

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	12K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104ffafp-x0

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

(2	121
(2)	Z)

		11 nin	10 nin	EQ nin	(2/2)				
	14	44-pin	48-pin	52-pin	64-pin				
	Item	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx				
		(x = A, C to E)	(x = A, C to E)	(x = C to E)	(x = C to E)				
Clock output/buzzer output		2	2	2	2				
			9.76 kHz, 1.25 MHz, 2.						
			fmain = 20 MHz operatio						
			24 kHz, 2.048 kHz, 4.09		84 kHz, 32.768 kHz				
		(Subsystem clock: fs	uв = 32.768 kHz opera	tion)	1				
8/10-bit resolutio	n A/D converter	10 channels	10 channels	12 channels	12 channels				
Serial interface		• CSI: 1 channel/UAR	T (UART supporting LIN T: 1 channel/simplified I RT: 1 channel/simplified	² C: 1 channel	ified I ² C: 1 channel				
		[48-pin, 52-pin product	ts]						
		CSI: 2 channels/UAF	RT (UART supporting L	N-bus): 1 channel/simp	lified I ² C: 2 channels				
		CSI: 1 channel/UAR	T: 1 channel/simplified I	² C: 1 channel					
		CSI: 2 channels/UAF	RT: 1 channel/simplified	I ² C: 2 channels					
		[64-pin products]			_				
			RT (UART supporting L	, , ,	lified I ² C: 2 channels				
			RT: 1 channel/simplified						
		CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels							
	I ² C bus	1 channel	1 channel	1 channel	1 channel				
Data transfer cor	troller (DTC)	29 sources	30 sources		31 sources				
Event link contro	ller (ELC)	Event input: 20 Event trigger output: 7							
Vectored inter-	Internal	24	24	24	24				
rupt sources	External	7	10	12	13				
Key interrupt		4	6	8	8				
Reset		 Reset by RESET pin Internal reset by wat Internal reset by pow Internal reset by volt Internal reset by illeg Internal reset by RAN Internal reset by illeg 	chdog timer ver-on-reset age detector al instruction execution M parity error	Note					
Power-on-reset circuit		• Power-on-reset: $1.51 \pm 0.04 \text{ V} (\text{TA} = -40 \text{ to } +85^{\circ}\text{C})$ $1.51 \pm 0.06 \text{ V} (\text{TA} = -40 \text{ to } +105^{\circ}\text{C})$ • Power-down-reset: $1.50 \pm 0.04 \text{ V} (\text{TA} = -40 \text{ to } +85^{\circ}\text{C})$ $1.50 \pm 0.06 \text{ V} (\text{TA} = -40 \text{ to } +105^{\circ}\text{C})$							
Voltage detector		1.63 V to 4.06 V (14 st	tages)						
On-chip debug fu	Inction	Provided							
Power supply vol	tage	VDD = 1.6 to 5.5 V (TA	= -40 to +85°C)						
		$V_{DD} = 2.4 \text{ to } 5.5 \text{ V} (T_A = -40 \text{ to } +105^{\circ}\text{C})$							
Operating ambie	nt temperature	$T_A = -40$ to +85°C (A: Consumer applications, D: Industrial applications), $T_A = -40$ to +105°C (G: Industrial applications)							

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

RENESAS

[80-pin, 100-pin products (code flash memory 96 KB to 256 KB)]
 Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

			(1/2				
		80-pin	100-pin				
	Item	R5F104Mx	R5F104Px				
		(x = F to H, J)	(x = F to H, J)				
Code flash me	emory (KB)	96 to 256	96 to 256				
Data flash me	mory (KB)	8	8				
RAM (KB)		12 to 24 Note	12 to 24 Note				
Address space	e	1 MB					
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)					
	High-speed on-chip oscillator clock (fін)	HS (high-speed main) mode: 1 to 32 MHz (VE HS (high-speed main) mode: 1 to 16 MHz (VE LS (low-speed main) mode: 1 to 8 MHz (VE LV (low-voltage main) mode: 1 to 4 MHz (VE	op = 2.4 to 5.5 V), o = 1.8 to 5.5 V),				
Subsystem clo	ock	XT1 (crystal) oscillation, external subsystem cl	ock input (EXCLKS) 32.768 kHz				
Low-speed on	-chip oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V					
General-purpo	ose register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)					
Minimum instr	uction execution time	$0.03125 \ \mu s$ (High-speed on-chip oscillator cloc	k: fн = 32 MHz operation)				
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)					
		30.5 µs (Subsystem clock: fsub = 32.768 kHz operation)					
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 Multiplication (8 bits × 8 bits, 16 bits × 16 bits Multiplication and Accumulation (16 bits × 16 Rotate, barrel shift, and bit manipulation (Set), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) bits + 32 bits)				
I/O port	Total	74	92				
	CMOS I/O	64	82				
	CMOS input	5	5				
	CMOS output	1	1				
	N-ch open-drain I/O (6 V tolerance)	4	4				
Timer	16-bit timer	12 channels (TAU: 8 channels, Timer RJ: 1 channel, Timer RD: 2 channels, Timer RG: 1 channel)					
Watchdog timer		1 channel					
	Real-time clock (RTC)	1 channel					
	12-bit interval timer	1 channel					
	Timer output	Timer outputs: 18 channels PWM outputs: 12 channels					
	RTC output	1 • 1 Hz (subsystem clock: fsuв = 32.768 kHz)					

Note

In the case of the 24 KB, this is about 23 KB when the self-programming function and data flash function are used (For details, see **CHAPTER 3** in the RL78/G14 User's Manual).

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

$(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
X1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~V \leq V \text{DD} \leq 5.5~V$	1.0		20.0	MHz
	crystal resonator	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	1.0		16.0	
		$1.8~\text{V} \leq \text{V}\text{DD} < 2.4~\text{V}$	1.0		8.0	
		$1.6~\text{V} \leq \text{V}\text{DD} < 1.8~\text{V}$	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time. Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

- Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.
- Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

2.2.2 On-chip oscillator characteristics

(TA = -40 to +85°C, 1.6 V \leq VDD \leq 5.5 V, Vss = 0 V)

Oscillators	Parameters	C	MIN.	TYP.	MAX.	Unit	
High-speed on-chip oscillator clock frequency Notes 1, 2	fін			1		32	MHz
High-speed on-chip oscillator clock frequency		-20 to +85°C	$1.8~V \leq V\text{DD} \leq 5.5~V$	-1.0		+1.0	%
accuracy			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.0		+5.0	%
		-40 to -20°C	$1.8 \text{ V} \le \text{V}_{\text{DD}} < 5.5 \text{ V}$	-1.5		+1.5	%
			$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.

Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

2.3.2 Supply current characteristics

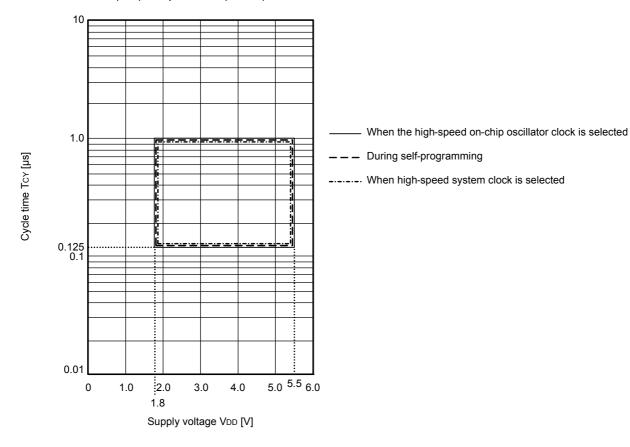
(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	Unit		
Supply	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	V _{DD} = 5.0 V		2.4		mA		
current		ing mode	mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.4				
Note 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.1				
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.1				
					HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		5.1	8.7	mA
			mode Note 5	fiн = 32 MHz Note 3	operation	VDD = 3.0 V		5.1	8.7			
				fносо = 32 MHz,	Normal	VDD = 5.0 V		4.8	8.1			
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		4.8	8.1			
				fносо = 48 MHz,	Normal	VDD = 5.0 V		4.0	6.9			
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.0	6.9			
				fносо = 24 MHz,	Normal	VDD = 5.0 V		3.8	6.3			
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		3.8	6.3			
				fносо = 16 MHz,	Normal	VDD = 5.0 V		2.8	4.6			
				fiH = 16 MHz Note 3	operation	VDD = 3.0 V		2.8	4.6			
			LS (low-speed main)	fносо = 8 MHz,	Normal	VDD = 3.0 V		1.3	2.0	mA		
			mode Note 5	fiH = 8 MHz Note 3	operation	VDD = 2.0 V		1.3	2.0			
			LV (low-voltage main)	fносо = 4 MHz,	Normal	VDD = 3.0 V		1.3	1.8	mA		
			mode Note 5	fiH = 4 MHz Note 3	operation	VDD = 2.0 V		1.3	1.8			
			HS (high-speed main)	fmx = 20 MHz Note 2,	Normal	Square wave input		3.3	5.3	mA		
			mode Note 5	VDD = 5.0 V	operation	Resonator connection		3.4	5.5			
				fmx = 20 MHz Note 2,	Normal	Square wave input		3.3	5.3			
				VDD = 3.0 V	operation	Resonator connection		3.4	5.5			
				fmx = 10 MHz Note 2,	Normal	Square wave input		2.0	3.1			
				VDD = 5.0 V	operation	Resonator connection		2.1	3.2			
				fmx = 10 MHz Note 2,	Normal	Square wave input		2.0	3.1			
				VDD = 3.0 V	operation	Resonator connection		2.1	3.2			
			LS (low-speed main)	f _{MX} = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9	mA		
			mode Note 5	VDD = 3.0 V	operation	Resonator connection		1.2	2.0			
				fmx = 8 MHz Note 2,	Normal	Square wave input		1.2	1.9			
				VDD = 2.0 V	operation	Resonator connection		1.2	2.0			
			Subsystem clock	fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1	μA		
			operation	TA = -40°C	operation	Resonator connection		4.7	6.1			
				fsue = 32.768 kHz Note 4	Normal	Square wave input		4.7	6.1			
				TA = +25°C	operation	Resonator connection		4.7	6.1			
		$T_A = +50^{\circ}C$ or	Normal	Square wave input		4.8	6.7					
			operation	Resonator connection	1	4.8	6.7	1				
			Normal	Square wave input		4.8	7.5	1				
				TA = +70°C	operation	Resonator connection		4.8	7.5	1		
	fsub = 32.768	fsue = 32.768 kHz Note 4	Normal	Square wave input		5.4	8.9	1				
				TA = +85°C	operation	Resonator connection		5.4	8.9	1		

(Notes and Remarks are listed on the next page.)

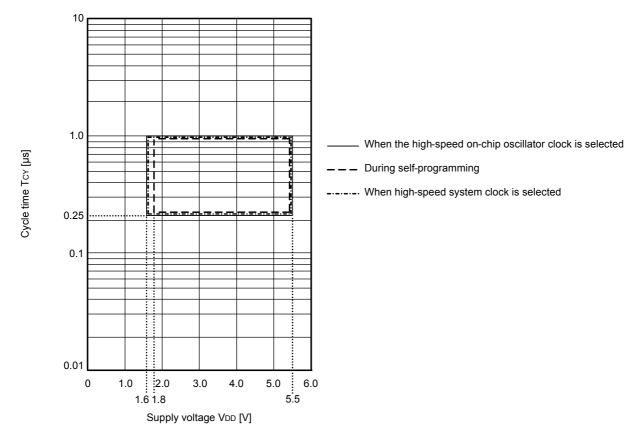
- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- **Note 3.** When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** file: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

2.4 AC Characteristics


Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V \text{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe-		clock (fmain)	mode	$2.4 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	0.0625		1	μs
cution time)		operation	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.6 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.25		1	μs
		Subsystem clo	ock (fsuв) operation	$1.8~V \le V_{DD} \le 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \leq V \text{DD} \leq 5.5~V$	0.03125		1	μs
		program-	mode	$2.4 \text{ V} \le \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		ming mode	LS (low-speed main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.125		1	μs
			LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	0.25		1	μs
External system clock	fex	$2.7 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$			1.0		20.0	MHz
frequency		$2.4~V \leq V_{DD} \leq$	2.7 V		1.0		16.0	MHz
		$1.8 \text{ V} \leq \text{V}_{DD} <$	2.4 V		1.0		8.0	MHz
		$1.6 V \le V_{DD} <$	1.8 V		1.0		4.0	MHz
	fexs				32		35	kHz
External system clock	texн,	$2.7~V \leq V_{DD} \leq$	5.5 V		24			ns
input high-level width,	texl	$2.4~V \leq V_{DD} \leq$	2.7 V		30			ns
low-level width		$1.8 \text{ V} \leq \text{V}_{DD} <$	2.4 V		60			ns
		$1.6 \text{ V} \leq \text{V}_{DD} <$	1.8 V		120			ns
	texhs, texls				13.7			μs
TI00 to TI03, TI10 to TI13 input high-level width, low-level width	ttiH, tti∟				1/fмск + 10 Note			ns
Timer RJ input cycle	fc	TRJIO		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	100			ns
				$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	300			ns
				$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$	500			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	40			ns
level width, low-level	t⊤JIL			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns
width				1.6 V ≤ EVDD0 < 1.8 V	200			ns

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD $1.8 V \le EVDD0 < 2.7 V$: MIN. 125 ns $1.6 V \le EVDD0 < 1.8 V$: MIN. 250 ns


Remark fMCK: Timer array unit operation clock frequency (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

TCY vs VDD (LS (low-speed main) mode)

TCY vs VDD (LV (low-voltage main) mode)

Parameter	Symbol	Conditions		-speed main) node	LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	1
SCLr clock frequency	fsc∟	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		1000 Note 1		300 Note 1		300 Note 1	kHz
				400 Note 1		300 Note 1		300 Note 1	kHz
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		400 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:VD} \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note 2}, \\ C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$		300 Note 1		300 Note 1		300 Note 1	kHz
Hold time when SCLr = "L"	t∟ow		475		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	475		1550		1550		ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 100 \; pF, \; R_b = 2.8 \; k\Omega \end{array}$	1150		1550		1550		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1150		1550		1550		ns
		$\label{eq:VD} \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \mbox{Note 2}, \\ C_b = 100 \ \mbox{pF}, \ R_b = 5.5 \ \mbox{k}\Omega \end{array}$	1550		1550		1550		ns
Hold time when SCLr = "H"	tнıgн	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	245		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	200		610		610		ns
			675		610		610		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	600		610		610		ns
		$\label{eq:VD0} \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ \text{Note} \ 2, \\ C_b = 100 \ \text{pF}, \ R_b = 5.5 \ \text{k}\Omega \end{array}$	610		610		610		ns

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified l²C mode) (TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Symbol Conditions		Conditions HS (high-speed main) mode		LS (low-speed main) mode			ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.		
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns	
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns	
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns	
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	250		250		ns	
Data hold time (transmission)	thd: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs	
Note 2		$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs	
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs	
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	0	3.45	0	3.45	μs	
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs	
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs	
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs	
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.0		4.0		μs	
Bus-free time	t BUF	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs	
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs	
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs	
		$1.6~V \le EV_{DD0} \le 5.5~V$	-	_	4.7		4.7		μs	

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DE DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb = 400 pF, Rb = 2.7 k Ω

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI14	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI20	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES					10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \le AV_{REFP} \le 5.5~V$	1.2 ±3.5		±3.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$		1.2	±7.0	LSB
Conversion time	t CONV	10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	3.1875		39	μs
			$1.8 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	17		39	μs
			$1.6~V \le V_{DD} \le 5.5~V$	57		95	μs
		10-bit resolution	$3.6~V \le V_{DD} \le 5.5~V$	2.375		39	μs
		Target pin: Internal reference voltage,	$2.7 \text{ V} \leq \text{V}\text{DD} \leq 5.5 \text{ V}$	3.5625		39	μs
		and temperature sensor output voltage (HS (high-speed main) mode)	$2.4~V \le V_{DD} \le 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±0.50	%FSR
Full-scale error Notes 1, 2	EFS	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±0.25	%FSR
		AV _{REFP} = V _{DD} Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±0.50	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±2.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 4}}$			±5.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±1.5	LSB
		AVREFP = VDD Note 3	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 4			±2.0	LSB
Analog input voltage	VAIN	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed m	nain) mode)	V _{BGR} Note 5			V
		Temperature sensor output voltage (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed m	nain) mode)	VT	MPS25 Not	ie 5	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3.	When AVREFP < VDD, the MAX. values are as follows.							
	Overall error:	Add ±1.0 LSB to the MAX. value when AVREFP = VDD.						
	Zero-scale error/Full-scale error:	Add ±0.05%FSR to the MAX. value when AVREFP = VDD.						
	Integral linearity error/ Differential linearity error:	Add ±0.5 LSB to the MAX. value when AVREFP = VDD.						
Note 4.	Values when the conversion time is set to 57 μs (min.) and 95 μs (max.).							

Note 5. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, 1.6 \text{ V} \le \text{AVREFP} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AVREFP}, \text{Reference voltage (-)} = \text{AVREFM} = 0 \text{ V})$

Parameter	Symbol	Conditions			TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	$1.8~V \le AV_{REFP} \le 5.5~V$		1.2	±5.0	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$1.8~V \leq V_{DD} \leq 5.5~V$	17		39	μs
			$1.6~V \leq V_{DD} \leq 5.5~V$	57		95	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$ Note 5			±0.60	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.35	%FSR
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 5}}$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±3.5	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}^{\text{Note 5}}$			±6.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$1.8 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±2.0	LSB
		$EV_{DD0} \le AV_{REFP} = V_{DD}$ Notes 3, 4	$1.6~V \leq AV_{REFP} \leq 5.5~V~Note~5$			±2.5	LSB
Analog input voltage	Vain	ANI16 to ANI20		0		AVREFP and EVDD0	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

 Overall error:
 Add ±1.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/ Differential linearity error:
 Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

 Note 4.
 When AVREFP < EVDD0 ≤ VDD, the MAX. values are as follows.</td>

 Overall error:
 Add ±4.0 LSB to the MAX. value when AVREFP = VDD.

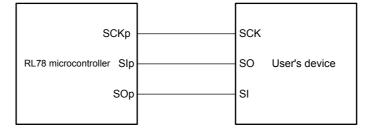
 Zero-scale error/Full-scale error:
 Add ±0.20%FSR to the MAX. value when AVREFP = VDD.

Integral linearity error/ Differential linearity error: Add ±2.0 LSB to the MAX. value when AVREFP = VDD.

Note 5. When the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

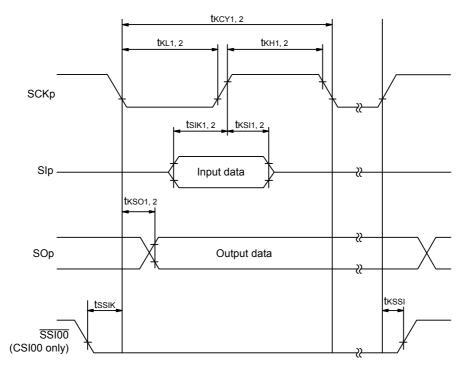

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)						
Parameter	Symbol		Conditions	HS (high-speed	HS (high-speed main) mode	
				MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	400		ns
		DAPmn = 1	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	1/fмск + 240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	1/fмск + 240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	1/fмск + 400		ns
		DAPmn = 1	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	240		ns
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	400		ns

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

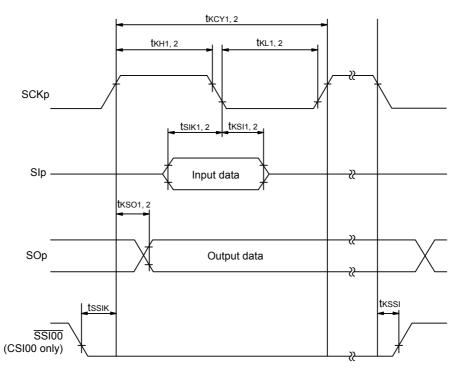
Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

CSI mode connection diagram (during communication at same potential)



CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

SCK00	SCK
SI00 RL78 microcontroller	SO User's device
SO00	SI
<u>SSI00</u>	SSO


Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

CSI mode serial transfer timing (during communication at same potential) (When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.)

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Parameter Symbol		Conditions	HS (high-spe	ed main) mode	Unit				
				MIN.	MAX.					
Transfer rate		$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		Note 1	bps					
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.6 Note 2	Mbps				
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V \end{array}$		Note 3	bps					
							Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 kΩ, V_b = 2.3 V		1.2 Note 4	Mbps
			$2.4 V \le EV_{DD0} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Note 5	bps				
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 kΩ, V_b = 1.6 V		0.43 Note 6	Mbps				

Note 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EVDD0 \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{Transfer rate}) \times Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

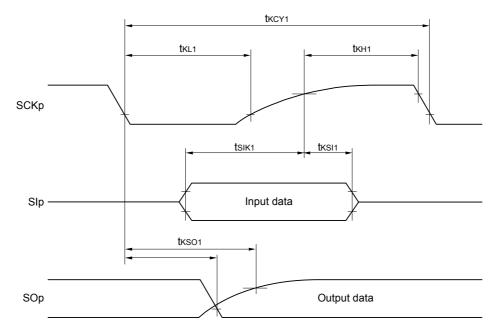
- Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** The smaller maximum transfer rate derived by using fMck/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

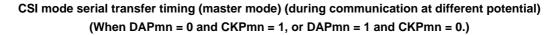
Maximum transfer rate = -

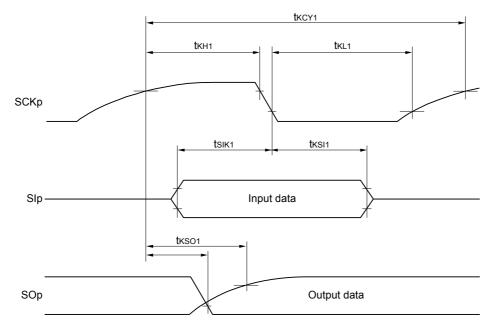
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

1


al value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times 100 [\%]}$$

Baud rate error (theoretical value) =


* This value is the theoretical value of the relative difference between the transmission and reception sides


Note 4.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.

RENESAS

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(3) When reference voltage (+) = VDD (ADREFP1 = 0, ADREFP0 = 0), reference voltage (-) = Vss (ADREFM = 0), target pin: ANI0 to ANI14, ANI16 to ANI20, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VDD, Reference voltage (-) = Vss)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Resolution	RES					10	bit
Overall error Note 1	AINL	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$		1.2	±7.0	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI0 to ANI14, ANI16 to ANI20	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
		Target pin: internal reference voltage, and temperature sensor output voltage	$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
		(HS (high-speed main) mode)	$2.4~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	$2.4~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			±0.60	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	$2.4~\text{V} \leq \text{V}_\text{DD} \leq 5.5~\text{V}$			±4.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$			±2.0	LSB
Analog input voltage	VAIN	ANI0 to ANI14		0		Vdd	V
		ANI16 to ANI20		0		EV _{DD0}	V
		Internal reference voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) r	node)	١	/ _{BGR} Note	3	V
		Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) r	node)	۲V	TMPS25 Note 3		V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

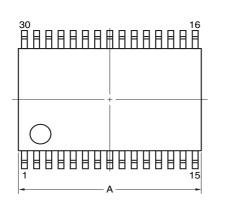
Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

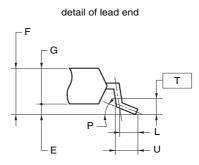
3.6.6 LVD circuit characteristics

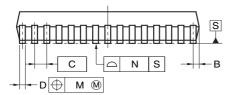
(1) Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, VSS = 0 V)

Pa	irameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Voltage detection	Supply voltage level	VLVD0	Rising edge	3.90	4.06	4.22	V	
threshold			Falling edge	3.83	3.98	4.13	V	
		VLVD1	Rising edge	3.60	3.75	3.90	V	
		Falling edge	3.53	3.67	3.81	V		
		VLVD2	Rising edge	3.01	3.13	3.25	V	
			Falling edge	2.94	3.06	3.18	V	
		Vlvd3	Rising edge	2.90	3.02	3.14	V	
			Falling edge	2.85	2.96	3.07	V	
		VLVD4	Rising edge	2.81	2.92	3.03	V	
			Falling edge	2.75	2.86	2.97	V	
		VLVD5	Rising edge	2.70	2.81	2.92	V	
			Falling edge	2.64	2.75	2.86	V	
			VLVD6	Rising edge	2.61	2.71	2.81	V
			Falling edge	2.55	2.65	2.75	V	
		VLVD7	Rising edge	2.51	2.61	2.71	V	
			Falling edge	2.45	2.55	2.65	V	
Minimum pulse wid	dth	tlw		300			μs	
Detection delay tin	ne					300	μs	

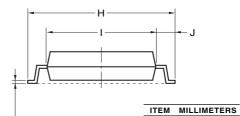



4. PACKAGE DRAWINGS


4.1 30-pin products

R5F104AAASP, R5F104ACASP, R5F104ADASP, R5F104AEASP, R5F104AFASP, R5F104AGASP R5F104AADSP, R5F104ACDSP, R5F104ADDSP, R5F104AEDSP, R5F104AFDSP, R5F104AGDSP R5F104AAGSP, R5F104ACGSP, R5F104ADGSP, R5F104AEGSP, R5F104AFGSP, R5F104AGGSP

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LSSOP30-0300-0.65	PLSP0030JB-B	S30MC-65-5A4-3	0.18



NOTE

Each lead centerline is located within 0.13 mm of its true position (T.P.) at maximum material condition.

·κ

A 9.85±0.15 в 0.45 MAX С 0.65 (T.P.) $0.24_{-0.07}^{+0.08}$ D F 0.1±0.05 F 1.3±0.1 G 1.2 8.1±0.2 Н 6.1±0.2 I 1.0±0.2 J 0.17±0.03 κ L 0.5 0.13 Μ Ν 0.10 Р 3°+5° 0.25 т 0.6±0.15 U

©2012 Renesas Electronics Corporation. All rights reserved.

