

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104feafp-v0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

O ROM, RAM capacities

Flash ROM	Data flash	RAM		RL78	3/G14	
Tiasii NOW	Data ilasii	KAW	30 pins	32 pins	36 pins	40 pins
192 KB	8 KB	20 KB	_	_	_	R5F104EH
128 KB	8 KB	16 KB	R5F104AG	R5F104BG	R5F104CG	R5F104EG
96 KB	8 KB	12 KB	R5F104AF	R5F104BF	R5F104CF	R5F104EF
64 KB	4 KB	5.5 KB Note	R5F104AE	R5F104BE	R5F104CE	R5F104EE
48 KB	4 KB	5.5 KB Note	R5F104AD	R5F104BD	R5F104CD	R5F104ED
32 KB	4 KB	4 KB	R5F104AC	R5F104BC	R5F104CC	R5F104EC
16 KB	4 KB	2.5 KB	R5F104AA	R5F104BA	R5F104CA	R5F104EA

Flash ROM	Data flash	RAM		RL78	3/G14	
Tiasii Kowi	Dala IIasii	INAIVI	44 pins	48 pins	52 pins	64 pins
512 KB	8 KB	48 KB Note	_	R5F104GL	_	R5F104LL
384 KB	8 KB	32 KB	_	R5F104GK	_	R5F104LK
256 KB	8 KB	24 KB Note	R5F104FJ	R5F104GJ	R5F104JJ	R5F104LJ
192 KB	8 KB	20 KB	R5F104FH	R5F104GH	R5F104JH	R5F104LH
128 KB	8 KB	16 KB	R5F104FG	R5F104GG	R5F104JG	R5F104LG
96 KB	8 KB	12 KB	R5F104FF	R5F104GF	R5F104JF	R5F104LF
64 KB	4 KB	5.5 KB Note	R5F104FE	R5F104GE	R5F104JE	R5F104LE
48 KB	4 KB	5.5 KB Note	R5F104FD	R5F104GD	R5F104JD	R5F104LD
32 KB	4 KB	4 KB	R5F104FC	R5F104GC	R5F104JC	R5F104LC
16 KB	4 KB	2.5 KB	R5F104FA	R5F104GA	_	

Flash ROM	Data flash	RAM	RL78/G14				
Flasii ROW	Dala IIasii	KAW	80 pins	100 pins			
512 KB	8 KB	48 KB Note	R5F104ML	R5F104PL			
384 KB	8 KB	32 KB	R5F104MK	R5F104PK			
256 KB	8 KB	24 KB Note	R5F104MJ	R5F104PJ			
192 KB	8 KB	20 KB	R5F104MH	R5F104PH			
128 KB	8 KB	16 KB	R5F104MG	R5F104PG			
96 KB	8 KB	12 KB	R5F104MF	R5F104PF			

The flash library uses RAM in self-programming and rewriting of the data flash memory.

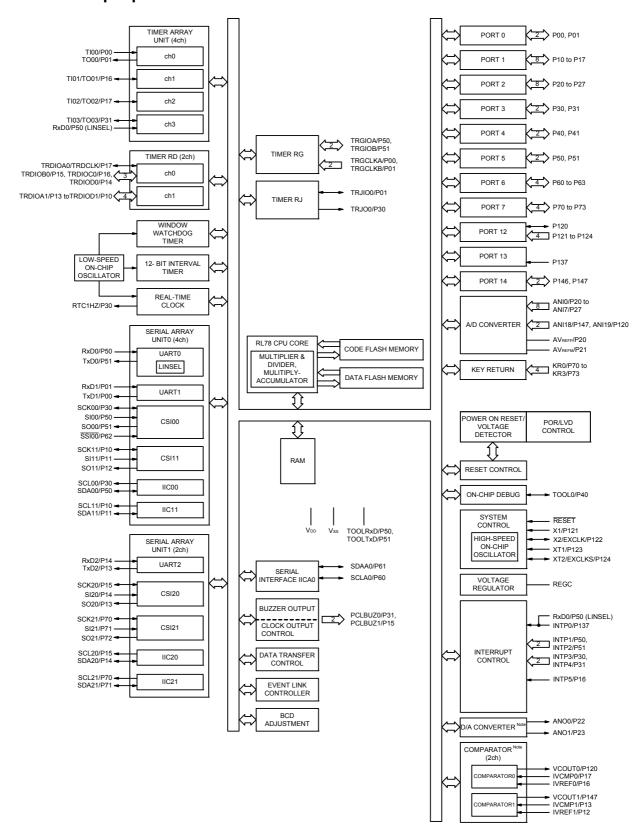
The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xD (x = A to C, E to G, J, L): Start address FE900H

R5F104xE (x = A to C, E to G, J, L): Start address FE900H

R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H

R5F104xL (x = G, L, M, P): Start address F3F00H


For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

1.3.6 48-pin products

• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch) P01/T000/RxD1/TRGCLKB/TRJI00 P00/T100/TxD1/TRGCLKA/(TRJO0) P140/PCLBUZ0/INTP6 P22/ANI2/ANO0 Note 1 P23/ANI3/ANO1 Note P21/ANI1/AVREFM P24/ANI4 P130 36 35 34 33 32 31 30 29 28 27 26 25 120/ANI19/VCOUT0 Note 1 24 P147/ANI18/VCOUT1 Note 1 P41/(TRJIO0) 23 38 P146 P40/TOOL0 O 22 39 P10/SCK11/SCL11/TRDIOD1 RESET 40 21 P11/SI11/SDA11/TRDIOC1/(RxD0_1) Note 2 P124/XT2/EXCLKS 20 41 P12/SO11/TRDIOB1/IVREF1 Note 1 /(TxD0_1) Note 2 P123/XT1 42 RL78/G14 19 P13/TxD2/SO20/TRDIOA1/IVCMP1 Note 1 (Top View) P137/INTP0 18 43 P122/X2/EXCLK O 17 44 P15/PCLBUZ1/SCK20/SCL20/TRDIOB0/(SDAA0) P121/X1 16 \circ 45 P16/TI01/TO01/INTP5/TRDIOC0/IVREF0 Note 1/(RXD0) REGC 0 46 15 P17/TI02/TO02/TRDIOA0/TRDCLK/IVCMP0 Note 1/(TXD0) **-**○ Vss 47 14 P51/INTP2/SO00/TxD0/TOOLTxD/TRGIOB V_{DD} \bigcirc 48 13 P50/INTP1/SI00/RxD0/TOOLRxD/SDA00/TRGIOA/(TRJO0 8 9 10 11 12 P60/SCLA0 P61/SDAA0 P62/SS100 P74/KR4/INTP8/SI01/SDA01 P30/INTP3/RTC1HZ/SCK00/SCL00/TRJO0 P31/TI03/T003/INTP4/(PCLBUZ0)/(TRJI00) P72/KR2/S021 P75/KR5/INTP9/SCK01/SCL01 P73/KR3/S001 P71/KR1/SI21/SDA21 P70/KR0/SCK21/SCL21

- **Note 1.** Mounted on the 96 KB or more code flash memory products.
- Note 2. Mounted on the 384 KB or more code flash memory products.
- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.5.5 44-pin products

Note Mounted on the 96 KB or more code flash memory products.

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xL (x = G, L, M, P): Start address F3F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

[80-pin, 100-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

(1/2)

		80-pin	100-pin				
	Item	R5F104Mx	R5F104Px				
		(x = F to H, J)	(x = F to H, J)				
Code flash me	emory (KB)	96 to 256	96 to 256				
Data flash me	mory (KB)	8	8				
RAM (KB)		12 to 24 ^{Note}	12 to 24 Note				
Address space	е	1 MB					
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)					
	High-speed on-chip oscillator clock (fін)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)					
Subsystem clo	ock	XT1 (crystal) oscillation, external subsystem of	lock input (EXCLKS) 32.768 kHz				
Low-speed on	n-chip oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V					
General-purpo	ose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)					
Minimum instr	ruction execution time	0.03125 μs (High-speed on-chip oscillator clo	ck: fiн = 32 MHz operation)				
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)					
		30.5 μs (Subsystem clock: fsub = 32.768 kHz	operation)				
Instruction set	t	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 					
I/O port	Total	74	92				
	CMOS I/O	64	82				
	CMOS input	5	5				
	CMOS output	1	1				
	N-ch open-drain I/O (6 V tolerance)	4	4				
Timer	16-bit timer	12 channels (TAU: 8 channels, Timer RJ: 1 channel, Timer	RD: 2 channels, Timer RG: 1 channel)				
	Watchdog timer	1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output	Timer outputs: 18 channels PWM outputs: 12 channels					
	RTC output	1 • 1 Hz (subsystem clock: fsub = 32.768 kHz)					

Note

In the case of the 24 KB, this is about 23 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/G14 User's Manual).

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				20.0 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	4.0 V ≤ EVDD0 ≤ 5.5 V			70.0	mA
		P102, P120, P130, P140 to P145	2.7 V ≤ EV _{DD0} < 4.0 V			15.0	mA
		(When duty ≤ 70% Note 3)	1.8 V ≤ EVDD0 < 2.7 V			9.0	mA
			1.6 V ≤ EVDD0 < 1.8 V			4.5	mA
		Total of P05, P06, P10 to P17,	4.0 V ≤ EVDD0 ≤ 5.5 V			80.0	mA
		P30, P31, P50 to P57,	2.7 V ≤ EVDD0 < 4.0 V			35.0	mA
		P60 to P67, P70 to P77, P80 to P87, P100, P101, P110,	1.8 V ≤ EVDD0 < 2.7 V			20.0	mA
		P111, P146, P147 (When duty ≤ 70% Note 3)	1.6 V ≤ EVDD0 < 1.8 V			10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				150.0	mA
	IoL2 Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA	
		Total of all pins (When duty ≤ 70% ^{Note 3})	1.6 V ≤ VDD ≤ 5.5 V			5.0	mA

- **Note 1.** Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.
- Note 2. Do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoL × 0.7)/(n × 0.01)

<Example> Where n = 80% and lol = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

2.3.2 Supply current characteristics

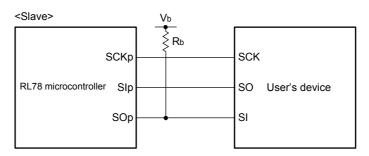
(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +85°C, 1.6 V \leq EVDD0 \leq VDD \leq 5.5 V, Vss = EVss0 = 0 V)

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit
Supply	IDD1	Operat-	HS (high-speed main)	fHOCO = 64 MHz,	Basic	V _{DD} = 5.0 V		2.4		mA
current		ing mode	mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.4		
Note 1				fHOCO = 32 MHz,	Basic	V _{DD} = 5.0 V		2.1		
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		2.1		
			HS (high-speed main)	fHOCO = 64 MHz,	Normal	V _{DD} = 5.0 V		5.1	8.7	mA
			mode Note 5	fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		5.1	8.7	
				fHOCO = 32 MHz,	Normal	V _{DD} = 5.0 V		4.8	8.1	
				fih = 32 MHz Note 3	operation	V _{DD} = 3.0 V		4.8	8.1	
				fHOCO = 48 MHz,	Normal	V _{DD} = 5.0 V		4.0	6.9	
				fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.0	6.9	
				fHOCO = 24 MHz,	Normal	V _{DD} = 5.0 V		3.8	6.3	
				fih = 24 MHz Note 3	operation	V _{DD} = 3.0 V		3.8	6.3	
				fHOCO = 16 MHz,	Normal	V _{DD} = 5.0 V		2.8	4.6	
				fih = 16 MHz Note 3	operation	V _{DD} = 3.0 V		2.8	4.6	
			LS (low-speed main)	fносо = 8 MHz,	Normal	V _{DD} = 3.0 V		1.3	2.0	mA
			mode Note 5	fih = 8 MHz Note 3	operation	V _{DD} = 2.0 V		1.3	2.0	
			LV (low-voltage main)	fносо = 4 MHz,	Normal	V _{DD} = 3.0 V		1.3	1.8	mA
			mode Note 5	fiH = 4 MHz Note 3	operation	V _{DD} = 2.0 V		1.3	1.8	
		HS (high-speed main)	f _{MX} = 20 MHz Note 2,	Normal	Square wave input		3.3	5.3	mA	
		mode Note 5	V _{DD} = 5.0 V	operation	Resonator connection		3.4	5.5		
				f _{MX} = 20 MHz Note 2, Note 2	Normal	Square wave input		3.3	5.3	
			VDD = 3.0 V	operation	Resonator connection		3.4	5.5]	
				f _{MX} = 10 MHz Note 2, V _{DD} = 5.0 V	Normal operation	Square wave input		2.0	3.1	- - - -
						Resonator connection		2.1	3.2	
				f _{MX} = 10 MHz Note 2,	Normal	Square wave input		2.0	3.1	
				V _{DD} = 3.0 V	operation	Resonator connection		2.1	3.2	
			LS (low-speed main)	f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9	mA
			mode Note 5	V _{DD} = 3.0 V	operation	Resonator connection		1.2	2.0	
				f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9	
				V _{DD} = 2.0 V	operation	Resonator connection		1.2	2.0	
			Subsystem clock	fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μА
			operation	TA = -40°C	operation	Resonator connection		4.7	6.1	
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	
				T _A = +25°C	operation	Resonator connection		4.7	6.1	1
		fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.8	6.7			
		T _A = +50°C	operation	Resonator connection		4.8	6.7	1		
		fsuB = 32.768 kHz Note 4	Normal	Square wave input		4.8	7.5			
		TA = +70°C	operation	Resonator connection		4.8	7.5	1		
				fsuB = 32.768 kHz Note 4 No	Normal	Square wave input		5.4	8.9	
				T _A = +85°C	operation	Resonator connection		5.4	8.9	1

(Notes and Remarks are listed on the next page.)

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)


(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	(Conditions		peed ode	LS (low-sp main) mo	,		•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 2/fcLk	4.0 V ≤ EVDD0 ≤ 5.5 V	62.5		250		500		ns
			2.7 V ≤ EVDD0 ≤ 5.5 V	83.3		250		500		ns
SCKp high-/low-level	tĸн1, tĸL1	4.0 V ≤ EVDD0 ≤ 5.5 V		tkcy1/2 - 7		tkcy1/2 - 50		tксү1/2 - 50		ns
width		2.7 V ≤ EVDD0 ≤ 5.5 V		tkcy1/2 - 10		tkcy1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑)	tsıĸ1	4.0 V ≤ EVDD0	≤ 5.5 V	23		110		110		ns
Note 1		2.7 V ≤ EVDD0	≤ 5.5 V	33		110		110		ns
SIp hold time (from SCKp↑) Note 2	tksi1	2.7 V ≤ EVDD0	≤ 5.5 V	10		10		10		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 20 pF Note	4		10		10		10	ns

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- Remark 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.
- Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM numbers (g = 1)
- Remark 3. fmck: Serial array unit operation clock frequency
 (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,
 n: Channel number (mn = 00))

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $EVDD0 \ge V_b$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp1" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	٠. ٠	speed main) node	,	speed main) node	,	oltage main) node	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLr clock frequency	fscL	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $		1000 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{aligned} 2.7 & \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 & \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} &= 50 \text{ pF}, \text{ R}_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned} $		1000 Note 1		300 Note 1		300 Note 1	kHz
		$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &\text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned} $		400 Note 1		300 Note 1		300 Note 1	kHz
		$ 2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $		400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$ \begin{aligned} &4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ &2.7 \; V \leq V_b \leq 4.0 \; V, \\ &C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{aligned} $	475		1550		1550	1550	ns
		$ \begin{aligned} &2.7 \; \text{V} \leq \text{EV}_{\text{DD0}} < 4.0 \; \text{V}, \\ &2.3 \; \text{V} \leq \text{V}_{\text{b}} \leq 2.7 \; \text{V}, \\ &C_{\text{b}} = 50 \; \text{pF}, \; R_{\text{b}} = 2.7 \; \text{k}\Omega \end{aligned} $	475		1550		1550		ns
		$ \begin{aligned} &4.0 \; \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \; \text{V}, \\ &2.7 \; \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \; \text{V}, \\ &\text{C}_{\text{b}} = 100 \; \text{pF}, \; \text{R}_{\text{b}} = 2.8 \; \text{k} \Omega \end{aligned} $	1150		1550		1550		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{Cb} = 100 \text{ pF}, \text{Rb} = 2.7 \text{ k}\Omega $	1150		1550		1550		ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b &= 100 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$	1550		1550		1550		ns
Hold time when SCLr = "H"	thigh	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	245		610		610		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 50 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	200		610		610		ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &\text{Cb} = 100 \text{ pF}, \text{Rb} = 2.8 \text{ k}\Omega \end{aligned} $	675		610		610		ns
		$ 2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ 2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{R}_{\text{b}} = 2.7 \text{ k}\Omega $	600		610		610		ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note 2}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 5.5 \text{ k}\Omega \end{aligned}$	610		610		610		ns

3.2 Oscillator Characteristics

3.2.1 X1, XT1 characteristics

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	1.0		20.0	MHz
	crystal resonator	2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user.

Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

3.2.2 On-chip oscillator characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le VDD \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Oscillators	Parameters	Co	onditions	MIN.	TYP.	MAX.	Unit
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator clock frequency		-20 to +85°C	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	-1.0		+1.0	%
accuracy		-40 to -20°C	$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	-1.5		+1.5	%
		+85 to +105°C	$2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}$	-2.0		+2.0	%
Low-speed on-chip oscillator clock frequency	fıL				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(3/5)

Items	Symbol	Conditions	3	MIN.	TYP.	MAX.	Unit
Input voltage, high	VIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0.8 EVDD0		EV _{DD0}	V
	VIH2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	2.2		EV _{DD0}	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EV _{DD0} < 4.0 V	2.0		EV _{DD0}	V
			TTL input buffer 2.4 V ≤ EVDD0 < 3.3 V	1.5		EV _{DD0}	V
	VIH3	P20 to P27, P150 to P156		0.7 Vdd		VDD	V
	VIH4	P60 to P63		0.7 EVDD0		6.0	V
	VIH5	P121 to P124, P137, EXCLK, EX	0.8 Vdd		VDD	V	
Input voltage, low	VIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Normal input buffer	0		0.2 EVDD0	V
	VIL2	P01, P03, P04, P10, P14 to P17, P30, P43, P44, P50, P53 to P55,	TTL input buffer 4.0 V ≤ EVDD0 ≤ 5.5 V	0		0.8	V
		P80, P81, P142, P143	TTL input buffer 3.3 V ≤ EVDD0 < 4.0 V	0		0.5	V
			TTL input buffer 2.4 V ≤ EV _{DD0} < 3.3 V	0		0.32	V
	VIL3	P20 to P27, P150 to P156		0		0.3 Vdd	V
	VIL4	P60 to P63		0		0.3 EVDD0	V
	VIL5	P121 to P124, P137, EXCLK, EX	CLKS, RESET	0		0.2 Vdd	V

Caution The maximum value of ViH of pins P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 is EVDD0, even in the N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Remark 4. fsub:

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVsso. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.

Subsystem clock frequency (XT1 clock oscillation frequency)

Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V} \text{@}1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz to } 16 \text{ MHz}$

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)

 Remark 3. fH: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions						TYP.	MAX.	Unit
Supply current Note 1	IDD1	Operat-	HS (high-speed main) mode Note 5	fHOCO = 64 MHz, fiH = 32 MHz Note 3	Basic operation	V _{DD} = 5.0 V		2.6		mA
		ing mode				V _{DD} = 3.0 V		2.6		
				fhoco = 32 MHz, fih = 32 MHz Note 3	Basic operation	V _{DD} = 5.0 V		2.3		
						V _{DD} = 3.0 V		2.3		
			HS (high-speed main) mode Note 5	fHOCO = 64 MHz,	Normal operation	V _{DD} = 5.0 V		5.4	10.9	mA
				fih = 32 MHz Note 3		V _{DD} = 3.0 V		5.4	10.9	
				fHOCO = 32 MHz, Normal	Normal	V _{DD} = 5.0 V		5.0	10.3	
				f _{IH} = 32 MHz Note 3	operation	V _{DD} = 3.0 V		5.0	10.3	
				fносо = 48 MHz,	Normal	V _{DD} = 5.0 V		4.2	8.2	
				f _{IH} = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.2	8.2	
				fHOCO = 24 MHz,	Normal	V _{DD} = 5.0 V		4.0	7.8	- - - -
				f _{IH} = 24 MHz Note 3	operation	V _{DD} = 3.0 V		4.0	7.8	
				fhoco = 16 MHz, fih = 16 MHz Note 3	Normal	V _{DD} = 5.0 V		3.0	5.6	
					operation	V _{DD} = 3.0 V		3.0	5.6	
			Subsystem clock operation	f _{MX} = 20 MHz Note 2, V _{DD} = 5.0 V	Normal operation	Square wave input		3.4	6.6	mA
						Resonator connection		3.6	6.7	
				f _{MX} = 20 MHz Note 2, V _{DD} = 3.0 V	Normal operation	Square wave input		3.4	6.6	
						Resonator connection		3.6	6.7	
				f _{MX} = 10 MHz Note 2, V _{DD} = 5.0 V	Normal operation	Square wave input		2.1	3.9	
						Resonator connection		2.2	4.0	
				f _{MX} = 10 MHz Note 2, V _{DD} = 3.0 V	Normal operation	Square wave input		2.1	3.9	
						Resonator connection		2.2	4.0	
				fsuB = 32.768 kHz Note 4 TA = -40°C	Normal	Square wave input		4.9	7.1	
					operation	Resonator connection		4.9	7.1	
				fsuB = 32.768 kHz Note 4 TA = +25°C	Normal operation	Square wave input		4.9	7.1	-
						Resonator connection		4.9	7.1	
				fsuB = 32.768 kHz Note 4	Normal operation	Square wave input		5.1	8.8	
				T _A = +50°C		Resonator connection		5.1	8.8	
				fsuB = 32.768 kHz Note 4 TA = +70°C	Normal operation	Square wave input		5.5	10.5	
						Resonator connection		5.5	10.5	
				fsuB = 32.768 kHz Note 4 TA = +85°C	Normal operation	Square wave input		6.5	14.5	
						Resonator connection		6.5	14.5	
				fsuB = 32.768 kHz Note 4	Normal	Square wave input		13.0	58.0	
				T _A = +105°C	operation	Resonator connection		13.0	58.0	

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **Note 7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz to } 16 \text{ MHz}$

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fil: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(4) During communication at same potential (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	HS (high-speed main) mode		
			MIN.	MAX.		
SCLr clock frequency	fscL	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$		400 Note 1	kHz	
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ C_b = 100 pF, R_b = 3 k Ω		100 Note 1	kHz	
Hold time when SCLr = "L"	tLOW	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1200		ns	
		$2.4V \le EV_{DD0} \le 5.5 V$, $C_b = 100 pF$, $R_b = 3 k\Omega$	4600		ns	
Hold time when SCLr = "H"	thigh	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1200		ns	
		2.4 V \leq EV _{DD0} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	4600		ns	
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	1/fmck + 220 Note 2		ns	
		$2.4V \le EV_{DD0} \le 5.5 V$, C _b = 100 pF, R _b = 3 kΩ	1/f _{MCK} + 580 Note 2		ns	
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $C_b = 50 \text{ pF}, R_b = 2.7 \text{ k}\Omega$	0	770	ns	
		2.4 V \leq EV _{DD0} \leq 5.5 V, C _b = 100 pF, R _b = 3 kΩ	0	1420	ns	

Note 1. The value must also be equal to or less than fMCK/4.

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(Remarks are listed on the next page.)

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = VSS	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI14	Refer to 3.6.1 (1).	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).
ANI16 to ANI20	Refer to 3.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 3.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	2.4 V ≤ AVREFP ≤ 5.5 V		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI2 to ANI14	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
			$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: Internal reference voltage, and temperature sensor output volt- age (HS (high-speed main) mode)	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	3.5625		39	μs
			$2.4~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±0.25	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±0.25	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AVREFP = VDD Note 3	2.4 V ≤ AVREFP ≤ 5.5 V			±1.5	LSB
Analog input voltage	Vain	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage output (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 4		4	V
Temperature sensor output voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)		nain) mode)	V _{TMPS25} Note 4			V	

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

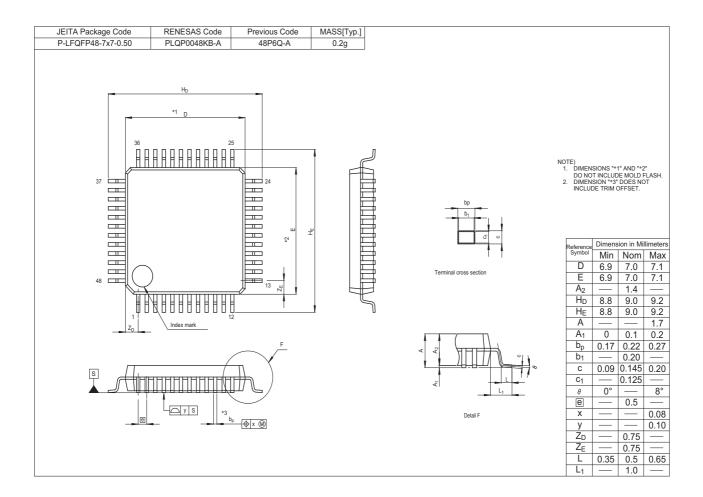
Note 3. When AVREFP \leq VDD, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.

Note 4. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)


Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					10	bit
Overall error Note 1	AINL	10-bit resolution	2.4 V ≤ V _{DD} ≤ 5.5 V		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution Target pin: ANI0 to ANI14, ANI16 to ANI20	3.6 V ≤ V _{DD} ≤ 5.5 V	2.125		39	μs
			$2.7 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	3.1875		39	μs
			2.4 V ≤ V _{DD} ≤ 5.5 V	17		39	μs
		10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	2.375		39	μs
			$2.7 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	3.5625		39	μs
			$2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution 2.4 V ≤ V _{DD} ≤ 5.5 V				±0.60	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$				±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution $2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$				±4.0	LSB
Differential linearity error Note 1	DLE	0-bit resolution $2.4 \text{ V} \le \text{Vpd} \le 5.5 \text{ V}$				±2.0	LSB
Analog input voltage	Vain	ANI0 to ANI14		0		VDD	V
ANI16 to ANI20		ANI16 to ANI20				EV _{DD0}	٧
	Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)		\	V _{BGR} Note 3		V	
		Temperature sensor output voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed main) mode)		VT	V _{TMPS25} Note 3		

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

R5F104GKAFB, R5F104GLAFB R5F104GKGFB, R5F104GLGFB

R5F104LCAFB, R5F104LDAFB, R5F104LEAFB, R5F104LFAFB, R5F104LGAFB, R5F104LHAFB, R5F104LJAFB

R5F104LCDFB, R5F104LDDFB, R5F104LEDFB, R5F104LFDFB, R5F104LGDFB, R5F104LHDFB, R5F104LJDFB

R5F104LCGFB, R5F104LDGFB, R5F104LEGFB, R5F104LFGFB, R5F104LGGFB, R5F104LHGFB, R5F104LJGFB

	JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.)	[g]
	P-LFQFP64-10x10-0.50	PLQP0064KF-A	P64GB-50-UEU-2	0.35	
	HD-		-		
	D	33		detail of le	ead end
	49	32		0	c A3
	64	17		→ L1 -	
	1	16		HD HE	10.00±0.20 12.00±0.20 12.00±0.20
-	ZD • b •	x (M) S	A¬	A A1 A2 A3	1.60 MAX. 0.10±0.05 1.40±0.05 0.25
Œ			A2 7	b	0.22±0.05 0.145 +0.055 0.50 0.60±0.15 1.00±0.20
<u>リ</u>	y s	 	A1	θ e x	3°+5° -3° 0.50

 \bigcirc 2012 Renesas Electronics Corporation. All rights reserved.

0.08

1.25

1.25

ZD

ZE

NOTE

Each lead centerline is located within 0.08 mm of its true position at maximum material condition.

ZE