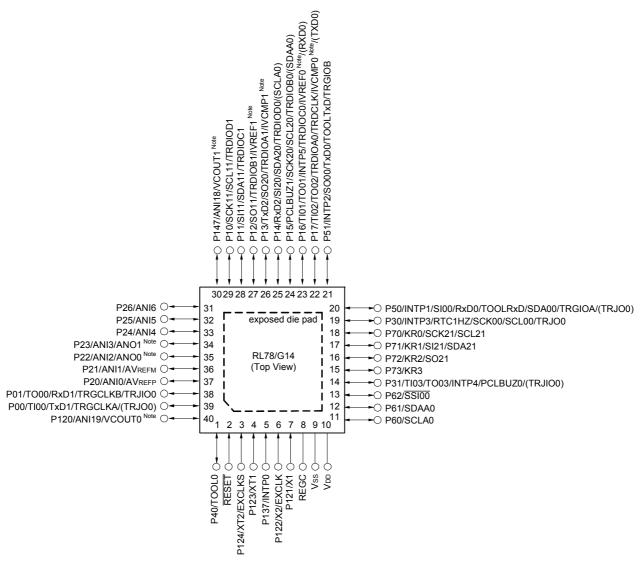


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"


Details	
Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	192KB (192K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	20K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104fhafp-v0

Email: info@E-XFL.COM

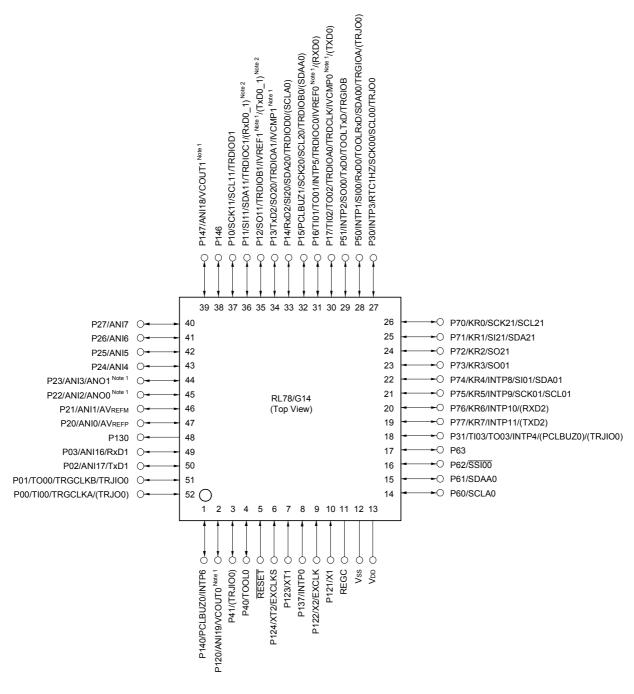
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3.4 40-pin products

• 40-pin plastic HWQFN (6 × 6 mm, 0.5 mm pitch)

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).


Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

Remark 3. It is recommended to connect an exposed die pad to Vss.

1.3.7 52-pin products

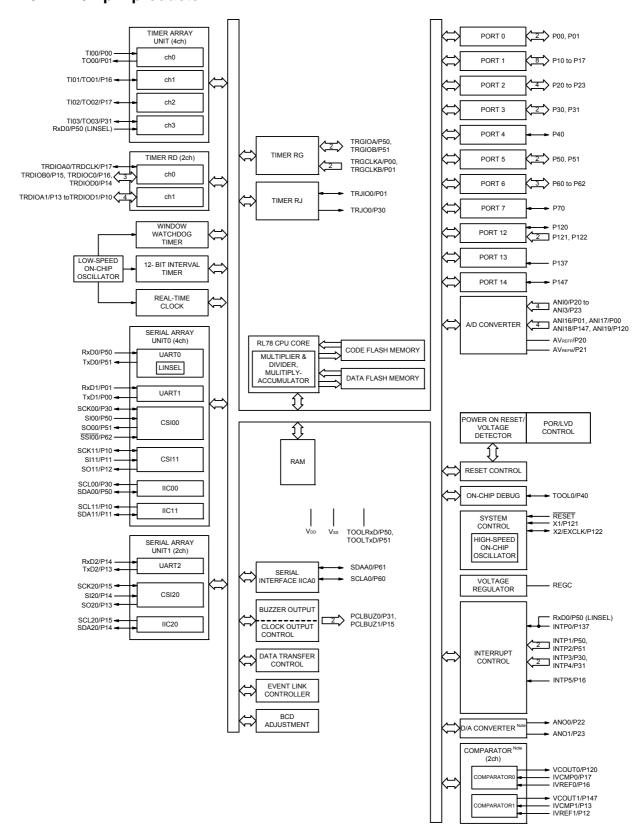
• 52-pin plastic LQFP (10 × 10 mm, 0.65 mm pitch)

Note 1. Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).

Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).


1.4 Pin Identification

ANI0 to ANI14,: RxD0 to RxD3: Receive data Analog input ANI16 to ANI20 SCK00, SCK01, SCK10,: Serial clock input/output ANO0, ANO1: Analog output SCK11, SCK20, SCK21, AVREFM: A/D converter reference SCK30, SCK31 potential (- side) input SCLA0, SCLA1,: Serial clock input/output AVREFP: A/D converter reference SCL00, SCL01, SCL10, SCL11,: Serial clock output potential (+ side) input SCL20, SCL21, SCL30, EVDD0, EVDD1: SCI 31 Power supply for port EVsso, EVss1: Ground for port SDAA0, SDAA1, SDA00,: Serial data input/output EXCLK: External clock input SDA01, SDA10, SDA11, SDA20, SDA21, SDA30, (main system clock) EXCLKS: External clock input SDA31 (subsystem clock) SI00, SI01, SI10, SI11,: Serial data input INTP0 to INTP11: SI20, SI21, SI30, SI31 External interrupt input IVCMP0, IVCMP1: Comparator input SO00, SO01, SO10,: Serial data output IVREF0, IVREF1: Comparator reference input SO11, SO20, SO21, KR0 to KR7: SO30, SO31 Key return P00 to P06: Port 0 SSI00: Serial interface chip select input P10 to P17: Port 1 TI00 to TI03,: Timer input P20 to P27: Port 2 TI10 to TI13 P30, P31: Port 3 TO00 to TO03,: Timer output P40 to P47: Port 4 TO10 to TO13, TRJ00 P50 to P57: Port 5 TOOL0: Data input/output for tool P60 to P67: Port 6 TOOLRxD, TOOLTxD: Data input/output for external device P70 to P77: Port 7 TRDCLK, TRGCLKA,: Timer external input clock P80 to P87: Port 8 **TRGCLKB** P100 to P102: Port 10 TRDIOA0, TRDIOB0,: Timer input/output P110, P111: Port 11 TRDIOCO, TRDIODO, P120 to P124: Port 12 TRDIOA1, TRDIOB1, P130, P137: Port 13 TRDIOC1, TRDIOD1, P140 to P147: Port 14 TRGIOA, TRGIOB, TRJIO0 P150 to P156: Port 15 TxD0 to TxD3: Transmit data PCLBUZ0, PCLBUZ1: VCOUT0, VCOUT1: Comparator output Programmable clock output/buzzer output ADD. Power supply REGC: Vss: Ground Regulator capacitance RESET: X1, X2: Reset Crystal oscillator (main system clock) Real-time clock correction RTC1HZ: XT1. XT2: Crystal oscillator (subsystem clock)

clock

(1 Hz) output

1.5.2 32-pin products

Note Mounted on the 96 KB or more code flash memory products.

(2/2)

		40 :	(2/2)				
		48-pin	64-pin				
Item		R5F104Gx	R5F104Lx				
		(x = K, L)	(x = K, L)				
Clock output/buzzer outp	out	2	2				
		• 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5	5 MHz, 5 MHz, 10 MHz				
		(Main system clock: fmAin = 20 MHz operation)					
		• 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz					
		(Subsystem clock: fsub = 32.768 kHz opera	· T				
8/10-bit resolution A/D co	onverter	10 channels	12 channels				
D/A converter		2 channels					
Comparator		2 channels					
Serial interface		[48-pin products]					
		CSI: 2 channels/UART (UART supporting LI	N-bus): 1 channel/simplified I ² C: 2 channels				
		CSI: 1 channel/UART: 1 channel/simplified I	² C: 1 channel				
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels				
		[64-pin products]					
		• CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I ² C: 2 channels					
		CSI: 2 channels/UART: 1 channel/simplified I ² C: 2 channels					
		CSI: 2 channels/UART: 1 channel/simplified	I ² C: 2 channels				
	I ² C bus	1 channel	1 channel				
Data transfer controller (I	DTC)	32 sources	33 sources				
Event link controller (ELC	C)	Event input: 22					
		Event trigger output: 9					
Vectored interrupt	Internal	24	24				
sources	External	10	13				
Key interrupt		6	8				
Reset		Reset by RESET pin					
l		Internal reset by watchdog timer					
		Internal reset by power-on-reset					
		Internal reset by voltage detector					
		Internal reset by illegal instruction execution	Note				
		Internal reset by RAM parity error					
		Internal reset by illegal-memory access					
Power-on-reset circuit		• Power-on-reset: 1.51 ±0.04 V (T _A = -40	· · · · · · · · · · · · · · · · · · ·				
		1.51 ± 0.06 V (TA = -40 • Power-down-reset: 1.50 ± 0.04 V (TA = -40	•				
		1.50 ±0.04 V (TA = -40	•				
Voltage detector		1.63 V to 4.06 V (14 stages)					
On-chip debug function		Provided					
Power supply voltage		VDD = 1.6 to 5.5 V (TA = -40 to +85°C)					
1 Ower Supply Voltage		VDD = 1.6 to 5.5 V (IA = -40 to +85°C) VDD = 2.4 to 5.5 V (TA = -40 to +105°C)					
Operating ambient temper	erature	TA = -40 to +85°C (A: Consumer applications,	D: Industrial applications)				
	Jature	$T_A = -40 \text{ to } +35 \text{ C}$ (A. Consumer applications, $T_A = -40 \text{ to } +105 \text{°C}$ (G: Industrial applications					
		(3. madound applications	,				

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or on-chip debug emulator.

(2/2)

		<u> </u>	(2/2)				
		80-pin	100-pin				
I	tem	R5F104Mx	R5F104Px				
		(x = K, L)	(x = K, L)				
Clock output/buzz	zer output	2	2				
		(Main system clock: fmain = 20 MHz operation - 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.09	 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2.5 MHz, 5 MHz, 10 MHz (Main system clock: fmain = 20 MHz operation) 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.096 kHz, 8.192 kHz, 16.384 kHz, 32.768 kHz (Subsystem clock: fsub = 32.768 kHz operation) 				
8/10-bit resolution	n A/D converter	17 channels	20 channels				
D/A converter		2 channels	2 channels				
Comparator		2 channels	2 channels				
Serial interface		 [80-pin, 100-pin products] CSI: 2 channels/UART (UART supporting L CSI: 2 channels/UART: 1 channel/simplified CSI: 2 channels/UART: 1 channel/simplified CSI: 2 channels/UART: 1 channel/simplified 	I ² C: 2 channels I ² C: 2 channels				
	I ² C bus	2 channels	2 channels				
Data transfer con	troller (DTC)	39 sources	39 sources				
Event link control	ler (ELC)	Event input: 26 Event trigger output: 9					
Vectored inter-	Internal	32	32				
rupt sources	External	13	13				
Key interrupt		8	8				
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution Note Internal reset by RAM parity error Internal reset by illegal-memory access					
Power-on-reset circuit		• Power-on-reset: 1.51 ±0.04 V (TA = -40 to +85°C) 1.51 ±0.06 V (TA = -40 to +105°C) • Power-down-reset: 1.50 ±0.04 V (TA = -40 to +85°C) 1.50 ±0.06 V (TA = -40 to +105°C)					
Voltage detector		1.63 V to 4.06 V (14 stages)					
On-chip debug fu	nction	Provided					
Power supply vol	tage	V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)					
Operating ambier	nt temperature	TA = -40 to +85°C (A: Consumer applications, D: Industrial applications), TA = -40 to +105°C (G: Industrial applications)					

Note The illegal instruction is generated when instruction code FFH is executed.

Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or onchip debug emulator.

2.2 Oscillator Characteristics

2.2.1 X1, XT1 characteristics

 $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Resonator	Resonator	Conditions	MIN.	TYP.	MAX.	Unit
1 clock oscillation frequency (fx) Note	Ceramic resonator/	$2.7~\text{V} \leq \text{Vdd} \leq 5.5~\text{V}$	1.0		20.0	MHz
	<u> </u>	2.4 V ≤ V _{DD} < 2.7 V	1.0		16.0	
		1.8 V ≤ V _{DD} < 2.4 V	1.0		8.0	
		1.6 V ≤ V _{DD} < 1.8 V	1.0		4.0	
XT1 clock oscillation frequency (fxT) Note	Crystal resonator		32	32.768	35	kHz

Note Indicates only permissible oscillator frequency ranges. Refer to AC Characteristics for instruction execution time.

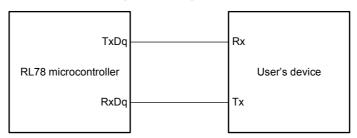
Request evaluation by the manufacturer of the oscillator circuit mounted on a board to check the oscillator characteristics.

Caution Since the CPU is started by the high-speed on-chip oscillator clock after a reset release, check the X1 clock oscillation stabilization time using the oscillation stabilization time counter status register (OSTC) by the user. Determine the oscillation stabilization time of the OSTC register and the oscillation stabilization time select register (OSTS) after sufficiently evaluating the oscillation stabilization time with the resonator to be used.

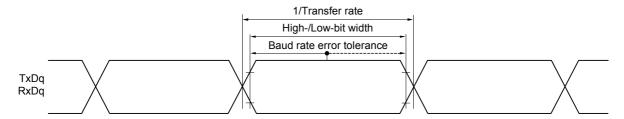
Remark When using the X1 oscillator and XT1 oscillator, refer to 5.4 System Clock Oscillator in the RL78/G14 User's Manual.

2.2.2 On-chip oscillator characteristics

 $(TA = -40 \text{ to } +85^{\circ}C, 1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$


Oscillators	Parameters	C	MIN.	TYP.	MAX.	Unit	
High-speed on-chip oscillator clock frequency Notes 1, 2	fı⊢			1		32	MHz
High-speed on-chip oscillator clock frequency		-20 to +85°C	$1.8 \text{ V} \leq \text{Vdd} \leq 5.5 \text{ V}$	-1.0		+1.0	%
accuracy			1.6 V ≤ V _{DD} < 1.8 V	-5.0		+5.0	%
		-40 to -20°C	1.8 V ≤ VDD < 5.5 V	-1.5		+1.5	%
			1.6 V ≤ VDD < 1.8 V	-5.5		+5.5	%
Low-speed on-chip oscillator clock frequency	fı∟				15		kHz
Low-speed on-chip oscillator clock frequency accuracy				-15		+15	%

Note 1. High-speed on-chip oscillator frequency is selected with bits 0 to 4 of the option byte (000C2H) and bits 0 to 2 of the HOCODIV register.


Note 2. This only indicates the oscillator characteristics. Refer to AC Characteristics for instruction execution time.

UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)

Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

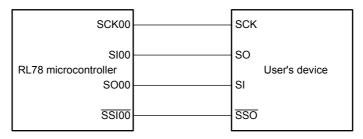
Remark 2. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number,

n: Channel number (mn = 00 to 03, 10 to 13))

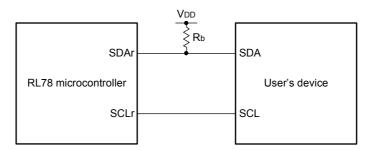
(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) $(TA = -40 \text{ to } +85^{\circ}\text{C}, 1.6 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$ (2/2)

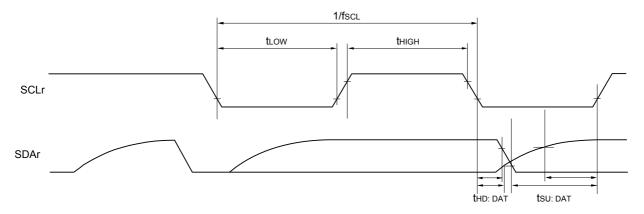
Parameter	Symbol	Conditions		HS (high-speed mode	d main)	LS (low-speed mode	main)	LV (low-voltage mode	e main)	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	2.7 V ≤ EVDD0 ≤ 5.5 V	120		120		120		ns
			1.8 V ≤ EV _{DD0} ≤ 5.5 V	200		200		200		ns
			1.7 V ≤ EV _{DD0} ≤ 5.5 V	400		400		400		ns
			1.6 V ≤ EV _{DD0} ≤ 5.5 V	_		400		400		ns
	DAPmn =	DAPmn = 1	2.7 V ≤ EV _{DD0} ≤ 5.5 V	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			1.8 V ≤ EVDD0 ≤ 5.5 V	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			1.7 V ≤ EVDD0 ≤ 5.5 V	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			1.6 V ≤ EVDD0 ≤ 5.5 V	_		1/fмск + 400		1/fмск + 400		ns
SSI00 hold time	tkssi	DAPmn = 0	2.7 V ≤ EVDD0 ≤ 5.5 V	1/fмск + 120		1/fмск + 120		1/fмск + 120		ns
			1.8 V ≤ EVDD0 ≤ 5.5 V	1/fмск + 200		1/fмск + 200		1/fмск + 200		ns
			1.7 V ≤ EVDD0 ≤ 5.5 V	1/fмск + 400		1/fмск + 400		1/fмск + 400		ns
			1.6 V ≤ EVDD0 ≤ 5.5 V	_		1/fмск + 400		1/fмск + 400		ns
		DAPmn = 1	2.7 V ≤ EV _{DD0} ≤ 5.5 V	120		120		120		ns
			1.8 V ≤ EVDD0 ≤ 5.5 V	200		200		200		ns
			1.7 V ≤ EV _{DD0} ≤ 5.5 V	400		400		400		ns
			1.6 V ≤ EVDD0 ≤ 5.5 V	_		400		400		ns


Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

CSI mode connection diagram (during communication at same potential)


CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))


Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31)

Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

 $\textbf{Remark 1.} \ \ R_b[\Omega]: \ Communication \ line \ (SDAr) \ pull-up \ resistance, \ C_b[F]: \ Communication \ line \ (SDAr, SCLr) \ load \ capacitance$

Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 3 to 5, 14), h: POM number (h = 0, 1, 3 to 5, 7, 14)

Remark 3. fmck: Serial array unit operation clock frequency

(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),

n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

- Note 4. This value as an example is calculated when the conditions described in the "Conditions" column are met.

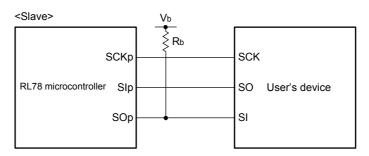
 Refer to Note 3 above to calculate the maximum transfer rate under conditions of the customer.
- Note 5. Use it with $EVDD0 \ge V_b$.
- Note 6. The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate

Expression for calculating the transfer rate when 1.8 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate =
$$\frac{1}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$
 [bps]

Baud rate error (theoretical value) =
$$\frac{\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\}}{(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}} \times 100 \, [\%]$$

- * This value is the theoretical value of the relative difference between the transmission and reception sides
- Note 7. This value as an example is calculated when the conditions described in the "Conditions" column are met.


 Refer to Note 6 above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $EVDD0 \ge V_b$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp1" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(10) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions	HS (high-speed r	main)	LS (low-speed m	nain)	LV (low-voltage r mode	main)	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu:dat	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/fmck + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$ \begin{aligned} &2.7 \text{ V} \leq \text{EV}_{\text{DDO}} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ &C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned} $	1/fmck + 135 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$ \begin{aligned} &4.0 \text{ V} \leq \text{EV}_{\text{DDO}} \leq 5.5 \text{ V}, \\ &2.7 \text{ V} \leq \text{V}_{\text{b}} \leq 4.0 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 2.8 \text{ k}\Omega \end{aligned} $	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$ \begin{aligned} 2.7 & \ V \leq EV_{DDO} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
		$ \begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} &\text{Note 2}, \\ &C_{\text{b}} = 100 \text{ pF}, &R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	1/fmck + 190 Note 3		1/fmck + 190 Note 3		1/fmck + 190 Note 3		ns
Data hold time (transmission)	thd:dat	$ \begin{aligned} 4.0 \ V &\leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V &\leq V_b \leq 4.0 \ V, \\ C_b &= 50 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	0	305	0	305	0	305	ns
		$ \begin{aligned} &2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ &C_{\text{b}} = 50 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega \end{aligned} $	0	305	0	305	0	305	ns
		$ \begin{aligned} &4.0 \; \text{V} \leq \text{EV} \text{DDO} \leq 5.5 \; \text{V}, \\ &2.7 \; \text{V} \leq \text{V}_{\text{b}} \leq 4.0 \; \text{V}, \\ &\text{C}_{\text{b}} = 100 \; \text{pF}, \; \text{R}_{\text{b}} = 2.8 \; \text{k} \Omega \end{aligned} $	0	355	0	355	0	355	ns
		$ \begin{aligned} &2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}, \\ &2.3 \text{ V} \leq \text{V}_{\text{b}} \leq 2.7 \text{ V}, \\ &C_{\text{b}} = 100 \text{ pF}, \text{ Rb} = 2.7 \text{ k}\Omega \end{aligned} $	0	355	0	355	0	355	ns
		$\begin{split} &1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \stackrel{\text{Note 2}}{\sim}, \\ &C_{\text{b}} = 100 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{split}$	0	405	0	405	0	405	ns

Note 1. The value must also be equal to or less than fMCK/4.

Caution

Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed on the next page.)

Note 2. Use it with $EVDD0 \ge V_b$.

Note 3. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

2.6.2 Temperature sensor characteristics/internal reference voltage characteristic

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

2.6.3 D/A converter characteristics

(TA = -40 to +85°C, 1.6 V \leq EVss0 = EVss1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Cor	MIN.	TYP.	MAX.	Unit	
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 MΩ	1.8 V ≤ V _{DD} ≤ 5.5 V			±2.5	LSB
		Rload = 8 MΩ	$1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$			±2.5	LSB
Settling time	tset	Cload = 20 pF	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$			3	μs
			1.6 V ≤ V _{DD} < 2.7 V			6	μs

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **Note 7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz to } 16 \text{ MHz}$

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fil: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI14, ANI16 to ANI20

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD = EVDD1 \leq VDD, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM = 0 V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Co	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	Vain			0		V _{BGR} Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

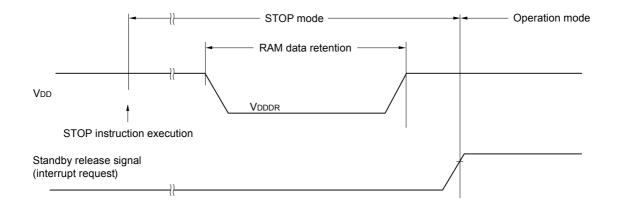
Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (-) = AVREFM. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (-) = AVREFM. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

3.6.6 LVD circuit characteristics

(1) Reset Mode and Interrupt Mode

(TA = -40 to +105°C, VPDR \leq VDD \leq 5.5 V, Vss = 0 V)


Pa	rameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Voltage detection	Supply voltage level	VLVD0	Rising edge	3.90	4.06	4.22	V
threshold			Falling edge	3.83	3.98	4.13	V
		VLVD1	Rising edge	3.60	3.75	3.90	V
			Falling edge	3.53	3.67	3.81	V
		VLVD2	Rising edge	3.01	3.13	3.25	V
			Falling edge	2.94	3.06	3.18	V
		VLVD3	Rising edge	2.90	3.02	3.14	V
		Falling edge	2.85	2.96	3.07	V	
		VLVD4	Rising edge	2.81	2.92	3.03	V
			Falling edge	2.75	2.86	2.97	V
		VLVD5	Rising edge	2.70	2.81	2.92	V
			Falling edge	2.64	2.75	2.86	V
		VLVD6	Rising edge	2.61	2.71	2.81	V
			Falling edge	2.55	2.65	2.75	V
		VLVD7	Rising edge	2.51	2.61	2.71	V
			Falling edge	2.45	2.55	2.65	V
Minimum pulse wid	ith	tLW		300			μs
Detection delay tim	ne					300	μs

3.7 RAM Data Retention Characteristics

$(TA = -40 \text{ to } +105^{\circ}\text{C}, Vss = 0V)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.44 Note		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset is effected, but RAM data is not retained when a POR reset is effected.

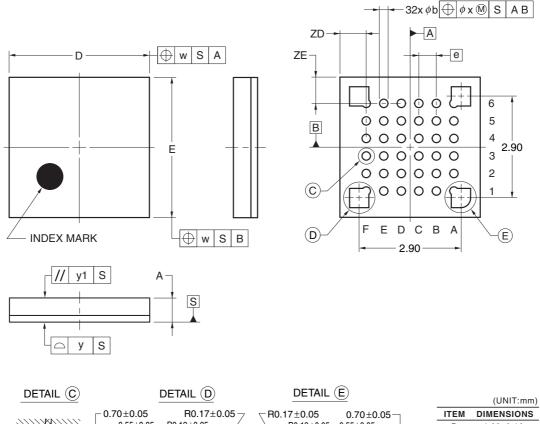
3.8 Flash Memory Programming Characteristics

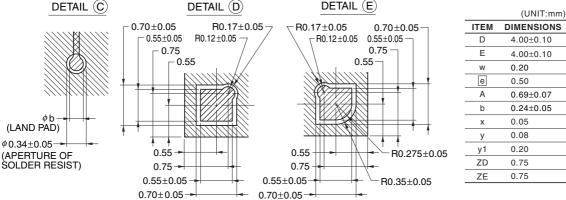
$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{VDD} \le 5.5 \text{ V}, \text{Vss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years T _A = 85°C Note 4	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C Note 4	100,000			
		Retained for 20 years TA = 85°C Note 4	10,000			

- Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.
- Note 2. When using flash memory programmer and Renesas Electronics self-programming library
- **Note 3.** These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.
- **Note 4.** This temperature is the average value at which data are retained.

3.9 Dedicated Flash Memory Programmer Communication (UART)

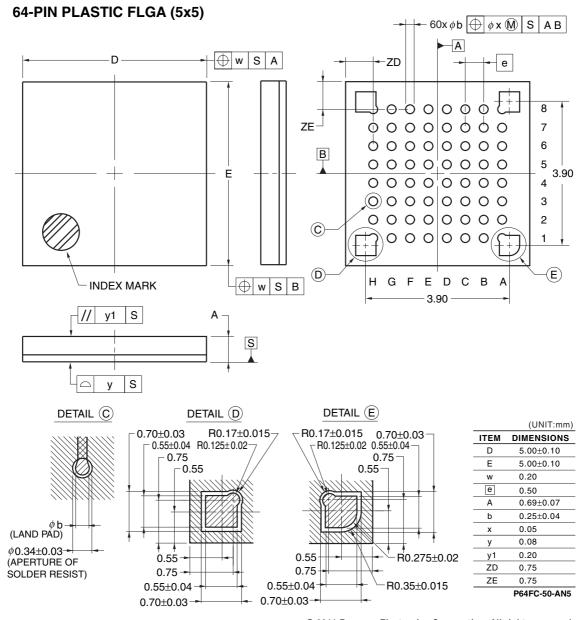

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

4.3 36-pin products

R5F104CAALA, R5F104CCALA, R5F104CDALA, R5F104CEALA, R5F104CFALA, R5F104CGALA R5F104CAGLA, R5F104CCGLA, R5F104CDGLA, R5F104CEGLA, R5F104CFGLA, R5F104CGGLA

JEITA Package Code	RENESAS Code	Previous Code	MASS (TYP.) [g]
P-WFLGA36-4x4-0.50	PWLG0036KA-A	P36FC-50-AA4-2	0.023



© 2012 Renesas Electronics Corporation. All rights reserved.

RL78/G14 4. PACKAGE DRAWINGS

R5F104LCALA, R5F104LDALA, R5F104LEALA, R5F104LFALA, R5F104LGALA, R5F104LHALA, R5F104LJALA R5F104LKALA, R5F104LLALA

R5F104LCGLA,R5F104LDGLA, R5F104LEGLA, R5F104LFGLA, R5F104LGGLA, R5F104LHGLA, R5F104LHGLA, R5F104LLGLA

 $\ensuremath{\mathbb{O}}$ 2011 Renesas Electronics Corporation. All rights reserved.