

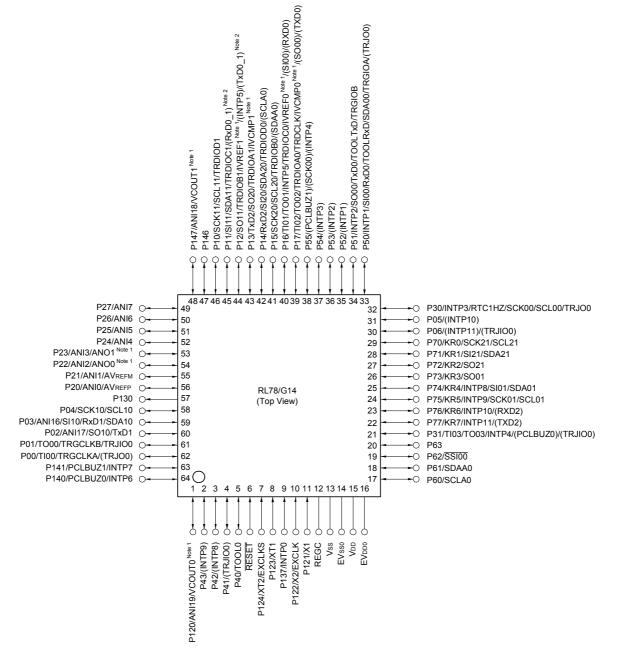
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

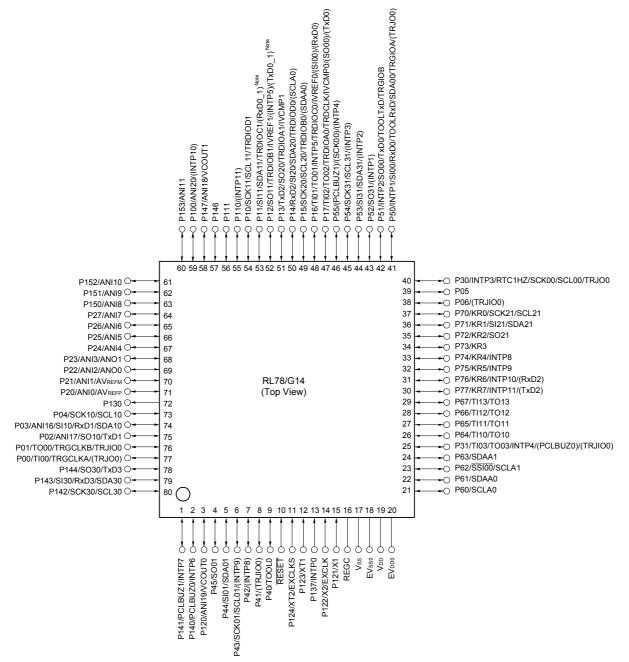

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104ffafp-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.8 64-pin products

- 64-pin plastic LQFP (14 × 14 mm, 0.8 mm pitch)
- + 64-pin plastic LQFP (12 \times 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)



- Note 1. Mounted on the 96 KB or more code flash memory products.
- Note 2. Mounted on the 384 KB or more code flash memory products.
- Caution 1. Make EVsso pin the same potential as Vss pin.
- Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

1.3.9 80-pin products

- 80-pin plastic LQFP (14 \times 14 mm, 0.65 mm pitch)
- 80-pin plastic LFQFP (12 \times 12 mm, 0.5 mm pitch)

Note Mounted on the 384 KB or more code flash memory products.

- Caution 1. Make EVsso pin the same potential as Vss pin.
- Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the VSS and EVSS0 pins to separate ground lines.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xD (x = A to C, E to G, J, L): Start address FE900H
	R5F104xE (x = A to C, E to G, J, L): Start address FE900H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 16 KB to 64 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

					(1/2				
		44-pin	48-pin	52-pin	64-pin				
	Item	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx				
		(x = A, C to E)	(x = A, C to E)	(x = C to E)	(x = C to E)				
Code flash me	emory (KB)	16 to 64	16 to 64	32 to 64	32 to 64				
Data flash me	mory (KB)	4	4	4	4				
RAM (KB)		2.5 to 5.5 Note	2.5 to 5.5 Note	4 to 5.5 Note	4 to 5.5 Note				
Address spac	e	1 MB							
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)							
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)							
Subsystem cl	ock	XT1 (crystal) oscillation	n, external subsystem cl	ock input (EXCLKS) 3	2.768 kHz				
Low-speed or	n-chip oscillator clock	15 kHz (TYP.): Vod = 1	.6 to 5.5 V						
General-purpo	ose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)							
Minimum instr	ruction execution time	0.03125 μs (High-speed on-chip oscillator clock: fiн = 32 MHz operation)							
		0.05 μs (High-speed system clock: fмx = 20 MHz operation)							
		30.5 µs (Subsystem clock: fsub = 32.768 kHz operation)							
	ſ	 Multiplication (8 bits > Multiplication and Accession 	/logical operation (8/16 < 8 bits, 16 bits × 16 bits) cumulation (16 bits × 16 nd bit manipulation (Set), Division (16 bits ÷ 16 bits + 32 bits)					
I/O port					· · · · · · · // · · ·				
	Total	40	44	48	58				
	Total CMOS I/O	40 31	44 34	48 38					
Minimum instruc		-			58				
	CMOS I/O	31	34	38	58 48				
port	CMOS I/O CMOS input	31	34 5	38 5	58 48 5				
	CMOS I/O CMOS input CMOS output N-ch open-drain I/O	31 5 — 4 8 channels	34 5 1	38 5 1 4	58 48 5 1 4				
	CMOS I/O CMOS input CMOS output N-ch open-drain I/O (6 V tolerance)	31 5 — 4 8 channels	34 5 1 4	38 5 1 4	58 48 5 1 4				
	CMOS I/O CMOS input CMOS output N-ch open-drain I/O (6 V tolerance) 16-bit timer	31 5 — 4 8 channels (TAU: 4 channels, Time	34 5 1 4	38 5 1 4	58 48 5 1 4				
	CMOS I/O CMOS input CMOS output N-ch open-drain I/O (6 V tolerance) 16-bit timer Watchdog timer Real-time clock	31 5 — 4 8 channels (TAU: 4 channels, Time 1 channel	34 5 1 4	38 5 1 4	58 48 5 1 4				
Timer	CMOS I/O CMOS input CMOS output N-ch open-drain I/O (6 V tolerance) 16-bit timer Watchdog timer Real-time clock (RTC)	31 5 	34 5 1 4 er RJ: 1 channel, Timer	38 5 1 4	58 48 5 1 4				

(Note is listed on the next page.)

RENESAS

(2/2)	
(2)2)	

		44-pin	48-pin	52-pin	(2/) 64-pin			
	tem	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx			
		(x = F to H, J)	(x = F to H, J)	(x = F to H, J)	(x = F to H, J)			
Clock output/buzzer output		2	2	2	2			
		(Main system clock: • 256 Hz, 512 Hz, 1.02	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsuB = 32.768 kHz operation) 					
8/10-bit resolution	n A/D converter	10 channels	10 channels	12 channels	12 channels			
D/A converter		2 channels		1				
Comparator		2 channels						
Serial interface		 [44-pin products] CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels [48-pin, 52-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels CSI: 1 channel/UART: 1 channel/simplified I²C: 1 channel CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels [64-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels [64-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels [64-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels [64-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels [64-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels 						
	I ² C bus	1 channel	1 channel	1 channel	1 channel			
Data transfer con	troller (DTC)	31 sources	32 sources		33 sources			
Event link control	ller (ELC)	Event input: 22 Event trigger output: 9						
Vectored inter-	Internal	24	24	24	24			
rupt sources	External	7	10	12	13			
Key interrupt		4	6	8	8			
Reset Power-on-reset circuit		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access Power-on-reset: 1.51 ±0.04 V (TA = -40 to +85°C) 						
		1.51 ±0.06 V (TA = -40 to +105°C) • Power-down-reset: 1.50 ±0.04 V (TA = -40 to +85°C) 1.50 ±0.06 V (TA = -40 to +105°C)						
Voltage detector		1.63 V to 4.06 V (14 st	ages)					
On-chip debug fu		Provided	101 0700					
Power supply vol	tage	VDD = 1.6 to 5.5 V (TA VDD = 2.4 to 5.5 V (TA						
Operating ambie	nt temperature	TA = -40 to +85°C (A: Consumer applications, D: Industrial applications), TA = -40 to +105°C (G: Industrial applications)						

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

1	S	in	١
(2	12)

		80-pin	(2/2) 100-pin			
ľ	tem	R5F104Mx	R5F104Px			
		(x = F to H, J)	(x = F to H, J)			
Clock output/buzzer output		2	2			
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 7 (Main system clock: fMAIN = 20 MHz opera) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4. (Subsystem clock: fsub = 32.768 kHz opera) 	ntion) 096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz			
8/10-bit resolution	n A/D converter	17 channels	20 channels			
D/A converter		2 channels	2 channels			
Comparator		2 channels	2 channels			
Serial interface		[80-pin, 100-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I ² C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels				
	I ² C bus	2 channels	2 channels			
Data transfer con	troller (DTC)	39 sources	39 sources			
Event link control	ler (ELC)	Event input: 26 Event trigger output: 9				
Vectored inter-	Internal	32	32			
rupt sources	External	13	13			
Key interrupt	1	8	8			
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access				
Power-on-reset c	ircuit	• Power-on-reset: $1.51 \pm 0.04 \text{ V}$ (TA = -40 to +85°C) $1.51 \pm 0.06 \text{ V}$ (TA = -40 to +105°C) • Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (TA = -40 to +85°C) $1.50 \pm 0.06 \text{ V}$ (TA = -40 to +105°C)				
Voltage detector		1.63 V to 4.06 V (14 stages)				
On-chip debug fu	nction	Provided				
Power supply vol	tage	V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)				
Operating ambier	nt temperature	$T_A = -40$ to +85°C (A: Consumer application $T_A = -40$ to +105°C (G: Industrial application				

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

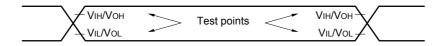
(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +85°C	, 1.6 V \leq EVDD0 \leq	VDD \leq 5.5 V, Vss =	= EVsso = 0 V)(2/2)
--------------------	-----------------------------	-------------------------	---------------------

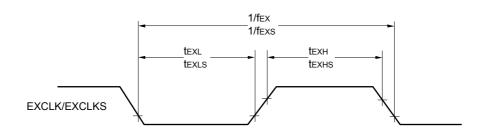
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply current	IDD2 Note 2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.80	3.09	mA
Note 1			mode Note 7	fiH = 32 MHz Note 4	VDD = 3.0 V		0.80	3.09	
				fносо = 32 MHz,	VDD = 5.0 V		0.49	2.40	
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.49	2.40	
				fносо = 48 MHz,	VDD = 5.0 V		0.62	2.40	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.62	2.40	1
				fносо = 24 MHz,	VDD = 5.0 V		0.4	1.83	
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.4	1.83	1
				fносо = 16 MHz,	VDD = 5.0 V		0.37	1.38	1
				fiн = 16 MHz Note 4	VDD = 3.0 V		0.37	1.38	1
			LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		260	710	μΑ
			mode Note 7	fiH = 8 MHz Note 4	VDD = 2.0 V		260	710	1
			LV (low-voltage main)	fносо = 4 MHz,	VDD = 3.0 V		420	700	μΑ
			mode Note 7	fiH = 4 MHz Note 4	VDD = 2.0 V		420	700	
			HS (high-speed main)	fmx = 20 MHz Note 3,	Square wave input		0.28	1.55	mA
			mode Note 7	VDD = 5.0 V	Resonator connection		0.40	1.74	
			LS (low-speed main) mode Note 7	f _{MX} = 20 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.28	1.55	
					Resonator connection		0.40	1.74	
				f _{MX} = 10 MHz ^{Note 3} , V _{DD} = 5.0 V	Square wave input		0.19	0.86	1
					Resonator connection		0.25	0.93	-
				V _{DD} = 3.0 V	Square wave input		0.19	0.86	
					Resonator connection		0.25	0.93	
					Square wave input		95	550	μΑ
				VDD = 3.0 V	Resonator connection		140	590	
				f _{MX} = 8 MHz Note 3,	Square wave input		95	550	
				VDD = 2.0 V	Resonator connection		140	590	
			Subsystem clock	fsue = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μΑ
			operation	$T_A = -40^{\circ}C$	Resonator connection		0.44	0.76	
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.30	0.57	
				TA = +25°C	Resonator connection		0.49	0.76	
				fsue = 32.768 kHz Note 5,	Square wave input		0.36	1.17	
				TA = +50°C	Resonator connection		0.59	1.36	
				fsub = 32.768 kHz Note 5,	Square wave input		0.49	1.97	
				TA = +70°C	Resonator connection		0.72	2.16	
				fsub = 32.768 kHz Note 5,	Square wave input		0.97	3.37	1
				TA = +85°C	Resonator connection		1.16	3.56	
	IDD3	STOP mode	TA = -40°C				0.18	0.51	μΑ
	Note 6	Note 8	TA = +25°C				0.24	0.51	
			TA = +50°C				0.29	1.10	
			TA = +70°C				0.41	1.90	
			TA = +85°C				0.90	3.30	

(Notes and Remarks are listed on the next page.)

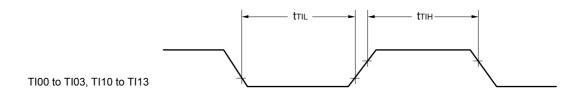
- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** file: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

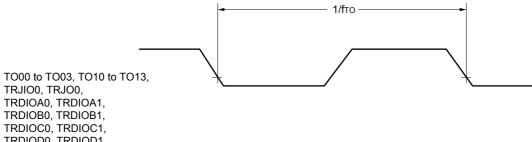


Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply cur-	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.93	3.32	mA
rent Note 1 Note 2	ote 2		mode Note 7	fiн = 32 MHz ^{Note 4}	VDD = 3.0 V		0.93	3.32	
				fносо = 32 MHz,	VDD = 5.0 V		0.5	2.63	1
				fiн = 32 MHz ^{Note 4}	VDD = 3.0 V		0.5	2.63	1
				fносо = 48 MHz,	VDD = 5.0 V		0.72	2.60	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.72	2.60	
				fносо = 24 MHz,	VDD = 5.0 V		0.42	2.03	1
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.42	2.03	1
				fносо = 16 MHz,	VDD = 5.0 V		0.39	1.50	
				fiн = 16 MHz ^{Note 4}	VDD = 3.0 V		0.39	1.50	1
			LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		270	800	μA
			mode Note 7	fiH = 8 MHz Note 4	VDD = 2.0 V		270	800	1
			LV (low-voltage main)	fносо = 4 MHz,	VDD = 3.0 V		450	755	μA
			mode Note 7	fiH = 4 MHz Note 4	VDD = 2.0 V		450	755	1
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.69	mA
			mode Note 7	VDD = 5.0 V	Resonator connection		0.41	1.91	1
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.69	1
				VDD = 3.0 V	Resonator connection		0.41	1.91	1
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.94	1
				VDD = 5.0 V	Resonator connection		0.26	1.02	1
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.94	1
				VDD = 3.0 V	Resonator connection		0.26	1.02	1
			LS (low-speed main)	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	610	μA
			mode Note 7	VDD = 3.0 V	Resonator connection		150	660	1
				f _{MX} = 8 MHz Note 3,	Square wave input		110	610	1
				VDD = 2.0 V	Resonator connection		150	660	1
			Subsystem clock oper-	fsub = 32.768 kHz Note 5,	Square wave input		0.31		μA
			ation	TA = -40°C	Resonator connection		0.50		1
				fsub = 32.768 kHz Note 5,	Square wave input		0.38	0.76	1
				TA = +25°C	Resonator connection		0.57	0.95	1
				fsue = 32.768 kHz Note 5,	Square wave input		0.47	3.59	1
				TA = +50°C	Resonator connection		0.70	3.78	1
				fsub = 32.768 kHz Note 5,	Square wave input		0.80	6.20	1
				TA = +70°C	Resonator connection		1.00	6.39	1
				fsub = 32.768 kHz Note 5,	Square wave input		1.65	10.56	1
				TA = +85°C	Resonator connection		1.84	10.75	1
	IDD3	STOP mode	TA = -40°C				0.19		μA
	Note 6	Note 8	TA = +25°C				0.30	0.59	1
			T _A = +50°C				0.41	3.42	1
			TA = +70°C				0.80	6.03	1
			TA = +85°C				1.53	10.39	1


(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(Notes and Remarks are listed on the next page.)


AC Timing Test Points



External System Clock Timing

TI/TO Timing

TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	/mbol Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	Ì
Slp setup time (to SCKp↓) ^{Note 2}	tsıĸ1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	23		110		110		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	33		110		110		ns
SIp hold time (from SCKp↓) ^{Note 2}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	10		10		10		ns
		$\label{eq:VDD0} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	10		10		10		ns
Delay time from SCKp↑ to SOp output ^{Note 2}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$		10		10		10	ns
		$\begin{array}{l} 2.7 \ V \leq {\sf EV}_{{\sf DD0}} < 4.0 \ {\sf V}, \\ 2.3 \ V \leq {\sf V}_b \leq 2.7 \ {\sf V}, \\ {\sf C}_b = 20 \ {\sf pF}, \ {\sf R}_b = 2.7 \ {\sf k}\Omega \end{array}$		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

Note 2. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

Remark 1. Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM and POM number (g = 3, 5)

Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number

Remark 4. This value is valid only when CSI00's peripheral I/O redirect function is not used.

(mn = 00))

(3/3)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions		HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsıĸı		44		110		110		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	44		110		110		ns
		$ \begin{split} & 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V} \ \text{Note} \ ^2, \\ & \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note 1}	tksi1		19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 1}	tkso1			25		25		25	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$ \begin{split} & 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V} \ ^{\text{Note 2}}, \\ & \text{C}_{b} = 30 \ \text{pF}, \ \text{R}_{b} = 5.5 \ \text{k}\Omega \end{split} $		25		25		25	ns

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{ VSS} = \text{EVSS0} = \text{EVSS1} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. Use it with $EV_{DD0} \ge V_b$.

(**Remarks** are listed on the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

RL78/G14

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Conditions			• • •		/-speed mode	LV (low- main)	-voltage mode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
SCKp cycle time	tксү2	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V,$	24 MHz < fмск	14/fмск		—		—		ns
Note 1		$2.7~V \leq V_b \leq 4.0~V$	20 MHz < fmck \leq 24 MHz	12/fмск		—		_		ns
			$8 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	10/fмск		-		—		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$2.7 \text{ V} \leq EV_{\text{DD0}} < 4.0 \text{ V},$	24 MHz < fмск	20/fмск		—		—		ns
		$2.3~V \leq V_b \leq 2.7~V$	20 MHz < fmck \leq 24 MHz	16/fмск		—		—		ns
			16 MHz < fмск ≤ 20 MHz	14/fмск		—		—		ns
			$8 \text{ MHz} < \text{fmck} \le 16 \text{ MHz}$	12/fмск		—		—		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	8/fмск		16/fмск		—		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$\label{eq:VDD} \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \\ \mbox{Note 2} \end{array}$	24 MHz < fмск	48/f мск		-		—		ns
			20 MHz < fmck \leq 24 MHz	36/fмск		-		—		ns
			16 MHz < fмск ≤ 20 MHz	32/fмск		—		_		ns
			$8 \text{ MHz} < \text{fmck} \le 16 \text{ MHz}$	26/fмск		—		—		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		16/fмск		—		ns
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns
SCKp high-/	tкн2,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2$	$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	tксү2/2		tксү2/2		tксү2/2		ns
low-level width				- 12		- 50		- 50		
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2$	$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V}$	tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, $	$1.6~V \leq V_b \leq 2.0~V$ Note 2	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) Note 3	te 3 $2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$	$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns	
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2$	$2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, T$	$1.6 \text{ V} \leq V_b \leq 2.0 \text{ V} \text{ Note } 2$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) _{Note 4}	tksı2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp	tkso2 $4.0 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V},$ Cb = 30 pF, Rb = 1.4 ks				2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
output ^{Note 5}		$\begin{array}{l} 2.7 \ V \leq {\sf EV}_{{\sf DD}0} < 4.0 \ {\sf V}, \ 2.3 \ {\sf V} \leq {\sf V}_{{\sf b}} \leq 2.7 \ {\sf V}, \\ C_{{\sf b}} = 30 \ {\sf pF}, \ R_{{\sf b}} = 2.7 \ {\sf k}\Omega \end{array}$			2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		1.8 V ≤ EVDD0 < 3.3 V, Cb = 30 pF, Rv = 5.5 kΩ	1.6 V \leq V _b \leq 2.0 V Note 2,		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

(TA = -40 to +85°C	. 1.8 V < EVDD0	$= EVDD1 \leq VDD \leq \frac{1}{2}$	5.5 V, Vss = EVsso	= EVSS1 = 0 V
		,		0.0 ., = =	

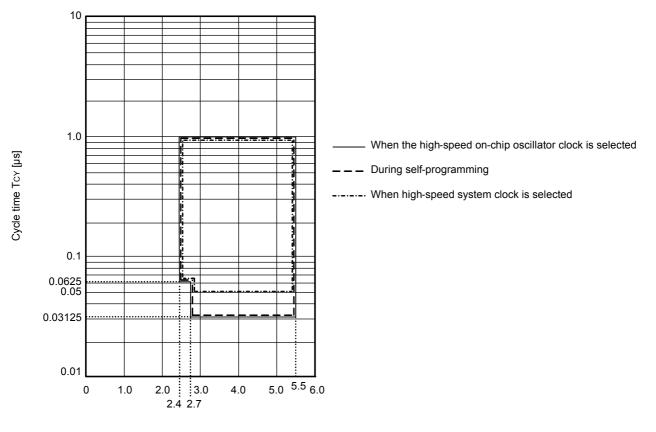
(Notes, Caution, and Remarks are listed on the next page.)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscilla- tor operating current	I _{FIL} Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operat- ing current	IIT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fı∟ = 15 kHz			0.22		μA
A/D converter operating cur- rent	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
			Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μA
Temperature sensor operat- ing current	ITMPS Note 1				75.0		μA
D/A converter operating cur- rent	IDAC Notes 1, 11, 13	Per D/A converter channel				1.5	mA
Comparator operating cur-	ICMP Notes 1, 12, 13	V _{DD} = 5.0 V, Regulator output voltage = 2.1 V	Window mode		12.5		μA
rent			Comparator high-speed mode		6.5		μA
			Comparator low-speed mode		1.7		μA
		VDD = 5.0 V,	Window mode		8.0		μA
		Regulator output voltage = 1.8 V	Comparator high-speed mode		4.0		μA
			Comparator low-speed mode		1.3		μA
LVD operating current	ILVD Notes 1, 7		·		0.08		μA
Self-programming operat- ing current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	ISNOZ Note 1	ADC operation	The mode is performed Note 10		0.50	1.10	mA
			The A/D conversion opera- tions are performed, Low volt- age mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	2.04	
		CSI/UART operation			0.70	1.54	
		DTC operation			3.10		

(4) Peripheral Functions (Common to all products)

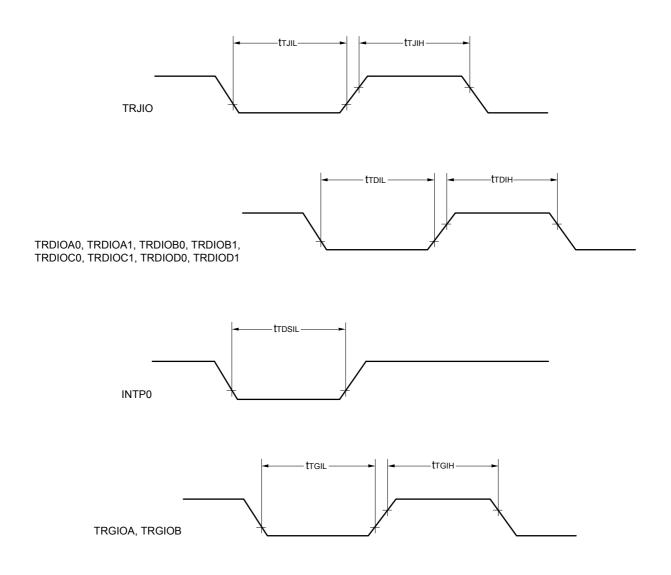
(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. Current flowing to VDD.

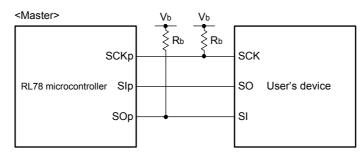

Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.

Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.

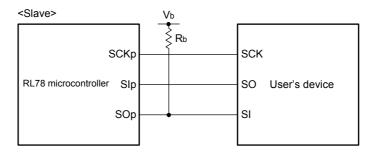
Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.


Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)


Supply voltage VDD [V]

CSI mode connection diagram (during communication at different potential



- **Remark 5.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 6.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 7. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
- Remark 8. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))

Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

1	$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$	۱.
	$TA = -40 [0 + 105]$ C, 2.4 V $\leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V$, VSS = EVSS0 = EVSS1 = 0 V	,

(2/2)

Parameter	Symbol	Conditions	HS (high-speed m	ain) mode	Unit
			MIN. MAX.		
Data setup time (reception)	tsu:dat		1/f _{MCK} + 340 Note 2		ns
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 340 Note 2		ns
			1/fмск + 760 Note 2		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fmck + 760 Note 2		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/fmck + 570 Note 2		ns
Data hold time (transmission)	thd:dat		0	770	ns
		$\begin{array}{l} 2.7 \; V \leq E V_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	770	ns
			0	1420	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	1420	ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

3.6.2 Temperature sensor characteristics/internal reference voltage characteristic

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, T _A = +25°C		1.05		V
Internal reference voltage	Vbgr	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V, HS (high-speed main) mode)

3.6.3 D/A converter characteristics

(TA = -40 to +105°C, 2.4 V \leq EVsso = EVss1 \leq VDD \leq 5.5 V, Vss = EVsso = EVss1 = 0 V)

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 M Ω	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.5	LSB
		Rload = 8 MΩ	$2.4~V \leq V \text{DD} \leq 5.5~V$			±2.5	LSB
Settling time	tset	Cload = 20 pF	$2.7~V \leq V\text{DD} \leq 5.5~V$			3	μs
			$2.4~V \leq V_{DD} < 2.7~V$			6	μs

