

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104fedfp-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5.4 40-pin products

Note Mounted on the 96 KB or more code flash memory products.

10	(n)
1.71	
12/	∠ /

		30-pin	32-pin	36-pin	40-pin				
ľ	tem	R5F104Ax	R5F104Bx	R5F104Cx	R5F104Ex				
		(x = F, G)	(x = F, G)	(x = F, G)	(x = F to H)				
Clock output/buzzer	output	2	2	2	2				
		 [30-pin, 32-pin, 36-pin pro. 2.44 kHz, 4.88 kHz, 9.7 (Main system clock: fm///(40-pin products] 2.44 kHz, 4.88 kHz, 9.7 (Main system clock: fm/// 256 Hz, 512 Hz, 1.024 (Subsystem clock: fsub 	[30-pin, 32-pin, 36-pin products] • 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) [40-pin products] • 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) • 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fmain = 32 768 kHz operation)						
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels				
D/A converter		1 channel	2 channels						
Comparator		2 channels							
Serial interface		[30-pin, 32-pin products] • CSI: 1 channel/UART (• CSI: 1 channel/UART: • CSI: 1 channel/UART: [36-pin, 40-pin products] • CSI: 1 channel/UART (• CSI: 1 channel/UART: • CSI: 2 channel/UART:	UART supporting LIN-bus) I channel/simplified I ² C: 1 I channel/simplified I ² C: 1 UART supporting LIN-bus) I channel/simplified I ² C: 1 1 channel/simplified I ² C: 2	: 1 channel/simplified I ² C channel channel : 1 channel/simplified I ² C channel ! channels	: 1 channel : 1 channel				
	I ² C bus	1 channel	1 channel	1 channel	1 channel				
Data transfer contro	ller (DTC)	30 sources	1		31 sources				
Event link controller	(ELC)	Event input: 21 Event trigger output: 8	Event input: 21, Event trigger output: 9		Event input: 22 Event trigger output: 9				
Vectored interrupt	Internal	24	24	24	24				
sources	External	6	6	6	7				
Key interrupt		-	—	—	4				
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access							
Power-on-reset circl	uit	• Power-on-reset: $1.51 \pm 0.04 \text{ V} (\text{T}_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C})$ $1.51 \pm 0.06 \text{ V} (\text{T}_{\text{A}} = -40 \text{ to } +105^{\circ}\text{C})$ • Power-down-reset: $1.50 \pm 0.04 \text{ V} (\text{T}_{\text{A}} = -40 \text{ to } +85^{\circ}\text{C})$ $1.50 \pm 0.06 \text{ V} (\text{T}_{\text{A}} = -40 \text{ to } +105^{\circ}\text{C})$							
Voltage detector		1.63 V to 4.06 V (14 stag	es)						
On-chip debug funct	tion	Provided							
Power supply voltag	e	V _{DD} = 1.6 to 5.5 V (T _A = - V _{DD} = 2.4 to 5.5 V (T _A = -	-40 to +85°C) -40 to +105°C)						
Operating ambient t	emperature	$T_A = -40$ to +85°C (A: Co $T_A = -40$ to +105°C (G: In	nsumer applications, D: Industrial applications)	dustrial applications),					

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

(2	121
(2)	Z)

		44-pin	48-pin	52-pin	64-pin				
It	em	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx				
		(x = A, C to E)	(x = A, C to E)	(x = C to E)	(x = C to E)				
Clock output/buzz	er output	2	2	2	2				
		 2.44 kHz, 4.88 kHz, (Main system clock: 256 Hz, 512 Hz, 1.02 (Subsystem clock: fs) 	 • 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) • 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 						
8/10-bit resolution	A/D converter	10 channels	10 channels	12 channels	12 channels				
Serial interface		[44-pin products] • CSI: 1 channel/UAR • CSI: 1 channel/UAR • CSI: 2 channels/UAF [48-pin, 52-pin produc • CSI: 2 channels/UAF • CSI: 1 channel/UAR • CSI: 2 channels/UAF [64-pin products] • CSI: 2 channels/UAF • CSI: 2 channels/UAF	T (UART supporting LIN T: 1 channel/simplified I RT: 1 channel/simplified ts] RT (UART supporting L T: 1 channel/simplified RT (UART supporting L RT: 1 channel/simplified RT 1 channel/simplified	N-bus): 1 channel/simpli ² C: 1 channel I ² C: 2 channels IN-bus): 1 channel/simp ² C: 1 channel I ² C: 2 channels IN-bus): 1 channel/simp I ² C: 2 channels	ified I ² C: 1 channel Nified I ² C: 2 channels Nified I ² C: 2 channels				
	I ² C bus			T channel					
Data transfer cont	roller (DTC)	29 sources	30 sources		31 sources				
Event link controll	er (ELC)	Event input: 20 Event trigger output: 7							
Vectored inter-	Internal	24	24	24	24				
rupt sources	External	7	10	12	13				
Key interrupt		4	6	8	8				
Reset	rouit	 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access 							
Power-on-reset circuit		• Power-on-reset: $1.51 \pm 0.04 \text{ V} (\text{Ta} = -40 \text{ to } +85^{\circ}\text{C})$ $1.51 \pm 0.06 \text{ V} (\text{Ta} = -40 \text{ to } +105^{\circ}\text{C})$ • Power-down-reset: $1.50 \pm 0.04 \text{ V} (\text{Ta} = -40 \text{ to } +85^{\circ}\text{C})$ $1.50 \pm 0.06 \text{ V} (\text{Ta} = -40 \text{ to } +105^{\circ}\text{C})$							
Voltage detector		1.63 V to 4.06 V (14 s	tages)						
On-chip debug fur	nction	Provided							
Power supply volt	age	VDD = 1.6 to 5.5 V (TA VDD = 2.4 to 5.5 V (TA	VDD = 1.6 to 5.5 V (TA = -40 to +85°C) VDD = 2.4 to 5.5 V (TA = -40 to +105°C)						
Operating ambien	t temperature	$T_A = -40$ to +85°C (A: Consumer applications, D: Industrial applications), $T_A = -40$ to +105°C (G: Industrial applications)							

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

RENESAS

(2)2	١
(2/2)

		80-pin	100-pin				
Item		R5F104Mx	R5F104Px				
		(x = K, L)	(x = K, L)				
Clock output/buzz	er output	2	2				
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.	5 MHz, 5 MHz, 10 MHz				
		(Main system clock: fMAIN = 20 MHz operation	on)				
		• 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.09	96 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz				
		(Subsystem clock: fs∪B = 32.768 kHz opera	tion)				
8/10-bit resolution	A/D converter	17 channels	20 channels				
D/A converter		2 channels	2 channels				
Comparator		2 channels	2 channels				
Serial interface		[80-pin, 100-pin products]					
		CSI: 2 channels/UART (UART supporting L	IN-bus): 1 channel/simplified I ² C: 2 channels				
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels				
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels				
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels				
	I ² C bus	2 channels	2 channels				
Data transfer controller (DTC)		39 sources	39 sources				
Event link controll	er (ELC)	Event input: 26					
		Event trigger output: 9					
Vectored inter-	Internal	32	32				
rupt sources	External	13	13				
Key interrupt		8	8				
Reset		Reset by RESET pin					
		Internal reset by watchdog timer					
		 Internal reset by power-on-reset 					
		 Internal reset by voltage detector 					
		Internal reset by illegal instruction execution	Note				
		 Internal reset by RAM parity error 					
		 Internal reset by illegal-memory access 					
Power-on-reset ci	rcuit	• Power-on-reset: 1.51 ±0.04 V (TA = -40	to +85°C)				
		1.51 ±0.06 V (TA = -40	to +105°C)				
		• Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (1A = -40	1 to +85°C)				
		1.50 ±0.06 V (TA = -40	(0+105 C)				
Voltage detector		1.63 V to 4.06 V (14 stages)					
On-chip debug fu	nction	Provided					
Power supply volt	age	VDD = 1.6 to 5.5 V (TA = -40 to +85°C)					
		VDD = 2.4 to 5.5 V (TA = -40 to +105°C)					
Operating ambier	it temperature	$T_A = -40$ to +85°C (A: Consumer applications	, D: Industrial applications),				
		TA = -40 to +105°C (G: Industrial applications)					

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or onchip debug emulator.

2. ELECTRICAL SPECIFICATIONS (TA = -40 to $+85^{\circ}$ C)

This chapter describes the following electrical specifications.

Target products A: Consumer applications $T_A = -40$ to $+85^{\circ}C$

R5F104xxAxx

- D: Industrial applications TA = -40 to +85°C R5F104xxDxx
- G: Industrial applications when TA = -40 to +105°C products is used in the range of TA = -40 to +85°C R5F104xxGxx
- Caution 1. The RL78 microcontrollers have an on-chip debug function, which is provided for development and evaluation. Do not use the on-chip debug function in products designated for mass production, because the guaranteed number of rewritable times of the flash memory may be exceeded when this function is used, and product reliability therefore cannot be guaranteed. Renesas Electronics is not liable for problems occurring when the on-chip debug function is used.
- Caution 2. With products not provided with an EVDD0, EVDD1, EVSS0, or EVSS1 pin, replace EVDD0 and EVDD1 with VDD, or replace EVSS0 and EVSS1 with VSS.
- Caution 3. The pins mounted depend on the product. Refer to 2.1 Port Functions to 2.2.1 Functions for each product in the RL78/G14 User's Manual.

2.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe-		clock (fMAIN)	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
cution time)		operation	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.6~V \le V_{DD} \le 5.5~V$	0.25		1	μs
		Subsystem clock (fsub) operation		$1.8~V \le V_{DD} \le 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \leq V \text{DD} \leq 5.5~V$	0.03125		1	μs
		program-	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		ming mode	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock	fEX	$2.7~V \leq V_{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{DD} \leq$	2.7 V		1.0		16.0	MHz
		$1.8 \text{ V} \le \text{V}_{\text{DD}}$ <	2.4 V		1.0		8.0	MHz
		$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$			1.0		4.0	MHz
	fexs				32		35	kHz
External system clock	texн,	$2.7~V \leq V \text{DD} \leq$	5.5 V		24			ns
input high-level width,	texL	$2.4~V \leq V \text{DD} \leq$	2.7 V		30			ns
IOW-IEVEI WIQ[I]		$1.8 \text{ V} \leq \text{Vdd} <$	2.4 V		60			ns
		$1.6 \text{ V} \leq \text{V}_{\text{DD}}$ <	1.8 V		120			ns
	texhs, texls				13.7			μs
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	ttiH, tti∟				1/fмск + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7~V \leq EV_{DD0} \leq 5.5~V$	100			ns
				$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$	300			ns
				$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$	500			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	40			ns
level width, low-level	t⊤JIL			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns
				$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$	200			ns

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD $1.8 V \le EVDD0 < 2.7 V$: MIN. 125 ns $1.6 V \le EVDD0 < 1.8 V$: MIN. 250 ns

Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(2/2)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		transmission	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array} \end{array} \label{eq:varphi}$		Note 1		Note 1		Note 1	bps
		$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 1.4 \mbox{ k}\Omega, \\ V_b = 2.7 \mbox{ V} \end{array}$		2.8 Note 2		2.8 Note 2		2.8 Note 2	Mbps	
	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$		Note 3		Note 3		Note 3	bps		
		$\label{eq:constraint} \begin{array}{l} Theoretical value of the \\ maximum transfer rate \\ C_b = 50 \mbox{ pF}, \mbox{ R}_b = 2.7 \mbox{ k}\Omega, \\ V_b = 2.3 \mbox{ V} \end{array}$		1.2 Note 4		1.2 Note 4		1.2 Note 4	Mbps	
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \end{array}$		Notes 5, 6		Notes 5, 6		Notes 5, 6	bps	
			Theoretical value of the maximum transfer rate $C_b = 50 \text{ pF}, R_b = 5.5 \text{ k}\Omega, V_b = 1.6 \text{ V}$		0.43 Note 7		0.43 Note 7		0.43 Note 7	Mbps

Note 1. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate. Expression for calculating the transfer rate when $4.0 \text{ V} \le \text{EV}\text{DD0} \le 5.5 \text{ V}$ and $2.7 \text{ V} \le \text{Vb} \le 4.0 \text{ V}$

1

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{|\text{Transfer rate} \times 2|} - \{-C_b \times R_b \times \ln(1 - \frac{2.2}{|V_b|})\}}{(\frac{1}{|\text{Transfer rate}|}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.

Note 3. The smaller maximum transfer rate derived by using fMCK/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. $Rb[\Omega]$: Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

(2/3)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (high-s mo	peed main) ode	LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note 1}	tsıĸı		81		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	177		479		479		ns
		$ \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2,} \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split} $	479		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tĸsı1		19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$ \begin{split} & 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V}^{\text{Note 2}}, \\ & \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	19		19		19		ns
Delay time from SCKp↓ to SOp output ^{Note 1}	tKSO1			100		100		100	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		195		195		195	ns
		$\label{eq:linear} \begin{split} & 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ & 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ & C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		483		483		483	ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. Use it with $EV_{DD0} \ge V_b$.

(Remarks are listed on the page after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

2.5.2 Serial interface IICA

(1) I²C standard mode

```
(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)
```

Parameter	Symbol	Conditions		HS (high-sp mc	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode	
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock	fscL	Standard mode:	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	100	0	100	0	100	kHz
frequency		fc∟k ≥ 1 MHz	$1.8~V \le EV_{DD0} \le 5.5~V$	0	100	0	100	0	100	kHz
			$1.7~V \leq EV_{DD0} \leq 5.5~V$	0	100	0	100	0	100	kHz
			$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	0	100	0	100	kHz
Setup time of	tsu: STA	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
restart condition		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		4.7		4.7		4.7		μs
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 8$	$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		_	4.7		4.7		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq EV_{DD0} \leq 8$	5.5 V	4.0		4.0		4.0		μs
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		4.0		4.0		4.0		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		-	_	4.0		4.0		μs
Hold time when	tLOW	$2.7 \text{ V} \leq EV_{DD0} \leq 8$	5.5 V	4.7		4.7		4.7		μs
SCLA0 = "L"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		4.7		4.7		4.7		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	-	_	4.7		4.7		μs
Hold time when	tніgн	$2.7 \text{ V} \leq EV_{DD0} \leq 8$	5.5 V	4.0		4.0		4.0		μs
SCLA0 = "H"		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.0		4.0		4.0		μs
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 8$	5.5 V	-	_	4.0		4.0		μs

 $(\ensuremath{\textit{Notes}}, \ensuremath{\textit{Caution}}, \ensuremath{\text{and}} \ensuremath{\textit{Remark}}$ are listed on the next page.)

(3) I²C fast mode plus

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Co	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode	
					MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode plus: $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ fclk $\ge 10 \text{ MHz}$		Fast mode plus: $2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ 01000fclk $\ge 10 \text{ MHz}$ -		_		-	-	kHz
Setup time of restart condi- tion	tsu: sta	$2.7 \text{ V} \leq EV_{DD0} \leq 5$	2.7 V ≤ EVDD0 ≤ 5.5 V			-		_		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq EV_{DD0} \leq 5$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			—		—		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7~V \leq EV_{DD0} \leq 5$.5 V	0.5		—		_		μs
Hold time when SCLA0 = "H"	tніgн	$2.7~V \leq EV_{DD0} \leq 5$	5V 0.26 — —		-	μs				
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5$.5 V	50		—		-	_	ns
Data hold time (transmission) Note 2	thd: dat	$2.7 \text{ V} \leq EV_{DD0} \leq 5$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		0.45	-	_	-	-	μs
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{DD0} \leq 5$.5 V	0.26		-	_	-	_	μs
Bus-free time	t BUF	$2.7~V \leq EV_{DD0} \leq 5$.5 V	0.5		-	_	_	_	μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEDAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- Note 3. The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows. Fast mode plus: Cb = 120 pF, Rb = 1.1 k Ω

IICA serial transfer timing

Remark n = 0, 1

$(1A = -40 \ 10 + 105 \ 0, 2.4)$		$J = \Box V D D I \leq V D D \leq J.J V, V J = L$	1^{1}				(2/3)
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1 Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				8.5 Note 2	mA	
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40 to P47, P102, P120, P130, P140 to P145 (When duty ≤ 70% ^{Note 3})	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			15.0	mA
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			9.0	mA
		Total of P05, P06, P10 to P17, P30, P31, P50 to P57,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			35.0	mA
		P80 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty \leq 70% ^{Note 3})	2.4 V ≤ EVDD0 < 2.7 V			20.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				80.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			5.0	mA

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL × 0.7)/(n × 0.01)
 - <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

3.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min- Tcy		Main system	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe- cution time)		clock (fmain) operation	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		Subsystem clo	ock (fsub) operation	$2.4~V \leq V_{DD} \leq 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
		program- ming mode	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
External system clock	fEX	$2.7~V \leq V_{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4~V \leq V_{DD} \leq$	2.7 V		1.0		16.0	MHz
	fexs				32		35	kHz
External system clock	texн, texL	$2.7~V \leq V_{DD} \leq$	5.5 V		24			ns
input high-level width, low-level width		$2.4~V \leq V_{DD} \leq$	2.7 V		30			ns
	texhs, texls				13.7			μs
TI00 to TI03, TI10 to	tтін, tті∟				1/fмск + 10			ns
TI13 input high-level width, low-level width					Note			
Timer RJ input cycle	fc	TRJIO		$2.7~V \leq EV \text{DD0} \leq 5.5~V$	100			ns
				$2.4~V \leq EV_{DD0} < 2.7~V$	300			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	40			ns
level width, low-level width	t⊤ji∟			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD2.4 V $\leq EVDD0 < 2.7$ V: MIN. 125 ns

 Remark
 fmck: Timer array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

Interrupt Request Input Timing INTPO to INTP11 Key Interrupt Input Timing KR0 to KR7 RESET Input Timing

RESET

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

1	[/ – -40 to +105°C 24 V < EV_00 – EV_01 < V00 < 55 V V99 – EV990 – EV991 − 0	n vn
1	$A = -40 \ 10 + 103 \ C, 2.4 \ V \ge EVDD0 = EVDD1 \ge VDD \ge 3.5 \ V, V33 = EV330 = EV331 = 0$, v)

(2/2)

Parameter	Symbol	Conditions	HS (high-speed r	Unit	
			MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/f _{MCK} + 340 Note 2		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 340 Note 2		ns
			1/fmck + 760 Note 2		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 760 Note 2		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/fмск + 570 Note 2		ns
Data hold time (transmission)	thd:dat		0	770	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	770	ns
			0	1420	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	1420	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 30, 31), g: PIM, POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10, 12, 13)

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$		1.2	±7.0	LSB
Conversion time	tCONV	10-bit resolution Target pin: ANI0 to ANI14, ANI16 to ANI20	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: internal reference voltage, and temperature sensor output voltage (HS (high-speed main) mode)	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$			±2.0	LSB
Analog input voltage	Vain	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI20				EV _{DD0}	V
		Internal reference voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)		VBGR Note 3		V	
		Temperature sensor output voltage (2.4 V \leq Vpd \leq 5.5 V, HS (high-speed main) mode)			V _{TMPS25} Note 3		

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

3.6.2 Temperature sensor characteristics/internal reference voltage characteristic

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	Fvtmps	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V, HS (high-speed main) mode)

3.6.3 D/A converter characteristics

(TA = -40 to +105°C, 2.4 V \leq EVsso = EVss1 \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 M Ω	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.5	LSB
		Rload = 8 M Ω	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.5	LSB
Settling time	t SET	Cload = 20 pF	$2.7~V \leq V_{DD} \leq 5.5~V$			3	μs
			$2.4~V \leq V_{DD} < 2.7~V$			6	μs

