 to 4 MHz (VD	DD = 2.4 to 5.5 V), D = 1.8 to 5.5 V),				
Subsystem cle	ock	XT1 (crystal) oscillation, external subsystem of	clock input (EXCLKS) 32.768 kHz				
Low-speed or	n-chip oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V					
General-purpo	ose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 ba	anks)				
Minimum instr	ruction execution time	0.03125 μs (High-speed on-chip oscillator clock: fiн = 32 MHz operation)					
		0.05 μs (High-speed system clock: fмx = 20 M	1Hz operation)				
		30.5 μs (Subsystem clock: fsub = 32.768 kHz	operation)				
Instruction set	t	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 Multiplication (8 bits × 8 bits, 16 bits × 16 bits Multiplication and Accumulation (16 bits × 16 Rotate, barrel shift, and bit manipulation (Se 	s), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) 3 bits + 32 bits)				
I/O port	Total	74	92				
	CMOS I/O	64	82				
	CMOS input	5	5				
	CMOS output	1	1				
	N-ch open-drain I/O (6 V tolerance)	4	4				
Timer	16-bit timer	12 channels (TAU: 8 channels, Timer RJ: 1 channel, Timer	RD: 2 channels, Timer RG: 1 channel)				
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output	Timer outputs: 18 channels PWM outputs: 12 channels					
	RTC output	1 • 1 Hz (subsystem clock: fsub = 32.768 kHz)					

Note

In the case of the 24 KB, this is about 23 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/G14 User's Manual).

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(4/5)

Items	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -10.0 mA	EVDD0 - 1.5			٧
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -3.0 mA	EVDD0 - 0.7			V
		1 111,1 120,1 130,1 140 101 147	1.8 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -1.5 mA	EVDD0 - 0.5			V
			1.6 V ≤ EV _{DD0} < 1.8 V, IOH1 = -1.0 mA	EVDD0 - 0.5			٧
	VOH2	P20 to P27, P150 to P156	1.6 V ≤ VDD ≤ 5.5 V, IOH2 = -100 μA	VDD - 0.5			V
Output voltage, low	Vol1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL1 = 20.0 mA			1.3	٧
		P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL1 = 8.5 mA			0.7	٧
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 3.0 mA			0.6	V
			2.7 V ≤ EVDD0 ≤ 5.5 V, loL1 = 1.5 mA			0.4	V
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $\text{IOL1} = 0.6 \text{ mA}$			0.4	٧
			1.6 V ≤ EVDD0 ≤ 5.5 V, IOL1 = 0.3 mA			0.4	V
	VOL2	P20 to P27, P150 to P156	$1.6 \text{ V} \le \text{Vdd} \le 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu\text{A}$			0.4	٧
	Vol3	P60 to P63	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 15.0 mA			2.0	V
			4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 5.0 mA			0.4	V
			2.7 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 3.0 mA			0.4	V
			1.8 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 2.0 mA			0.4	V
			1.6 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 1.0 mA			0.4	V

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(5/5)

Items	Symbol	Conditi	ons		MIN.	TYP.	MAX.	Unit
Input leakage cur- rent, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	P47, P50 to P57, P70 to P77, P100 to P102, P110,				1	μΑ
	ILIH2	P20 to P27, P137, P150 to P156, RESET	VI = VDD				1	μΑ
	ILIH3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD	In input port or external clock input			1	μΑ
				In resonator con- nection			10	μА
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Vı = EVsso				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μΑ
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μА
				In resonator con- nection			-10	μА
On-chip pull-up resistance	Rυ	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Vi = EVsso	, In input port	10	20	100	kΩ

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply cur-	IDD2	HALT mode	HS (high-speed main)	fHOCO = 64 MHz,	V _{DD} = 5.0 V		0.93	3.32	mA
rent Note 1	Note 2		mode Note 7	fih = 32 MHz Note 4	V _{DD} = 3.0 V		0.93	3.32	
				fHOCO = 32 MHz,	V _{DD} = 5.0 V		0.5	2.63	
				fih = 32 MHz Note 4	V _{DD} = 3.0 V		0.5	2.63	
				fносо = 48 MHz,	V _{DD} = 5.0 V		0.72	2.60	
				fiH = 24 MHz Note 4	V _{DD} = 3.0 V		0.72	2.60	
				fHOCO = 24 MHz,	V _{DD} = 5.0 V		0.42	2.03	
				fih = 24 MHz Note 4	V _{DD} = 3.0 V		0.42	2.03	
				fHOCO = 16 MHz,	V _{DD} = 5.0 V		0.39	1.50	
				fih = 16 MHz Note 4	V _{DD} = 3.0 V		0.39	1.50	
			LS (low-speed main)	fносо = 8 MHz,	V _{DD} = 3.0 V		270	800	μΑ
			mode Note 7	fih = 8 MHz Note 4	V _{DD} = 2.0 V		270	800	
			LV (low-voltage main)	fHOCO = 4 MHz,	V _{DD} = 3.0 V		450	755	μА
			mode Note 7	fih = 4 MHz Note 4	V _{DD} = 2.0 V		450	755	
			HS (high-speed main)	f _{MX} = 20 MHz Note 3,	Square wave input		0.31	1.69	mA
			mode Note 7	V _{DD} = 5.0 V	Resonator connection		0.41	1.91	
				f _{MX} = 20 MHz Note 3,	Square wave input		0.31	1.69	
				V _{DD} = 3.0 V	Resonator connection		0.41	1.91	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.21	0.94	
				V _{DD} = 5.0 V	Resonator connection		0.26	1.02	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.21	0.94	
				V _{DD} = 3.0 V	Resonator connection		0.26	1.02	
			LS (low-speed main)	fmx = 8 MHz Note 3,	Square wave input		110	610	μΑ
			mode Note 7	V _{DD} = 3.0 V	Resonator connection		150	660	
				f _{MX} = 8 MHz Note 3,	Square wave input		110	610	
				V _{DD} = 2.0 V	Resonator connection		150	660	
			Subsystem clock oper-	fsuB = 32.768 kHz Note 5,	Square wave input		0.31		μΑ
			ation	TA = -40°C	Resonator connection		0.50		
				fsuB = 32.768 kHz Note 5,	Square wave input		0.38	0.76	
				TA = +25°C	Resonator connection		0.57	0.95	
				fsuB = 32.768 kHz Note 5,	Square wave input		0.47	3.59	
				TA = +50°C	Resonator connection		0.70	3.78	
				fsuB = 32.768 kHz Note 5,	Square wave input		0.80	6.20	
				T _A = +70°C	Resonator connection		1.00	6.39	
				fsuB = 32.768 kHz Note 5,	Square wave input		1.65	10.56	
				T _A = +85°C	Resonator connection		1.84	10.75	
	IDD3	STOP mode	TA = -40°C				0.19		μА
	Note 6	Note 8	T _A = +25°C				0.30	0.59	
			TA = +50°C				0.41	3.42	
			T _A = +70°C				0.80	6.03	
			T _A = +85°C				1.53	10.39	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$

 $2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

LS (low-speed main) mode: 1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz LV (low-voltage main) mode: 1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
 Remark 3. filh: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Items	Symbol	Condition	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdiн, tтdil	TRDIOA0, TRDIOA1, TRDIOE TRDIOC0, TRDIOC1, TRDIO		3/fclk			ns
Timer RD forced cutoff signal	ttdsil	P130/INTP0	2MHz < fclk ≤ 32 MHz	1			μs
input low-level width			1/fclk + 1				
Timer RG input high-level	tтgін,	TRGIOA, TRGIOB		2.5/fclk			ns
width, low-level width	ttgil						
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			16	MHz
TO10 to TO13, TRJIO0, TRJO0,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
TRDIOA0, TRDIOA1,			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
TRDIOB0, TRDIOB1,			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
TRDIOC0, TRDIOC1,		LS (low-speed main) mode	1.8 V ≤ EVDD0 ≤ 5.5 V			4	MHz
TRDIOD0, TRDIOD1,			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
TRGIOA, TRGIOB output frequency		LV (low-voltage main) mode	1.6 V ≤ EVDD0 ≤ 5.5 V			2	MHz
PCLBUZ0, PCLBUZ1 output	fPCL	HS (high-speed main) mode	4.0 V ≤ EVDD0 ≤ 5.5 V			16	MHz
frequency			2.7 V ≤ EV _{DD0} < 4.0 V			8	MHz
			1.8 V ≤ EVDD0 < 2.7 V			4	MHz
			1.6 V ≤ EVDD0 < 1.8 V			2	MHz
		LS (low-speed main) mode	1.8 V ≤ EVDD0 ≤ 5.5 V			4	MHz
			1.6 V ≤ EV _{DD0} < 1.8 V			2	MHz
		LV (low-voltage main) mode	1.8 V ≤ EVDD0 ≤ 5.5 V			4	MHz
			1.6 V ≤ EV _{DD0} < 1.8 V			2	MHz
Interrupt input high-level	tinth,	INTP0	$1.6 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	1			μs
width, low-level width	tintl	INTP1 to INTP11	1.6 V ≤ EVDD0 ≤ 5.5 V	1			μs
Key interrupt input low-level	tkr	KR0 to KR7	1.8 V ≤ EVDD0 ≤ 5.5 V	250			ns
width			1.6 V ≤ EVDD0 < 1.8 V	1			μs
RESET low-level width	trsl			10			μs

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions		٠ ٠	-speed main) node	,	speed main) LV (lo		V (low-voltage main) mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		reception	$4.0 \text{ V} \le \text{EV}_{DD0} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{V}_{b} \le 4.0 \text{ V}$		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1	bps
			Theoretical value of the maximum transfer rate fmck = fclk Note 4		5.3		1.3		0.6	Mbps
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1		f _{MCK} /6 Note 1	bps
			Theoretical value of the maximum transfer rate folk Note 4		5.3		1.3		0.6	Mbps
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		fмск/6 Notes 1, 2, 3		fмск/6 Notes 1, 2		fмск/6 Notes 1, 2	bps
			Theoretical value of the maximum transfer rate fMCK = fCLK Note 4		5.3		1.3		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. Use it with $EVDD0 \ge V_b$.

Note 3. The following conditions are required for low voltage interface when EVDDO < VDD.

 $2.4~V \leq EV_{DD0} < 2.7~V;$ MAX. 2.6~Mbps

 $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.4 \text{ V}$: MAX. 1.3 Mbps

Note 4. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

HS (high-speed main) mode: 32 MHz ($2.7 \text{ V} \le \text{VdD} \le 5.5 \text{ V}$)

16 MHz (2.4 V \leq VDD \leq 5.5 V)

LS (low-speed main) mode: 8 MHz (1.8 V \leq VDD \leq 5.5 V) LV (low-voltage main) mode: 4 MHz (1.6 V \leq VDD \leq 5.5 V)

Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Vb [V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13)

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	I Conditions		, ,	-speed main) node	,	speed main) node	,	roltage main) node	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		transmission	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$		Note 1		Note 1		Note 1	bps
			Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 1.4$ k Ω , $V_b = 2.7$ V		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps
			$2.7 \text{ V} \le \text{EV}_{DD0} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{b} \le 2.7 \text{ V}$		Note 3		Note 3		Note 3	bps
			Theoretical value of the maximum transfer rate $C_b = 50$ pF, $R_b = 2.7$ k Ω , $V_b = 2.3$ V		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \le \text{V}_{\text{b}} \le 2.0 \text{ V}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{EV}_{DD0} \le 5.5 \text{ V}$ and $2.7 \text{ V} \le \text{V}_b \le 4.0 \text{ V}$

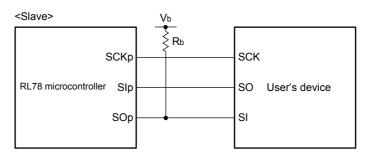
$$\frac{1}{\{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\} \times 3} [bps]$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer\ rate \times 2} - \{-C_b \times R_b \times \ln{(1 - \frac{2.2}{V_b})}\}}{(\frac{1}{Transfer\ rate}) \times Number\ of\ transferred\ bits} \times 100\ [\%]$$

Note 2. This value as an example is calculated when the conditions described in the "Conditions" column are met.

Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

Note 3. The smaller maximum transfer rate derived by using fmck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V


^{*} This value is the theoretical value of the relative difference between the transmission and reception sides

^{*} This value is the theoretical value of the relative difference between the transmission and reception sides

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $EVDD0 \ge V_b$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp1" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	٠. ٠	speed main) node	,	speed main) node	LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLr clock frequency	fscL	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $		1000 Note 1		300 Note 1		300 Note 1	kHz
		$ 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega $		1000 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{aligned} 4.0 \ & V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ & V \leq V_b \leq 4.0 \ V, \\ C_b = 100 \ pF, \ R_b = 2.8 \ k\Omega \end{aligned} $		400 Note 1		300 Note 1		300 Note 1	kHz
		$ 2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{split} 1.8 \ V & \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V & \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b & = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	475		1550		1550		ns
		$ \begin{aligned} &2.7 \; \text{V} \leq \text{EV}_{\text{DD0}} < 4.0 \; \text{V}, \\ &2.3 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \; \text{V}, \\ &C_{\text{b}} = 50 \; \text{pF}, \; R_{\text{b}} = 2.7 \; \text{k}\Omega \end{aligned} $	475		1550		1550		ns
		$ \begin{aligned} &4.0 \; \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \; \text{V}, \\ &2.7 \; \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \; \text{V}, \\ &\text{C}_{\text{b}} = 100 \; \text{pF}, \; \text{R}_{\text{b}} = 2.8 \; \text{k} \Omega \end{aligned} $	1150		1550		1550		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{Cb} = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega $	1150		1550		1550		ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	thigh	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	245		610		610		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 50 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	200		610		610		ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &\text{Cb} = 100 \text{ pF}, \text{Rb} = 2.8 \text{ k}\Omega \end{aligned} $	675		610		610		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	600		610		610		ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note 2}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega \end{aligned}$	610		610		610		ns

2.5.2 Serial interface IICA

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	С	conditions	HS (high-sp	,	LS (low-sp mo	eed main) ode	,	ltage main) ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fscL	Standard mode:	2.7 V ≤ EVDD0 ≤ 5.5 V	0	100	0	100	0	100	kHz
frequency		fc∟k ≥ 1 MHz	1.8 V ≤ EVDD0 ≤ 5.5 V	0	100	0	100	0	100	kHz
			1.7 V ≤ EVDD0 ≤ 5.5 V	0	100	0	100	0	100	kHz
			1.6 V ≤ EVDD0 ≤ 5.5 V	_	_	0	100	0	100	kHz
Setup time of	tsu: sta	2.7 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
restart condition		1.8 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
		1.7 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
		1.6 V ≤ EVDD0 ≤ \$	5.5 V	_	_	4.7		4.7		μs
Hold time Note 1	thd: STA	2.7 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.8 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.7 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ EVDD0 ≤ \$	5.5 V	_	_	4.0		4.0		μs
Hold time when	tLOW	2.7 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		1.8 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
		1.7 V ≤ EVDD0 ≤ \$	5.5 V	4.7		4.7		4.7		μs
		1.6 V ≤ EVDD0 ≤ \$	5.5 V	_	_	4.7		4.7		μs
Hold time when	thigh	2.7 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
SCLA0 = "H"		1.8 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.7 V ≤ EVDD0 ≤ \$	5.5 V	4.0		4.0		4.0		μs
		1.6 V ≤ EVDD0 ≤ \$	5.5 V	_	_	4.0		4.0		μs

(Notes, Caution, and Remark are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVsso, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- Note 4. When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V@1 MHz}$ to 16 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
 Remark 3. fH: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is Ta = 25°C

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Cond	ditions	HS (high-speed	main) mode	Unit
				MIN.	MAX.	
SCKp cycle time Note 5	tkcy2	4.0 V ≤ EV _{DD0} ≤ 5.5 V	20 MHz < fmck	16/ƒмск		ns
			fмcк ≤ 20 MHz	12/fмск		ns
		2.7 V ≤ EVDD0 ≤ 5.5 V	16 MHz < fмcк	16/fмск		ns
			fмcк ≤ 16 MHz	12/fмск		ns
		2.4 V ≤ EVDD0 ≤ 5.5 V		12/fмск and 1000		ns
SCKp high-/low-level width	tkH2, tkL2	4.0 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 14		ns
		2.7 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 16		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		tkcy2/2 - 36		ns
SIp setup time (to SCKp↑) Note 1	tsık2	2.7 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 40		ns
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		1/fмск + 60		ns
SIp hold time (from SCKp↑) Note 2	tksi2			1/fмск + 62		ns
Delay time from SCKp↓ to SOp output Note 3	tkso2	C = 30 pF Note 4	2.7 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 66	ns
			2.4 V ≤ EVDD0 ≤ 5.5 V		2/fмск + 113	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SOp output lines.
- **Note 5.** The maximum transfer rate when using the SNOOZE mode is 1 Mbps.
- Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat	$ 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 50 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega $	1/fmck + 340 Note 2		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	1/fmck + 340 Note 2		ns
		$\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 2.8 \text{ k}\Omega \end{aligned}$	1/fмск + 760 Note 2		ns
		$\begin{aligned} 2.7 & \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ C_{\text{b}} &= 100 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	1/fmck + 760 Note 2		ns
		$\begin{aligned} 2.4 & \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V}, \\ 1.6 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned}$	1/fмск + 570 Note 2		ns
Data hold time (transmission)	thd:dat	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	0	770	ns
		$\begin{aligned} 2.7 & \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned}$	0	770	ns
		$\begin{aligned} 4.0 & \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ 2.7 & \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ C_{\text{b}} &= 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned}$	0	1420	ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$	0	1420	ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$ $1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V},$ $C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega$	0	1215	ns

Note 1. The value must also be equal to or less than fmck/4.

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

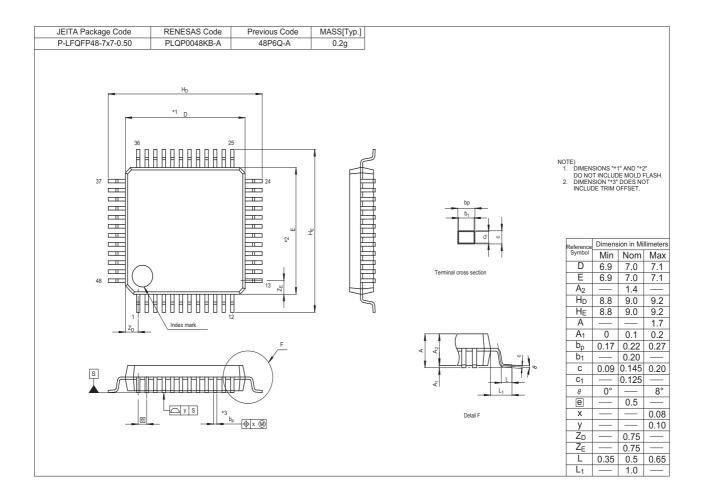
Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI14, ANI16 to ANI20

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD = EVDD1 \leq VDD, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM = 0 V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	Vain		•	0		V _{BGR} Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).


Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (-) = AVREFM. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (-) = AVREFM. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

R5F104GKAFB, R5F104GLAFB R5F104GKGFB, R5F104GLGFB

АЗ

-Lp

(UNIT:mm)

20.00±0.20

14.00±0.20

22.00±0.20

16.00±0.20

1.60 MAX. 0.10±0.05

1.40±0.05

 $0.32^{+0.08}_{-0.07}$ 0.145+0.055

 0.60 ± 0.15

 1.00 ± 0.20 3°+5°

0.25

0.50

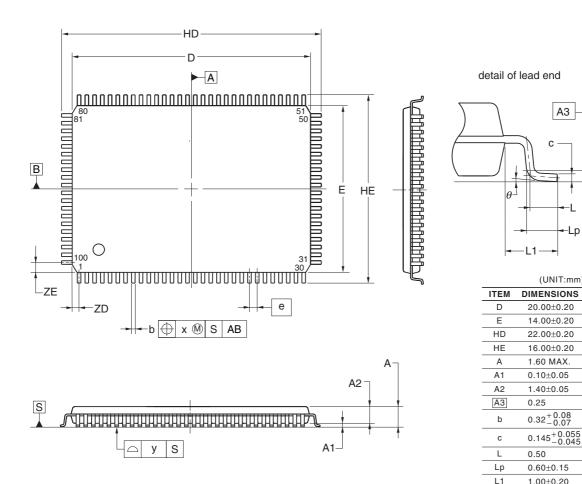
0.65 0.13

0.10

0.575

0.825

 θ е


У

ZD

ZΕ

R5F104PFAFA, R5F104PGAFA, R5F104PHAFA, R5F104PJAFA R5F104PFDFA, R5F104PGDFA, R5F104PHDFA, R5F104PJDFA R5F104PFGFA, R5F104PGGFA, R5F104PHGFA, R5F104PJGFA R5F104PKAFA, R5F104PLAFA R5F104PKGFA, R5F104PLGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP100-14x20-0.65	PLQP0100JC-A	P100GF-65-GBN-1	0.92

©2012 Renesas Electronics Corporation. All rights reserved.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.