

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

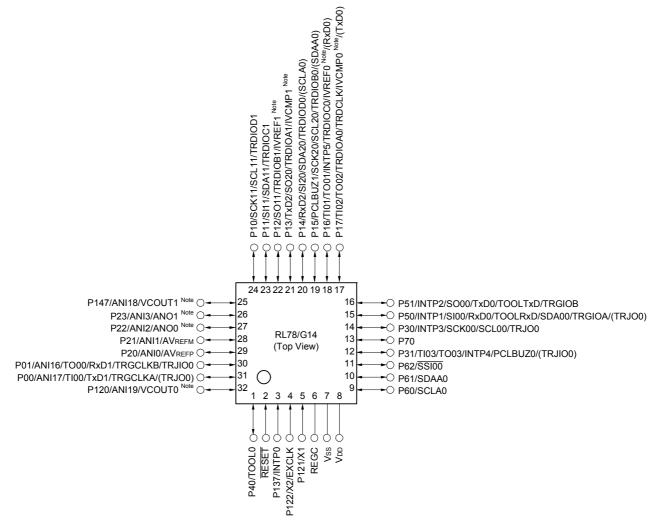
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104fgafp-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

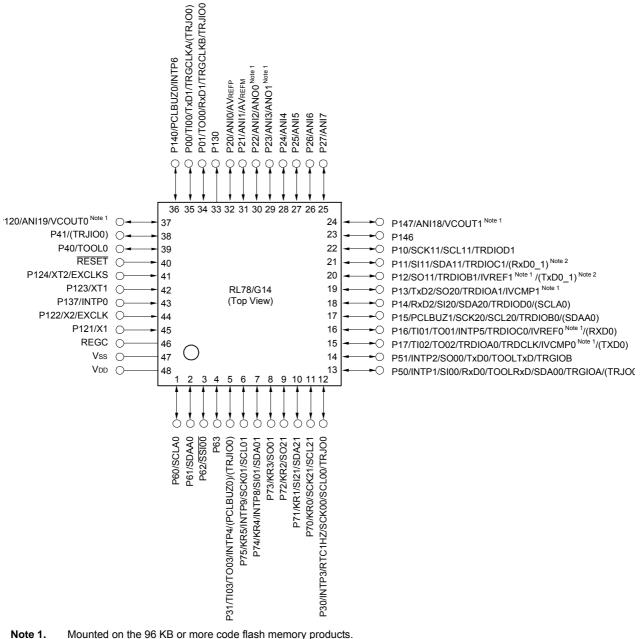

Pin count	Package	Fields of Application Note	Ordering Part Number
) pins	80-pin plastic LFQFP	A	R5F104MFAFB#V0, R5F104MGAFB#V0, R5F104MHAFB#V0, R5F104MJAFB#V0
	0		R5F104MFAFB#X0, R5F104MGAFB#X0, R5F104MHAFB#X0, R5F104MJAFB#X0
			R5F104MKAFB#30, R5F104MLAFB#30
		pin plastic LFOEP A RSF104MFAFB#V0, RSF104MGAFB#V0, RSF104MHAFB#V0, RSF104MLAFB#V0, RSF104MLDFB#V0, RSF104MLGFB#V0, R	
		D	R5F104MFDFB#V0, R5F104MGDFB#V0, R5F104MHDFB#V0, R5F104MJDFB#V0
			R5F104MFDFB#X0, R5F104MGDFB#X0, R5F104MHDFB#X0, R5F104MJDFB#X0
		G	R5F104MFGFB#V0, R5F104MGGFB#V0, R5F104MHGFB#V0, R5F104MJGFB#V0
			R5F104MFGFB#X0, R5F104MGGFB#X0, R5F104MHGFB#X0, R5F104MJGFB#X0
			R5F104MKGFB#30, R5F104MLGFB#30
			R5F104MKGFB#X0, R5F104MLGFB#50
		A	R5F104MFAFA#V0, R5F104MGAFA#V0, R5F104MHAFA#V0, R5F104MJAFA#V0
	$(14 \times 14 \text{ mm}, 0.65 \text{ mm pitch})$		R5F104MFAFA#X0, R5F104MGAFA#X0, R5F104MHAFA#X0, R5F104MJAFA#X0
			R5F104MKAFA#30, R5F104MLAFA#30
			R5F104MKAFA#50, R5F104MLAFA#50
		D	R5F104MFDFA#V0. R5F104MGDFA#V0. R5F104MHDFA#V0. R5F104MJDFA#V0
		G	
) pins		A	
			R5F104PFAFB#X0, R5F104PGAFB#X0, R5F104PHAFB#X0, R5F104PJAFB#X0
			R5F104PKAFB#30, R5F104PLAFB#30
			R5F104PKAFB#50, R5F104PLAFB#50
		D	R5F104PFDFB#V0, R5F104PGDFB#V0, R5F104PHDFB#V0, R5F104PJDFB#V0
		G	
pins 100-pin (14 × 1 (14 × 1			
	100-pin plastic LQFP	A	
	(14 \times 20 mm, 0.65 mm pitch)		
		D	
		G	
			R5F104PKGFA#30, R5F104PLGFA#30

Note Caution

For the fields of application, refer to Figure 1 - 1 Part Number, Memory Size, and Package of RL78/G14.

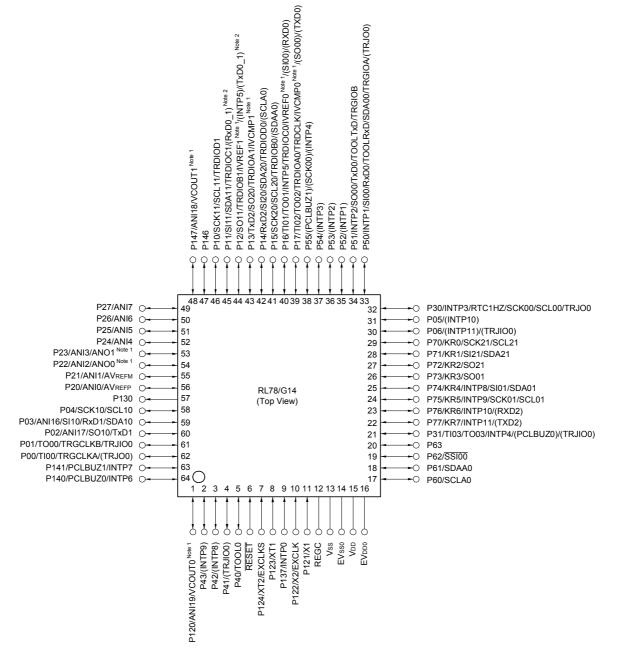
on The ordering part numbers represent the numbers at the time of publication. For the latest ordering part numbers, refer to the target product page of the Renesas Electronics website.

• 32-pin plastic LQFP (7 × 7 mm, 0.8 mm pitch)



- Note Mounted on the 96 KB or more code flash memory products.
- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.3.6 48-pin products


• 48-pin plastic LFQFP (7 × 7 mm, 0.5 mm pitch)

- Note 2. Mounted on the 384 KB or more code flash memory products.
- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

1.3.8 64-pin products

- 64-pin plastic LQFP (14 × 14 mm, 0.8 mm pitch)
- + 64-pin plastic LQFP (12 \times 12 mm, 0.65 mm pitch)
- 64-pin plastic LFQFP (10 × 10 mm, 0.5 mm pitch)

- Note 1. Mounted on the 96 KB or more code flash memory products.
- Note 2. Mounted on the 384 KB or more code flash memory products.
- Caution 1. Make EVsso pin the same potential as Vss pin.
- Caution 2. Make VDD pin the potential that is higher than EVDD0 pin.
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD and EVDD0 pins and connect the Vss and EVss0 pins to separate ground lines.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

10	(α)
1 /	///
12	~ /

			<u> </u>		(2/2			
		30-pin	32-pin	36-pin	40-pin			
ľ	tem	R5F104Ax (x = F, G)	R5F104Bx (x = F, G)	R5F104Cx (x = F, G)	R5F104Ex (x = F to H)			
Clock output/buzzer	output	2	2	2	2			
		 [30-pin, 32-pin, 36-pin products] 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) [40-pin products] 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fMAIN = 20 MHz operation) 2.56 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fSUB = 32.768 kHz operation) 						
8/10-bit resolution A	/D converter	8 channels	8 channels	8 channels	9 channels			
D/A converter		1 channel	2 channels					
Comparator		2 channels	I					
Serial interface		 CSI: 1 channel/UART: 1 CSI: 1 channel/UART: 1 [36-pin, 40-pin products] CSI: 1 channel/UART (I CSI: 1 channel/UART: 1 CSI: 2 channels/UART: 	 CSI: 1 channel/UART (UART supporting LIN-bus): 1 channel/simplified l²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified l²C: 1 channel CSI: 1 channel/UART: 1 channel/simplified l²C: 1 channel 					
	I ² C bus	1 channel	1 channel	1 channel	1 channel			
Data transfer contro	ller (DTC)	30 sources			31 sources			
Event link controller	(ELC)	Event input: 21 Event trigger output: 8	Event input: 21, E	vent trigger output: 9	Event input: 22 Event trigger output: 9			
Vectored interrupt	Internal	24	24	24	24			
sources	External	6	6	6	7			
Key interrupt		-	—	—	4			
Reset Power-on-reset circuit		• Reset by \overrightarrow{RESET} pin • Internal reset by watchdog timer • Internal reset by power-on-reset • Internal reset by voltage detector • Internal reset by illegal instruction execution Note • Internal reset by RAM parity error • Internal reset by illegal-memory access • Power-on-reset: 1.51 \pm 0.04 V (Ta = -40 to +85°C) 1.51 \pm 0.06 V (Ta = -40 to +105°C) • Power-down-reset: 1.50 \pm 0.04 V (Ta = -40 to +85°C) 1.50 \pm 0.06 V (Ta = -40 to +105°C)						
								Voltage detector
On-chip debug funct	tion	Provided						
Power supply voltag	е	V _{DD} = 1.6 to 5.5 V (T _A = - V _{DD} = 2.4 to 5.5 V (T _A = -	,					
Operating ambient t	emperature		$T_A = -40$ to +85°C (A: Consumer applications, D: Industrial applications), $T_A = -40$ to +105°C (G: Industrial applications)					

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution not is issued by emulation with the in-circuit emulator or on-chip debug emulator.

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xD (x = A to C, E to G, J, L): Start address FE900H
	R5F104xE (x = A to C, E to G, J, L): Start address FE900H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

(R20UT2944).

 Note
 The flash library uses RAM in self-programming and rewriting of the data flash memory.

 The target products and start address of the RAM areas used by the flash library are shown below.

 R5F104xL (x = G, L, M, P): Start address F3F00H

 For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

(TA = -40 to +85°C	, 1.6 V \leq EVDD0 \leq	VDD \leq 5.5 V, Vss =	= EVsso = 0 V)(2/2)
--------------------	-----------------------------	-------------------------	---------------------

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit	
Supply current	IDD2				fносо = 64 MHz,	VDD = 5.0 V		0.80	3.09	mA
Note 1	Note 2		mode Note 7	fiH = 32 MHz Note 4	VDD = 3.0 V		0.80	3.09	1	
				fносо = 32 MHz,	VDD = 5.0 V		0.49	2.40	1	
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.49	2.40	1	
				fносо = 48 MHz,	VDD = 5.0 V		0.62	2.40	1	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.62	2.40	1	
				fносо = 24 MHz,	VDD = 5.0 V		0.4	1.83		
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.4	1.83	1	
				fносо = 16 MHz,	VDD = 5.0 V		0.37	1.38	1	
				fiн = 16 MHz Note 4	VDD = 3.0 V		0.37	1.38	1	
			LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		260	710	μΑ	
			mode Note 7	fiH = 8 MHz Note 4	VDD = 2.0 V		260	710	1	
			LV (low-voltage main)	fносо = 4 MHz,	VDD = 3.0 V		420	700	μΑ	
			mode Note 7	fiH = 4 MHz Note 4	VDD = 2.0 V		420	700		
			HS (high-speed main)	fmx = 20 MHz Note 3,	Square wave input		0.28	1.55	mA	
			mode Note 7	VDD = 5.0 V	Resonator connection		0.40	1.74		
				f _{MX} = 20 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.28	1.55		
					Resonator connection		0.40	1.74	- - - -	
				f _{MX} = 10 MHz ^{Note 3} , V _{DD} = 5.0 V	Square wave input		0.19	0.86		
					Resonator connection		0.25	0.93		
				f _{MX} = 10 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.19	0.86		
					Resonator connection		0.25	0.93		
			LS (low-speed main) mode Note 7	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		95	550	μΑ	
				VDD = 3.0 V	Resonator connection		140	590		
				f _{MX} = 8 MHz Note 3,	Square wave input		95	550		
				VDD = 2.0 V	Resonator connection		140	590		
			Subsystem clock	fsue = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μΑ	
			operation	TA = -40°C	Resonator connection		0.44	0.76		
				fsue = 32.768 kHz ^{Note 5} ,	Square wave input		0.30	0.57		
				TA = +25°C	Resonator connection		0.49	0.76		
				fsue = 32.768 kHz Note 5,	Square wave input		0.36	1.17		
				TA = +50°C	Resonator connection		0.59	1.36		
				fsub = 32.768 kHz Note 5,	Square wave input		0.49	1.97		
				TA = +70°C	Resonator connection		0.72	2.16	1	
IDD3 Note 6				fsub = 32.768 kHz Note 5,	Square wave input		0.97	3.37		
				TA = +85°C	Resonator connection		1.16	3.56		
		STOP mode	TA = -40°C				0.18	0.51	μΑ	
	Note 6	Note 8	TA = +25°C				0.24	0.51		
			TA = +50°C				0.29	1.10		
			TA = +70°C				0.41	1.90		
			TA = +85°C				0.90	3.30		

(Notes and Remarks are listed on the next page.)

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- **Note 2.** During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: 1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** file: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	Conditions	HS (high-speed r mode	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode	
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 135 Note 3		1/fmck + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_{b} \leq 4.0 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.8 \; k\Omega \end{array}$	1/fмск + 190 Note 3		1/fmck + 190 Note 3		1/fмск + 190 Note 3		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1/fмск + 190 Note 3		1/fmck + 190 Note 3		1/f _{MCK} + 190 Note 3		ns
		$\begin{array}{l} 1.8 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_{b} \leq 2.0 \; V \; ^{Note 2}, \\ C_{b} = 100 \; pF, \; R_{b} = 5.5 \; k\Omega \end{array}$	1/fмск + 190 Note 3		1/fmck + 190 Note 3		1/fмск + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	305	0	305	0	305	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	305	0	305	0	305	ns
			0	355	0	355	0	355	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	0	355	0	355	0	355	ns
		$ \begin{split} & 1.8 \; \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \; \text{V}, \\ & 1.6 \; \text{V} \leq \text{V}_{b} \leq 2.0 \; \text{V} \; ^{\text{Note 2}}, \\ & \text{C}_{b} = 100 \; \text{pF}, \; \text{R}_{b} = 5.5 \; \text{k}\Omega \end{split} $	0	405	0	405	0	405	ns

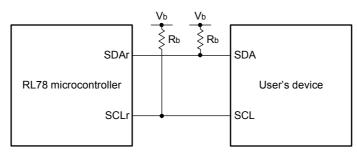
(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

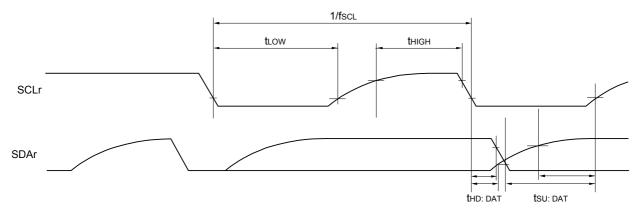
(2/2)

Note 1. The value must also be equal to or less than fmck/4.

Note 2. Use it with $EV_{DD0} \ge V_b$.


Note 3. Set the fmck value to keep the hold time of SCLr = "L" and SCLr = "H".

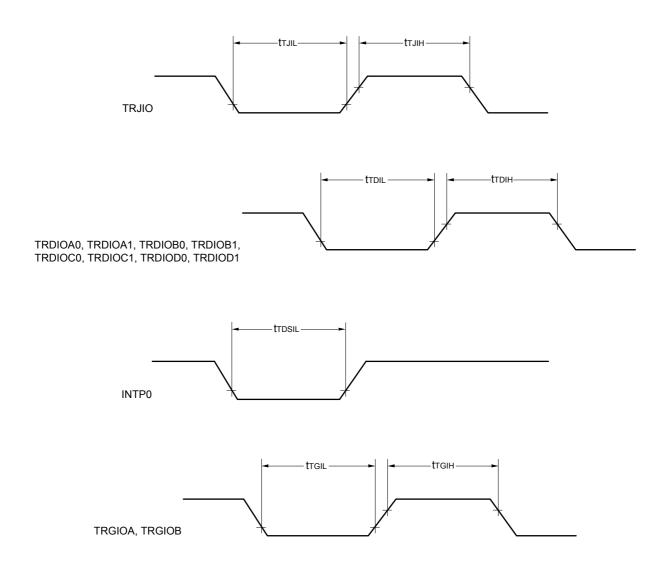
Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 30, 31), g: PIM, POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10, 12, 13)



(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

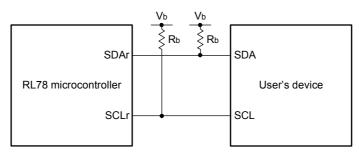
Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Uni
Supply current Note 1		HALT mode	e HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.80	4.36	m/
Note 1	Note 2		mode Note 7	fiн = 32 MHz Note 4	VDD = 3.0 V		0.80	4.36	
				fносо = 32 MHz,	VDD = 5.0 V		0.49	3.67	
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.49	3.67	
				fносо = 48 MHz,	VDD = 5.0 V		0.62	3.42	
				fiH = 24 MHz Note 4	V _{DD} = 3.0 V		0.62	3.42	
				fносо = 24 MHz,	VDD = 5.0 V		0.4	2.85	
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.4	2.85	
				fносо = 16 MHz,	VDD = 5.0 V		0.37	2.08	
				fiн = 16 MHz Note 4	VDD = 3.0 V		0.37	2.08	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	2.45	m
			mode Note 7	VDD = 5.0 V	Resonator connection		0.40	2.57	
				f _{MX} = 20 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.28	2.45	-
					Resonator connection		0.40	2.57	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.19	1.28	
				VDD = 5.0 V	Resonator connection		0.25	1.36	
				fmx = 10 MHz ^{Note 3} , VDD = 3.0 V	Square wave input		0.19	1.28	
					Resonator connection		0.25	1.36	
			Subsystem clock	fsue = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μ
			operation	TA = -40°C	Resonator connection		0.44	0.76	
				fsuB = 32.768 kHz ^{Note 5} , TA = +25°C	Square wave input		0.30	0.57	
					Resonator connection		0.49	0.76	
				fsub = 32.768 kHz ^{Note 5} , TA = +50°C	Square wave input		0.36	1.17	-
					Resonator connection		0.59	1.36	
				fsue = 32.768 kHz Note 5,	Square wave input		0.49	1.97	
				TA = +70°C	= +70°C Resonator connection		0.72	2.16	
				fsue = 32.768 kHz Note 5,	Square wave input		0.97	3.37	
				TA = +85°C	Resonator connection		1.16	3.56	
				fsue = 32.768 kHz Note 5,	Square wave input		3.20	17.10	
				TA = +105°C	Resonator connection		3.40	17.50	
	IDD3	STOP mode	TA = -40°C	·	·		0.18	0.51	μ
	Note 6	Note 8	TA = +25°C				0.24	0.51	
			TA = +50°C				0.29	1.10	
			TA = +70°C				0.41	1.90	
			T _A = +85°C				0.90	3.30	
			T _A = +105°C			1	3.10	17.00	

$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} < \text{EVDD0} < 10^{\circ}\text{C}$	\leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)(2/2)
	2 100 = 0.01, 100 = 21000 = 01, (2.2)

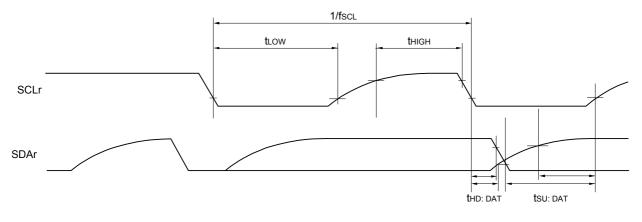
(Notes and Remarks are listed on the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	C	onditions	HS (high-speed	Unit	
				MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ 4/fclк		600		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	1000		ns
			$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	2300		ns
SCKp high-level width	tкнı			tĸcy1/2 - 150		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 - 340		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		tксү1/2 - 916		ns
SCKp low-level width	tκ∟1	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		tксү1/2 - 24		ns
		$2.3~V \leq V_b \leq 2.7~V,$	$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_{b} \leq 2.7 \ V, \\ C_{b} = 30 \ pF, \ R_{b} = 2.7 \ k\Omega \end{array}$			ns
		$\begin{array}{l} 2.4 \ V \leq {\sf EV}_{{\sf DD0}} < 3.3 \ {\sf V}, \\ 1.6 \ V \leq {\sf V}_{{\sf b}} \leq 2.0 \ {\sf V}, \\ {\sf C}_{{\sf b}} = 30 \ {\sf pF}, \ {\sf R}_{{\sf b}} = 5.5 \ {\sf k}\Omega \end{array}$		tkcy1/2 - 100		ns


(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.


(**Remarks** are listed two pages after the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

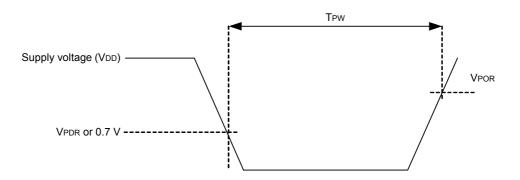
- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 30, 31), g: PIM, POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10, 12, 13)

3.6.4 Comparator

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Input voltage range	lvref			0		EVDD0 - 1.4	V
	lvcmp			-0.3		EVDD0 + 0.3	V
Output delay	td	V _{DD} = 3.0 V Input slew rate > 50 mV/µs	Comparator high-speed mode, standard mode			1.2	μs
			Comparator high-speed mode, window mode			2.0	μs
			Comparator low-speed mode, standard mode		3.0	5.0	μs
High-electric-potential reference voltage	VTW+	Comparator high-speed mode	e, window mode		0.76 VDD		V
Low-electric-potential ref- erence voltage	VTW-	Comparator high-speed mode	e, window mode		0.24 VDD		V
Operation stabilization wait time	tсмр			100			μs
Internal reference voltage Note	VBGR	2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode		1.38	1.45	1.50	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

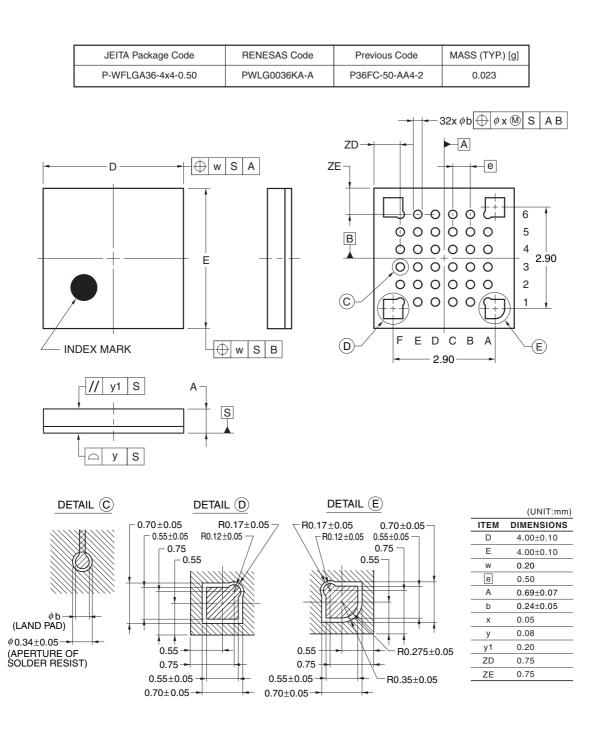
Note Not usable in sub-clock operation or STOP mode.


3.6.5 POR circuit characteristics

(TA = -40 to +105°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power on/down reset threshold	VPOR	Voltage threshold on VDD rising	1.45	1.51	1.57	V
	VPDR	Voltage threshold on VDD falling Note 1	1.44	1.50	1.56	V
Minimum pulse width Note 2	TPW		300			μs

Note 1. However, when the operating voltage falls while the LVD is off, enter STOP mode, or enable the reset status using the external reset pin before the voltage falls below the operating voltage range shown in 3.4 AC Characteristics.

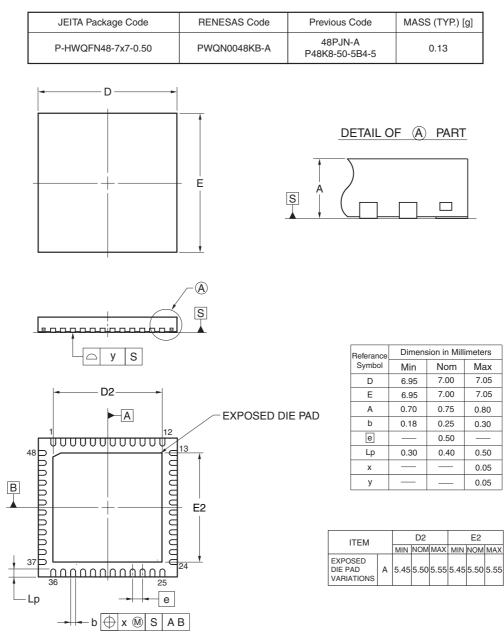

Note 2. Minimum time required for a POR reset when VDD exceeds below VPDR. This is also the minimum time required for a POR reset from when VDD exceeds below 0.7 V to when VDD exceeds VPOR while STOP mode is entered or the main system clock is stopped through setting bit 0 (HIOSTOP) and bit 7 (MSTOP) in the clock operation status control register (CSC).

4.3 36-pin products

R5F104CAALA, R5F104CCALA, R5F104CDALA, R5F104CEALA, R5F104CFALA, R5F104CGALA R5F104CAGLA, R5F104CCGLA, R5F104CDGLA, R5F104CEGLA, R5F104CFGLA, R5F104CGGLA

©2012 Renesas Electronics Corporation. All rights reserved.

R5F104GAANA, R5F104GCANA, R5F104GDANA, R5F104GEANA, R5F104GFANA, R5F104GGANA, R5F104GHANA, R5F104GJANA


R5F104GADNA, R5F104GCDNA, R5F104GDDNA, R5F104GEDNA, R5F104GFDNA, R5F104GGDNA, R5F104GJDNA, R5F104GJDNA

R5F104GAGNA, R5F104GCGNA, R5F104GDGNA, R5F104GEGNA, R5F104GFGNA, R5F104GGGNA,

R5F104GHGNA, R5F104GJGNA

R5F104GKANA, R5F104GLANA

R5F104GKGNA, R5F104GLGNA

©2012 Renesas Electronics Corporation. All rights reserved.

REVISION HISTORY RL78/G14 Datasheet

Rev. Date	Data	Description			
	Page	Summary			
3.20	Jan 05, 2015	p.135, 137, 139, 141, 143, 145			
		p.197	Modification of part number in 4.7 52-pin products		
3.30	Aug 12, 2016	p.143, 145	Addition of maximum values in (3) Flash ROM: 384 to 512 KB of 48- to 100-pin products of 3.3.2 Supply current characteristics		

SuperFlash is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash[®] technology licensed from Silicon Storage Technology, Inc.

All trademarks and registered trademarks are the property of their respective owners.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.