E·XFL

Renesas - R5F104FGAFP#V0 Datasheet

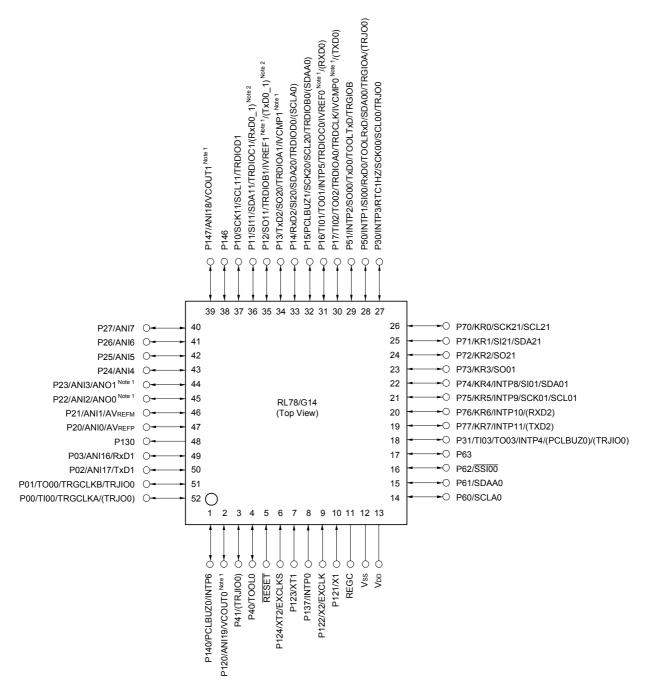
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Details	
Product Status	Obsolete
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b; D/A 2x8b
Oscillator Type	External, Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104fgafp-v0

Email: info@E-XFL.COM

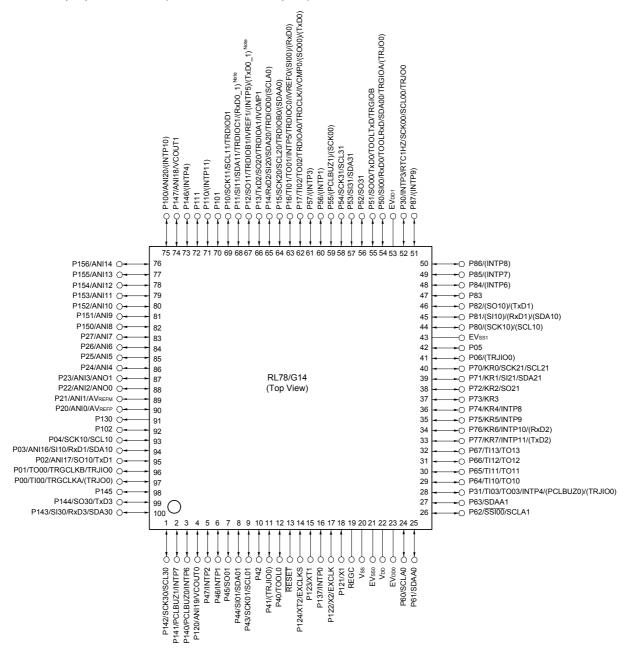
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.7 52-pin products

• 52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch)

Note 1. Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$


Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

1.3.10 100-pin products

• 100-pin plastic LFQFP (14 × 14 mm, 0.5 mm pitch)

Note Mounted on the 384 KB or more code flash memory products.

- Caution 1. Make EVsso, EVss1 pins the same potential as Vss pin.
- Caution 2. Make VDD pin the potential that is higher than EVDD0, EVDD1 pins (EVDD0 = EVDD1).
- Caution 3. Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}).$
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. When using the microcontroller for an application where the noise generated inside the microcontroller must be reduced, it is recommended to supply separate powers to the VDD, EVDD0 and EVDD1 pins and connect the Vss, EVss0 and EVss1 pins to separate ground lines.
- **Remark 3.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

RENESAS

1.6 Outline of Functions

[30-pin, 32-pin, 36-pin, 40-pin products (code flash memory 16 KB to 64 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

		30-pin	32-pin	36-pin	(1/2 40-pin			
	Item	R5F104Ax (x = A, C to E)	R5F104Bx (x = A, C to E)	R5F104Cx (x = A, C to E)	R5F104Ex (x = A, C to E)			
Code flash mer	mory (KB)	16 to 64	16 to 64					
Data flash merr		4	4	4	4			
RAM (KB)		2.5 to 5.5 Note						
Address space		1 MB	2.0 10 0.0	2.0 10 0.0	2.0 10 0.0			
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscilla HS (high-speed main) moo HS (high-speed main) moo LS (low-speed main) mode LV (low-voltage main) mode	de: 1 to 20 MHz (V _{DD} = 2 de: 1 to 16 MHz (V _{DD} = 2 e: 1 to 8 MHz (V _{DD} = 1.8	.7 to 5.5 V), .4 to 5.5 V), 3 to 5.5 V),				
	High-speed on-chip oscillator clock (fi⊣)	HS (high-speed main) mod HS (high-speed main) mod LS (low-speed main) mode LV (low-voltage main) mode	de: 1 to 16 MHz (VDD = 2. e: 1 to 8 MHz (VDD = 1.8	4 to 5.5 V), to 5.5 V),				
Subsystem cloc	ck		_		XT1 (crystal) oscillation external subsystem clock input (EXCLKS) 32.768 kHz			
Low-speed on-o	chip oscillator clock	15 kHz (TYP.): Vod = 1.6 to	o 5.5 V					
General-purpos	se register	8 bits \times 32 registers (8 bits \times 8 registers \times 4 banks)						
Minimum instru	ction execution time	0.03125 μ s (High-speed on-chip oscillator clock: fi μ = 32 MHz operation)						
		$0.05\mu s$ (High-speed system	m clock: fmx = 20 MHz op	eration)				
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/log Multiplication (8 bits × 8 l Multiplication and Accum Rotate, barrel shift, and t 	bits, 16 bits \times 16 bits), Div nulation (16 bits \times 16 bits +	+ 32 bits)				
I/O port	Total	26	28	32	36			
	CMOS I/O	21	22	26	28			
	CMOS input	3	3	3	5			
	CMOS output	_	_	—	-			
	N-ch open-drain I/O (6 V tolerance)	2	3	3	3			
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer R	J: 1 channel, Timer RD: 2	channels, Timer RG: 1 c	hannel)			
	Watchdog timer	1 channel						
	Real-time clock (RTC)	1 channel						
	12-bit interval timer	1 channel						
	Timer output	Timer outputs: 13 channels PWM outputs: 9 channels	5					
	RTC output		_		1 • 1 Hz (subsystem clock: fsu = 32.768 kHz)			

(Note is listed on the next page.)

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xD (x = A to C, E to G, J, L): Start address FE900H
	R5F104xE (x = A to C, E to G, J, L): Start address FE900H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

[48-pin, 64-pin products (code flash memory 384 KB to 512 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

	(0, 1) are set to uun		(1/2			
		48-pin	64-pin			
I	tem	R5F104Gx	R5F104Lx			
		(x = K, L)	(x = K, L)			
Code flash memory	(KB)	384 to 512	384 to 512			
Data flash memory (KB)	8	8			
RAM (KB)		32 to 48 ^{Note}	32 to 48 Note			
Address space		1 MB				
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external m HS (high-speed main) mode: 1 to 20 MHz HS (high-speed main) mode: 1 to 16 MHz LS (low-speed main) mode: 1 to 8 MHz (LV (low-voltage main) mode: 1 to 4 MHz (z (VDD = 2.7 to 5.5 V), z (VDD = 2.4 to 5.5 V), (VDD = 1.8 to 5.5 V), (VDD = 1.6 to 5.5 V)			
	High-speed on-chip oscillator clock (fін)	HS (high-speed main) mode: 1 to 32 MHz HS (high-speed main) mode: 1 to 16 MHz LS (low-speed main) mode: 1 to 8 MHz (LV (low-voltage main) mode: 1 to 4 MHz (z (VDD = 2.4 to 5.5 V), (VDD = 1.8 to 5.5 V),			
Subsystem clock		XT1 (crystal) oscillation, external subsystem	m clock input (EXCLKS) 32.768 kHz			
Low-speed on-chip of	oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V				
General-purpose reg	jister	8 bits \times 32 registers (8 bits \times 8 registers \times 4	l banks)			
Minimum instruction execution time		0.03125 μ s (High-speed on-chip oscillator clock: fi μ = 32 MHz operation)				
		0.05 μ s (High-speed system clock: fMx = 2	0 MHz operation)			
		30.5 µs (Subsystem clock: fsub = 32.768 k	Hz operation)			
Instruction set		 Data transfer (8/16 bits) Adder and subtractor/logical operation (8 Multiplication (8 bits × 8 bits, 16 bits × 16 bits) Multiplication and Accumulation (16 bits > Rotate, barrel shift, and bit manipulation etc. 	oits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 × 16 bits + 32 bits)			
I/O port	Total	44	58			
	CMOS I/O	34	48			
	CMOS input	5	5			
	CMOS output	1	1			
	N-ch open-drain I/O (6 V tolerance)	4	4			
Timer	16-bit timer	8 channels (TAU: 4 channels, Timer RJ: 1 channel, Tir	ner RD: 2 channels, Timer RG: 1 channel)			
	Watchdog timer	1 channel				
	Real-time clock (RTC)	1 channel				
	12-bit interval timer	1 channel				
	Timer output	Timer outputs: 14 channels PWM outputs: 9 channels				
	RTC output	1 • 1 Hz (subsystem clock: fsub = 32.768 kH	z)			

(Note is listed on the next page.)

(R20UT2944).

 Note
 The flash library uses RAM in self-programming and rewriting of the data flash memory.

 The target products and start address of the RAM areas used by the flash library are shown below.

 R5F104xL (x = G, L, M, P): Start address F3F00H

 For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family

1	ი	in	١
(2	12)

		80-pin	(2/2) 100-pin
	tem	· · · · · · · · · · · · · · · · · · ·	•
		R5F104Mx (x = K, L)	R5F104Px (x = K, L)
Clock output/buzzer output		2	2
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2. (Main system clock: fMAIN = 20 MHz operati 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.03 (Subsystem clock: fsub = 32.768 kHz operation) 	1
8/10-bit resolution	n A/D converter	17 channels	20 channels
D/A converter		2 channels	2 channels
Comparator		2 channels	2 channels
Serial interface		 [80-pin, 100-pin products] CSI: 2 channels/UART (UART supporting L CSI: 2 channels/UART: 1 channel/simplified CSI: 2 channels/UART: 1 channel/simplified CSI: 2 channels/UART: 1 channel/simplified 	I I ² C: 2 channels
	I ² C bus	2 channels	2 channels
Data transfer con	troller (DTC)	39 sources	39 sources
Event link control	ler (ELC)	Event input: 26 Event trigger output: 9	1
Vectored inter-	Internal	32	32
rupt sources	External	13	13
Key interrupt		8	8
Reset		 Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Internal reset by RAM parity error Internal reset by illegal-memory access 	ן Note
Power-on-reset c	ircuit	• Power-on-reset: $1.51 \pm 0.04 \text{ V}$ (TA = -40 1.51 $\pm 0.06 \text{ V}$ (TA = -40 • Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (TA = -40 1.50 $\pm 0.06 \text{ V}$ (TA = -40	0 to +105°C) 0 to +85°C)
Voltage detector		1.63 V to 4.06 V (14 stages)	
On-chip debug fu	nction	Provided	
Power supply vol	tage	V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)	
Operating ambier	nt temperature	$T_A = -40$ to +85°C (A: Consumer applications $T_A = -40$ to +105°C (G: Industrial applications	

Note

The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or onchip debug emulator.

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit						
Output current, high Note 1	P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147 Total of P00 to P04, P40 to P47,	$1.6 \text{ V} \le \text{EVdd} \le 5.5 \text{ V}$			-10.0 Note 2	mA							
		, , ,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-55.0	mA						
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-10.0	mA						
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			-5.0	mA						
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			-2.5	mA						
				$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-80.0	mA					
		P30, P31, P50 to P57,	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-19.0	mA						
		P64 to P67, P70 to P77, P80 to P87, P100, P101, P110,	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			-10.0	mA						
		P111, P146, P147 (When duty ≤ 70% ^{Note 3})	1.6 V ≤ EVDD0 < 1.8 V			-5.0	mA						
								Total of all pins (When duty \leq 70% ^{Note 3})	$1.6 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V}$			-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-0.1 Note 2	mA						
		Total of all pins (When duty \leq 70% ^{Note 3})	$1.6~V \le V \text{DD} \le 5.5~V$			-1.5	mA						

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IOH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Note 4. -100 mA for industrial applications (R5F104xxDxx, R5F104xxGxx).

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low ^{Note 1}	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				20.0 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			70.0	mA
		P102, P120, P130, P140 to P145	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			15.0	mA
		(When duty \leq 70% ^{Note 3})	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			9.0	mA
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			4.5	mA
		Total of P05, P06, P10 to P17,	$4.0~\text{V} \leq EV_{\text{DD0}} \leq 5.5~\text{V}$			80.0	mA
		P30, P31, P50 to P57,	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			35.0	mA
		P60 to P67, P70 to P77, P80 to P87, P100, P101, P110,	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			20.0	mA
		P111, P146, P147 (When duty \leq 70% ^{Note 3})	1.6 V ≤ EVDD0 < 1.8 V			10.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})				150.0	mA
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			5.0	mA

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IoL = 10.0 mA
 - Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply cur-	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.79	3.32	mA
rent Note 1	Note 2		mode Note 7	fiH = 32 MHz Note 4	VDD = 3.0 V		0.79	3.32	
				fносо = 32 MHz,	V _{DD} = 5.0 V		0.49	2.63	
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.49	2.63	
				fносо = 48 MHz,	VDD = 5.0 V		0.62	2.57	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.62	2.57	
				fносо = 24 MHz,	V _{DD} = 5.0 V		0.4	2.00	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.4	2.00	
				fносо = 16 MHz,	VDD = 5.0 V		0.38	1.49	
				fiH = 16 MHz Note 4	VDD = 3.0 V		0.38	1.49	
			LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		250	800	μA
			mode Note 7	fiH = 8 MHz Note 4	VDD = 2.0 V		250	800	
			LV (low-voltage main)	fносо = 4 MHz,	VDD = 3.0 V		420	755	μA
			mode Note 7	fiH = 4 MHz Note 4	VDD = 2.0 V		420	755	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.30	1.63	mA
			mode Note 7	VDD = 5.0 V	Resonator connection		0.40	1.85	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.30	1.63	
		VDD = 3.0 V	Resonator connection		0.40	1.85			
		f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.20	0.89			
			VDD = 5.0 V	Resonator connection		0.25	0.97	•	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.20	0.89	
				V _{DD} = 3.0 V	Resonator connection		0.25	0.97	
			LS (low-speed main)	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	580	μΑ
			mode Note 7	VDD = 3.0 V	Resonator connection		140	630	
				f _{MX} = 8 MHz Note 3,	Square wave input		110	580	
				VDD = 2.0 V	Resonator connection		140	630	
			Subsystem clock oper-	fsub = 32.768 kHz Note 5,	Square wave input		0.28	0.66	μA
			ation	TA = -40°C	Resonator connection		0.47	0.85	
				fsub = 32.768 kHz Note 5,	Square wave input		0.34	0.66	
				TA = +25°C	Resonator connection		0.53	0.85	
				fsub = 32.768 kHz Note 5,	Square wave input		0.37	2.35	
				TA = +50°C	Resonator connection		0.56	2.54	
				fsue = 32.768 kHz Note 5,	Square wave input		0.61	4.08	•
				TA = +70°C	Resonator connection		0.80	4.27	
				fsub = 32.768 kHz Note 5,	Square wave input		1.55	8.09	•
				TA = +85°C	Resonator connection		1.74	8.28	•
	IDD3 STOP mode TA = -40°C	TA = -40°C				0.19	0.57	μA	
	Note 6	Note 8	TA = +25°C				0.25	0.57	
			TA = +50°C				0.33	2.26	1
			T _A = +70°C				0.52	3.99	1
			TA = +85°C				1.46	8.00	1

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(Notes and Remarks are listed on the next page.)

Parameter	Symbol	Conditions		speed main) ode		peed main) ode	•	oltage main) iode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLr clock frequency	fscL	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		1000 Note 1		400 Note 1		400 Note 1	kHz
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} \leq 5.5 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 3 k\Omega \end{array}$		400 Note 1		400 Note 1		400 Note 1	kHz
		$\begin{array}{l} 1.8 \text{ V} \leq EV_{\text{DD0}} < 2.7 \text{ V}, \\ C_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 5 \text{ k}\Omega \end{array}$		300 Note 1		300 Note 1		300 Note 1	kHz
		$\label{eq:bound} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$		250 Note 1		250 Note 1		250 Note 1	kHz
		$\label{eq:bound} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$		-		250 Note 1		250 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\begin{array}{l} 1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega \end{array}$	1150		1150		1150		ns
		$\label{eq:bound} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1550		1550		1550		ns
		$\label{eq:bound} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1850		1850		1850		ns
		$\label{eq:bound} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	—		1850		1850		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	475		1150		1150		ns
		$\begin{array}{l} 1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}, \\ \text{C}_{\text{b}} = 100 \text{ pF}, \text{ R}_{\text{b}} = 3 \text{ k}\Omega \end{array}$	1150		1150		1150		ns
		$\label{eq:loss} \begin{array}{l} 1.8 \mbox{ V} \leq EV_{\mbox{DD0}} < 2.7 \mbox{ V}, \\ C_{\mbox{b}} \mbox{=} 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} \mbox{=} 5 \mbox{ k}\Omega \end{array}$	1550		1550		1550		ns
		$\label{eq:bound} \begin{array}{l} 1.7 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	1850		1850		1850		ns
		$\label{eq:linear} \begin{array}{l} 1.6 \mbox{ V} \leq EV_{\mbox{DD0}} < 1.8 \mbox{ V}, \\ C_{\mbox{b}} = 100 \mbox{ pF}, \mbox{ R}_{\mbox{b}} = 5 k\Omega \end{array}$	_		1850		1850		ns

(5) During communication at same potential (simplified I²C mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(Notes and Caution are listed on the next page, and Remarks are listed on the page after the next page.)

(2) Interrupt & Reset Mode

(TA = -40 to +85°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)

Parameter	Symbol		Con	MIN.	TYP.	MAX.	Unit	
Voltage detection	VLVDA0	VPOC2,	, VPOC1, VPOC0 = 0, 0, 0, f	alling reset voltage	1.60	1.63	1.66	V
threshold	VLVDA1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.74	1.77	1.81	V
				Falling interrupt voltage	1.70	1.73	1.77	V
	VLVDA2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	1.84	1.88	1.91	V
				Falling interrupt voltage	1.80	1.84	1.87	V
	VLVDA3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDB0	VPOC2,	, VPOC1, VPOC0 = 0, 0, 1, f	alling reset voltage	1.80	1.84	1.87	V
	VLVDB1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	1.94	1.98	2.02	V
				Falling interrupt voltage	1.90	1.94	1.98	V
	VLVDB2	-	LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.05	2.09	2.13	V
				Falling interrupt voltage	2.00	2.04	2.08	V
	VLVDB3	-	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.07	3.13	3.19	V
				Falling interrupt voltage	3.00	3.06	3.12	V
	VLVDC0	VPOC2, VPOC1, VPOC0 = 0, 1, 0, falling reset voltage				2.45	2.50	V
	VLVDC1		LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.56	2.61	2.66	V
				Falling interrupt voltage	2.50	2.55	2.60	V
	VLVDC2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.66	2.71	2.76	V
				Falling interrupt voltage	2.60	2.65	2.70	V
	VLVDC3		LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.68	3.75	3.82	V
				Falling interrupt voltage	3.60	3.67	3.74	V
	VLVDD0	VPOC2,	VPOC1, VPOC0 = 0, 1, 1, f	alling reset voltage	2.70	2.75	2.81	V
	VLVDD1	-	LVIS1, LVIS0 = 1, 0	Rising release reset voltage	2.86	2.92	2.97	V
				Falling interrupt voltage	2.80	2.86	2.91	V
	VLVDD2		LVIS1, LVIS0 = 0, 1	Rising release reset voltage	2.96	3.02	3.08	V
				Falling interrupt voltage	2.90	2.96	3.02	V
	VLVDD3	1	LVIS1, LVIS0 = 0, 0	Rising release reset voltage	3.98	4.06	4.14	V
				Falling interrupt voltage	3.90	3.98	4.06	V

2.6.7 Power supply voltage rising slope characteristics

(TA = -40 to +85°C, Vss = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Power supply voltage rising slope	SVDD				54	V/ms

Caution Make sure to keep the internal reset state by the LVD circuit or an external reset until VDD reaches the operating voltage range shown in 2.4 AC Characteristics.

Operation of products rated "G: Industrial applications (TA = -40 to + $105^{\circ}C$)" at ambient operating temperatures above $85^{\circ}C$ differs from that of products rated "A: Consumer applications" and "D: Industrial applications" in the ways listed below.

Parameter	A: Consumer applications, D: Industrial applications	G: Industrial applications		
Operating ambient temperature	TA = -40 to +85°C	TA = -40 to +105°C		
Operating mode	HS (high-speed main) mode:	HS (high-speed main) mode only:		
Operating voltage range	2.7 V \leq VDD \leq 5.5 V@1 MHz to 32 MHz	$2.7~V \leq V_{DD} \leq 5.5~V@1~MHz$ to 32 MHz		
	2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz	2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz		
	LS (low-speed main) mode:			
	1.8 V \leq VDD \leq 5.5 V@1 MHz to 8 MHz			
	LV (low-voltage main) mode:			
	1.6 V \leq VDD \leq 5.5 V@1 MHz to 4 MHz			
High-speed on-chip oscillator	$1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$:	$2.4 \text{ V} \leq \text{V}_{DD} \leq 5.5 \text{ V}$:		
clock accuracy	±1.0% @ TA = -20 to +85°C	±2.0% @ TA = +85 to +105°C		
	±1.5% @ TA = -40 to -20°C	±1.0% @ TA = -20 to +85°C		
	$1.6 \text{ V} \le \text{V}_{\text{DD}} < 1.8 \text{ V}$:	±1.5% @ TA = -40 to -20°C		
	±5.0% @ TA = -20 to +85°C			
	±5.5% @ TA = -40 to -20°C			
Serial array unit	UART	UART		
	CSI: fcLk/2 (16 Mbps supported), fcLk/4	CSI: fclk/4		
	Simplified I ² C communication	Simplified I ² C communication		
IICA	Standard mode	Standard mode		
	Fast mode	Fast mode		
	Fast mode plus			
Voltage detector	• Rising: 1.67 V to 4.06 V (14 stages)	• Rising: 2.61 V to 4.06 V (8 stages)		
	• Falling: 1.63 V to 3.98 V (14 stages)	Falling: 2.55 V to 3.98 V (8 stages)		

Remark The electrical characteristics of products rated "G: Industrial applications (TA = -40 to + 105°C)" at ambient operating temperatures above 85°C differ from those of products rated "A: Consumer applications" and "D: Industrial applications". For details, refer to **3.1** to **3.10**.

3.3 DC Characteristics

3.3.1 Pin characteristics

$(TA = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EVDD0 = EVDD1 \le VDD \le 5.5 \text{ V}, \text{ VSS} = EVSS0 = EVSS1 = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit	
Output current, high ^{Note 1}	IOH1 Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147 2	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-3.0 Note 2	mA		
		Total of P00 to P04, P40 to P47,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-30.0	mA	
				$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-10.0	mA
		(When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-5.0	mA	
		Total of P05, P06, P10 to P17,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-30.0	mA	
		P30, P31, P50 to P57,	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-19.0	mA	
		P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty ≤ 70% ^{Note 3})	2.4 V ≤ EVDD0 < 2.7 V			-10.0	mA	
	(When Іон2 Per pir	Total of all pins (When duty \leq 70% ^{Note 3})		$2.4 \text{ V} \leq \text{EVDD0} \leq 5.5 \text{ V}$			-60.0	mA
		Per pin for P20 to P27, P150 to P156	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-0.1 Note 2	mA	
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4~V \le V \text{DD} \le 5.5~V$			-1.5	mA	

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

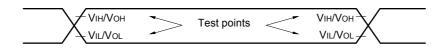
The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IOH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.


		₩, = 17 ¥ ≥ 1		$DD \le 5.5 \text{ V}, \text{ Vss} = \text{EVs}$	===========	MIN	T) (D	MAN	(2/2	
Parameter	Symbol			Conditions	501	MIN.	TYP.	MAX.	Uni	
Supply cur- rent ^{Note 1}	IDD2 Note 2		HALT mode	HS (high-speed main) mode Note 7	fносо = 64 MHz, fiн = 32 MHz ^{Note 4}	VDD = 5.0 V		0.79	4.86	mA
			mode		VDD = 3.0 V		0.79	4.86	-	
				fносо = 32 MHz, fн = 32 MHz ^{Note 4}	VDD = 5.0 V		0.49	4.17	-	
					VDD = 3.0 V		0.49	4.17	-	
				fносо = 48 MHz, fн = 24 MHz ^{Note 4}	VDD = 5.0 V		0.62	3.82	-	
					VDD = 3.0 V		0.62	3.82	-	
				fносо = 24 MHz, fн = 24 MHz ^{Note 4}	VDD = 5.0 V		0.4	3.25	_	
					VDD = 3.0 V		0.4	3.25	-	
				fносо = 16 MHz, fн = 16 MHz ^{Note 4}	VDD = 5.0 V		0.38	2.28	-	
					VDD = 3.0 V		0.38	2.28		
			HS (high-speed main) mode Note 7	$f_{MX} = 20 \text{ MHz} \text{ Note 3},$	Square wave input		0.30	2.65		
			mode note /	VDD = 5.0 V	Resonator connection		0.40	2.77	_	
				$f_{MX} = 20 \text{ MHz} \text{ Note } 3,$	Square wave input		0.30	2.65		
				VDD = 3.0 V	Resonator connection		0.40	2.77	2.77 1.36	
				$f_{MX} = 10 \text{ MHz Note 3},$	Square wave input		0.20			
				VDD = 5.0 V	Resonator connection		0.25	1.46		
				f _{MX} = 10 MHz ^{Note 3} , V _{DD} = 3.0 V	Square wave input		0.20	1.36		
		Subsystem clock oper- f			Resonator connection		0.25	1.46	<u> </u>	
			fsuB = 32.768 kHz Note 5,	Square wave input		0.28	0.66	μ/		
			ation	$T_{A} = -40^{\circ}C$	Resonator connection		0.47	0.85		
				fsue = 32.768 kHz Note 5,	Square wave input		0.34	0.66		
				T _A = +25°C	Resonator connection		0.53	0.85		
				fsue = 32.768 kHz Note 5,	Square wave input		0.37	2.35		
				T _A = +50°C	Resonator connection		0.56	2.54		
				fsue = 32.768 kHz Note 5,	Square wave input		0.61	4.08		
				T _A = +70°C	Resonator connection		0.80	4.27]	
				fsue = 32.768 kHz Note 5,	Square wave input		1.55	8.09]	
				TA = +85°C	Resonator connection		1.74	8.28	8.28	
				fsue = 32.768 kHz Note 5,	Square wave input		6.00	51.00]	
				TA = +105°C	Resonator connection		6.00	51.00	1	
	IDD3		TA = -40°C	•			0.19	0.57	μ	
	Note 6	Note 8 TA = +25°C				0.25	0.57	1		
			TA = +50°C				0.33	2.26	1	
			TA = +70°C				0.52	3.99	1	
			TA = +85°C				1.46	8.00	1	
			TA = +105°C			1	5.50	50.00	1	

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

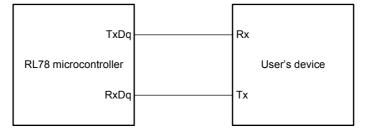
(Notes and Remarks are listed on the next page.)

3.5 Peripheral Functions Characteristics

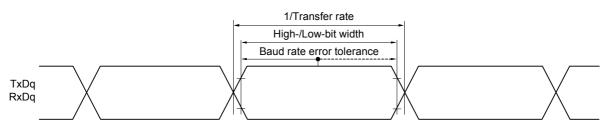
AC Timing Test Points

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)


$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$

Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN. MAX.		
Transfer rate Note 1		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		fмск/12 Note 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 3$		2.6	Mbps


Note 1.Transfer rate in the SNOOZE mode is 4800 bps only.
However, the SNOOZE mode cannot be used when FRQSEL4 = 1.Note 2.The following conditions are required for low voltage interface when EVDD0 < VDD.
 $2.4 V \le EVDD0 < 2.7 V$: MAX. 1.3 MbpsNote 3.The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: 32 MHz (2.7 V $\le VDD \le 5.5 V$)
16 MHz (2.4 V $\le VDD \le 5.5 V$)

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14) **Remark 2.** fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

(5) Communication at different potential (1.8 V, 2.5 V, 3 V) (UART mode)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter Symbol			Conditions	HS (high-speed main) mode		Unit	
				MIN.	MAX.		
Transfer rate		transmission	$\begin{array}{l} 4.0 \; V \leq E V_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V \end{array}$		Note 1	bps	
		Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 1.4 k Ω , V_b = 2.7 V		2.6 Note 2	Mbps		
			$2.7 V \le EV_{DD0} < 4.0 V,$ $2.3 V \le V_b \le 2.7 V$		Note 3	bps	
			Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 2.7 k Ω , V_b = 2.3 V		1.2 Note 4	Mbps	
			$2.4 V \le EV_{DD0} < 3.3 V,$ $1.6 V \le V_b \le 2.0 V$		Note 5	bps	
		Theoretical value of the maximum transfer rate C_b = 50 pF, R_b = 5.5 k Ω , V_b = 1.6 V		0.43 Note 6	Mbps		

Note 1. The smaller maximum transfer rate derived by using fMCK/12 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 4.0 V \leq EVDD0 \leq 5.5 V and 2.7 V \leq Vb \leq 4.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\} \times 3}$$
Baud rate error (theoretical value) =
$$\frac{\frac{1}{Transfer rate \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{2.2}{V_b})\}}{(\frac{1}{Transfer rate}) \times Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

- Note 2.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 1 above to calculate the maximum transfer rate under conditions of the customer.
- **Note 3.** The smaller maximum transfer rate derived by using fMck/12 or the following expression is the valid maximum transfer rate.

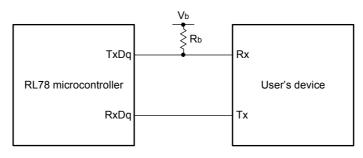
Expression for calculating the transfer rate when 2.7 V \leq EVDD0 < 4.0 V and 2.3 V \leq Vb \leq 2.7 V

Maximum transfer rate = -

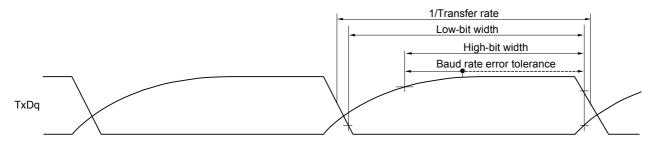
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{2.0}{V_b})\} \times 3}$$

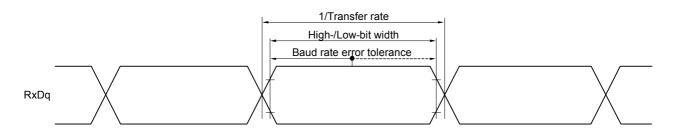
1

al value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln(1 - \frac{2.0}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times 100 [\%]}$$


Baud rate error (theoretical value) =

* This value is the theoretical value of the relative difference between the transmission and reception sides


Note 4.This value as an example is calculated when the conditions described in the "Conditions" column are met.Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.


RENESAS

UART mode connection diagram (during communication at different potential)

UART mode bit width (during communication at different potential) (reference)

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 3. fMCK: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

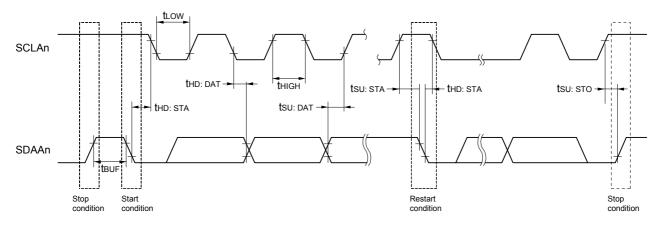
Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

3.5.2 Serial interface IICA

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	HS	HS (high-speed main) mode Standard mode Fast mode		mode	Unit
			Standa			mode	
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fcLk ≥ 3.5 MHz	—	—	0	400	kHz
		Standard mode: fcLK ≥ 1 MHz	0	100	—	—	kHz
Setup time of restart condition	tsu: STA		4.7		0.6		μs
Hold time Note 1	thd: STA		4.0		0.6		μs
Hold time when SCLA0 = "L"	t∟ow		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu: dat		250		100		ns
Data hold time (transmission) Note 2	thd: dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu: sto		4.0		0.6		μs
Bus-free time	t BUF		4.7		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

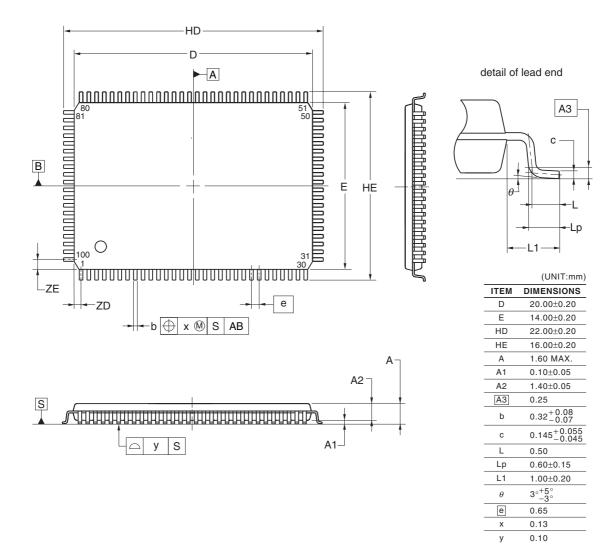

Note 2. The maximum value (MAX.) of the DE DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: $C_b = 400 \text{ pF}, R_b = 2.7 \text{ k}\Omega$ Fast mode: $C_b = 320 \text{ pF}, R_b = 1.1 \text{ k}\Omega$

IICA serial transfer timing



Remark n = 0, 1

R5F104PFAFA, R5F104PGAFA, R5F104PHAFA, R5F104PJAFA R5F104PFDFA, R5F104PGDFA, R5F104PHDFA, R5F104PJDFA R5F104PFGFA, R5F104PGGFA, R5F104PHGFA, R5F104PJGFA R5F104PKAFA, R5F104PLAFA R5F104PKGFA, R5F104PLGFA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-LQFP100-14x20-0.65	PLQP0100JC-A	P100GF-65-GBN-1	0.92

O 2012 Renesas Electronics Corporation. All rights reserved.

ZD

ZE

0.575

0.825

