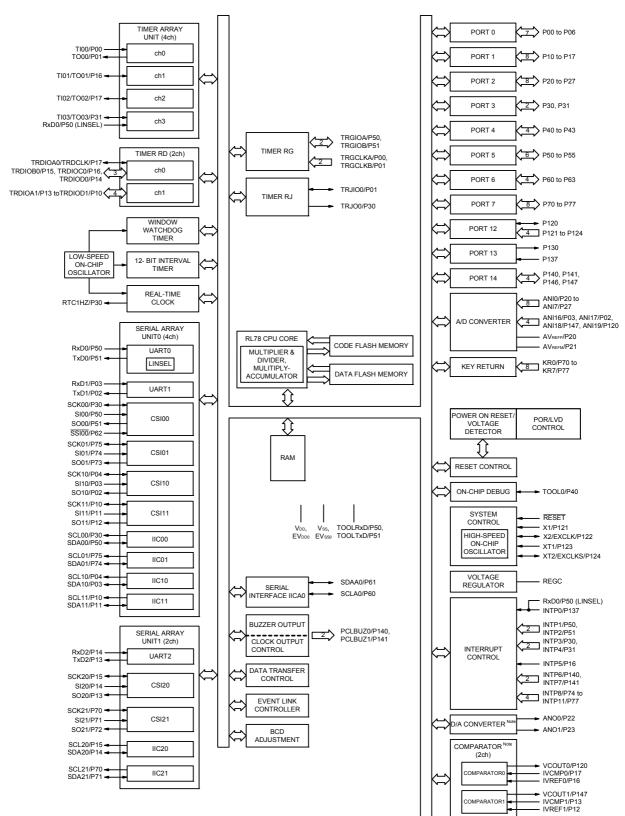


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	31
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	8K x 8
RAM Size	24K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b; D/A 2x8b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LQFP
Supplier Device Package	44-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104fjdfp-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.5.8 64-pin products

Note Mounted on the 96 KB or more code flash memory products.

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** file: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol	C	Conditions		peed ode	LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkCY1	tkcy1 ≥ 2/fclk	$4.0~V \leq EV_{\text{DD0}} \leq 5.5~V$	62.5		250		500		ns
			$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	83.3		250		500		ns
SCKp high-/low-level	tкнı,	$4.0 \text{ V} \leq EV_{DD0}$	≤ 5.5 V	tксү1/2 - 7		tксү1/2 - 50		tксү1/2 - 50		ns
width	tĸ∟1	$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑)	tsiĸ1	$4.0 \; V \leq EV_{\text{DD0}}$	≤ 5.5 V	23		110		110		ns
Note 1		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		33		110		110		ns
SIp hold time (from SCKp↑) ^{Note 2}	tksi1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		10		10		10		ns
Delay time from SCKp↓ to SOp output ^{Note 3}	tkso1	C = 20 pF Note	: 4		10		10		10	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. This value is valid only when CSI00's peripheral I/O redirect function is not used.

Remark 2. p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0),

g: PIM and POM numbers (g = 1)

Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Parameter	Symbol	(Conditions	HS (high-s main) mo		LS (low-speed mode	d main)	LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tKCY1	tkcy1 ≥ 4/fclk	$2.7~V \leq E_{VDD0} \leq 5.5~V$	125		500		1000		ns
			$2.4~V \leq EV_{DD0} \leq 5.5~V$	250		500		1000		ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	500		500		1000		ns
			$1.7~V \leq EV_{DD0} \leq 5.5~V$	1000		1000		1000		ns
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	—		1000		1000		ns
SCKp high-/low-level	tкнı,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
width	tĸ∟1	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 38		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.8~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		tксү1/2 - 100		tксү1/2 - 100		tксү1/2 - 100		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	—		tксү1/2 - 100		tксү1/2 - 100		ns
SIp setup time	tsik1	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}}$	44		110		110		ns	
(to SCKp↑) Note 1		$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		44		110		110		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		75		110		110		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		110		110		110		ns
		$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		220		220		220		ns
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		—		220		220		ns
SIp hold time	tksi1	$1.7 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	19		19		19		ns
(from SCKp↑) Note 2		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}}$	≤ 5.5 V	—		19		19		ns
Delay time from SCKp↓ to SOp output Note 3	tkso1		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$ C = 30 pF Note 4		25		25		25	ns
		$1.6 V \le EV_{DD0}$ C = 30 pF Note			_		25		25	ns

(3) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SCKp and SOp output lines.

Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)

Remark 2. fMck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Parameter	Symbol	Cond	ditions	HS (high-spee mode	d main)	LS (low-speed mode	d main)	LV (low-voltag mode	e main)	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle	t КСҮ2	$4.0~V \leq EV_{DD0} \leq 5.5~V$	20 MHz < fмск	8/fмск		_		—		ns
time Note 5			fмск ≤ 20 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.7~V \leq EV_{\text{DD0}} \leq 5.5~V$	16 MHz < fмск	8/fмск		_		—		ns
			fмск ≤ 16 MHz	6/fмск		6/fмск		6/fмск		ns
		$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 500		6/fмск and 500		6/fмск and 500		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 750		6/fмск and 750		6/fмск and 750		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		6/fмск and 1500		6/fмск and 1500		6/fмск and 1500		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	_		6/fмск and 1500		6/fмск and 1500		ns	
SCKp high-/	tкн2,	$4.0~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$		tксү2/2 - 7		tксү2/2 - 7		tксү2/2 - 7		ns
low-level width	tĸ∟2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		tксү2/2 - 8		tkcy2/2 - 8		tkcy2/2 - 8		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	tксү2/2 - 18		tксү2/2 - 18		tксү2/2 - 18		ns	
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	tксү2/2 - 66		tkcy2/2 - 66		tксү2/2 - 66		ns	
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		tkcy2/2 - 66		tксү2/2 - 66		ns
SIp setup time	tsik2	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
(to SCKp↑) Note 1		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1/fмск + 40		1/fмск + 40		1/fмск + 40		ns	
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		1/fмск + 40		1/fмск + 40		ns
SIp hold time	tksi2	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
(from SCKp↑) Note 2		$1.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		1/fмск + 250		1/fмск + 250		1/fмск + 250		ns
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		—		1/fмск + 250		1/fмск + 250		ns
Delay time from SCKp↓ to	tkso2	C = 30 pF Note 4	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 44		2/fмск + 110		2/fмск + 110	ns
SOp output Note 3			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$		2/fмск + 75		2/fмск + 110		2/fмск + 110	ns
			$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 100		2/fмск + 110		2/fмск + 110	ns
			$1.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		2/fмск + 220		2/fмск + 220		2/fмск + 220	ns
			$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		—		2/fмск + 220		2/fмск + 220	ns

(4) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 4. C is the load capacitance of the SOp output lines.

Note 5. The maximum transfer rate when using the SNOOZE mode is 1 Mbps.

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

- **Note 4.** This value as an example is calculated when the conditions described in the "Conditions" column are met.
- Refer to **Note 3** above to calculate the maximum transfer rate under conditions of the customer.
- Note 5. Use it with $EV_{DD0} \ge V_b$.
- **Note 6.** The smaller maximum transfer rate derived by using fMck/6 or the following expression is the valid maximum transfer rate.

Expression for calculating the transfer rate when 1.8 V \leq EVDD0 < 3.3 V and 1.6 V \leq Vb \leq 2.0 V

Maximum transfer rate

sfer rate =
$$\frac{}{\{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 3}$$

1

Baud rate error (theoretical value) =

$$\frac{1}{\text{Transfer rate} \times 2} - \{-C_b \times R_b \times \ln (1 - \frac{1.5}{V_b})\} \times 100 [\%]$$

$$(\frac{1}{\text{Transfer rate}}) \times \text{Number of transferred bits}$$

* This value is the theoretical value of the relative difference between the transmission and reception sides

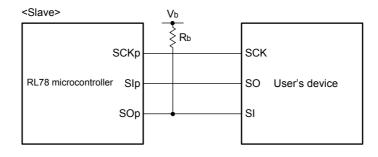
- **Note 7.** This value as an example is calculated when the conditions described in the "Conditions" column are met. Refer to **Note 6** above to calculate the maximum transfer rate under conditions of the customer.
- Caution Select the TTL input buffer for the RxDq pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

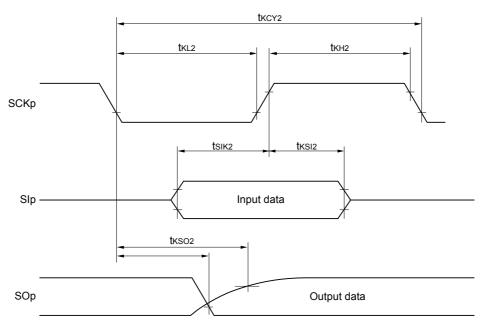
RL78/G14

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

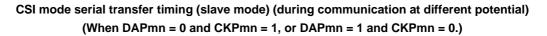
Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed mode	,	LV (low-vo main) mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t КСҮ1	tксү1 ≥ 2/fс∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 20 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq V \\ C_{b} = 20 \; pF, \; R_{b} \end{array}$	4.0 V,	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2 \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,	tксү1/2 - 120		tксү1/2 - 120		tксү1/2 - 120		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \; pF, \; R_{b} \end{array}$	4.0 V,	tксү1/2 - 7		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,	tксү1/2 - 10		tксү1/2 - 50		tксү1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsik1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} = 20 \; pF, \; R_{b} \end{array}$	4.0 V,	58		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tksi1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} = 20 \; pF, \; R_{b} \end{array}$	4.0 V,	10		10		10		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,	10		10		10		ns
Delay time from SCKp↓ to SOp out- put ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \\ 2.7 \; V \leq V_{b} \leq \\ C_{b} = 20 \; pF, \; R_{b} \end{array}$	4.0 V,		60		60		60	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	2.7 V,		130		130		130	ns

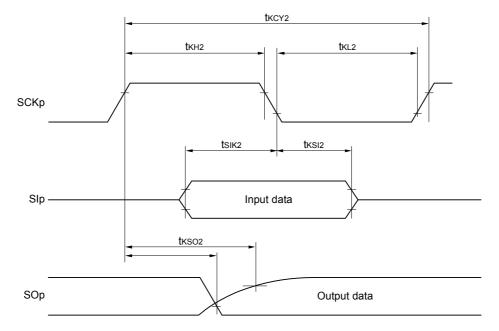

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

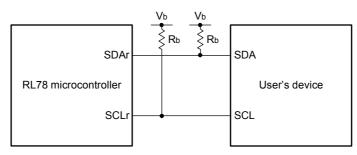
(Notes, Caution, and Remarks are listed on the next page.)

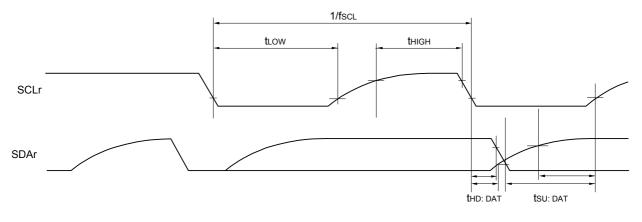

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $EVDD0 \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VoD tolerance (for the 30- to 52-pin products)/EVoD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)




- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.


CSI mode serial transfer timing (slave mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)



- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 30, 31), g: PIM, POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10, 12, 13)

(2) I²C fast mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions		· · ·	h-speed mode	``	v-speed mode	LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode:	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fc∟k ≥ 3.5 MHz	$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	400	0	400	0	400	kHz
Setup time of restart condi-	tsu: sta	$2.7~V \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
tion		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Hold time Note 1	thd: STA	$2.7~V \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs
Hold time when SCLA0 = "H"	tнigн	$2.7~V \leq EV_{DD0} \leq$	0.6		0.6		0.6		μs	
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	0.6		0.6		0.6		μs	
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq$	5.5 V	100		100		100		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		100		100		100		ns
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Note 2		$1.8 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{DD0} \leq$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

$TA = -40$ to $+105$ °C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)									
Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit		
Output current, low ^{Note 1}	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				8.5 Note 2	mA		
		Per pin for P60 to P63				15.0 Note 2	mA		
		Total of P00 to P04, P40 to P47,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA		
		(When duty $< 70\%$ Note 3)	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			15.0	mA		
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			9.0	mA		
		Total of P05, P06, P10 to P17,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			40.0	mA		
		P30, P31, P50 to P57,	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			35.0	mA		
		P60 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty ≤ 70% ^{Note 3})	2.4 V ≤ EVDD0 < 2.7 V			20.0	mA		
		Total of all pins (When duty \leq 70% ^{Note 3})				80.0	mA		
	IOL2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA		
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			5.0	mA		

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/5)

Note 1. Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IoL × 0.7)/(n × 0.01)
 - <Example> Where n = 80% and IoL = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Itomo	Cumbel			MINI	TVD	MAX	1.1.0.14
Items	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOH1 = -3.0 mA	EVDD0 - 0.7			V
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110,	2.7 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -2.0 mA	EVDD0 - 0.6			V
		P111, P120, P130, P140 to P147	2.4 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -1.5 mA	EVDD0 - 0.5			V
	Voh2	P20 to P27, P150 to P156	2.4 V ≤ Vdd ≤ 5.5 V, Ioh2 = -100 μA	Vdd - 0.5			V
Output voltage, low	VOL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 8.5 mA			0.7	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 3.0 \text{ mA}$			0.6	V
			$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $\text{IOL1} = 1.5 \text{ mA}$			0.4	V
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 0.6 mA			0.4	V
	Vol2	P20 to P27, P150 to P156	$\begin{array}{l} \text{2.4 V} \leq \text{Vdd} \leq 5.5 \text{ V},\\ \text{Iol2 = 400 } \mu\text{A} \end{array}$			0.4	V
	Vol3	P60 to P63	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 5.0 mA			0.4	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 3.0 mA			0.4	V
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 2.0 mA			0.4	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(4/5)

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

Parameter Symbo Conditions MIN. TYP. MAX. fносо = 64 MHz, $V_{DD} = 5.0 V$ 2.6 Supply DD1 Operat-HS (high-speed main) Basic current ing mode mode Note 5 fill = 32 MHz Note 3 operation VDD = 3.0 V 2.6 Note 1 fносо = 32 MHz. Basic VDD = 5.0 V 2.3 fiH = 32 MHz Note 3 operation VDD = 3.0 V 2.3 fносо = 64 MHz, VDD = 5.0 V HS (high-speed main) Normal 5.4 10.9 mode Note 5 fiH = 32 MHz Note 3 operation $V_{DD} = 3.0 V$ 54 10.9 VDD = 5.0 V 10.3 fносо = 32 MHz. Normal 5.0 fin = 32 MHz Note 3 operation VDD = 3.0 V 10.3 5.0 VDD = 5.0 V fHOCO = 48 MHz. 42 82 Normal fiH = 24 MHz Note 3 operation VDD = 3.0 V 4.2 8.2 fносо = 24 MHz, Normal VDD = 5.0 V 4.0 7.8 fill = 24 MHz Note 3 operation VDD = 3.0 V 40 78 fносо = 16 MHz, Normal VDD = 5.0 V 3.0 5.6 fin = 16 MHz Note 3 operation VDD = 3.0 V 3.0 5.6 HS (high-speed main) 3.4 f_{MX} = 20 MHz Note 2 Normal Square wave input 6.6 mode Note 5 VDD = 5.0 V operation Resonator connection 3.6 6.7 f_{MX} = 20 MHz Note 2, Normal Square wave input 34 6.6 operation $V_{DD} = 3.0 V$ Resonator connection 3.6 6.7 fmx = 10 MHz Note 2, 2.1 3.9 Normal Square wave input VDD = 5.0 V operation Resonator connection 22 4.0 f_{MX} = 10 MHz Note 2. Normal Square wave input 2.1 3.9 VDD = 3.0 V operation Resonator connection 2.2 4.0 fsub = 32.768 kHz Note 4 49 71 Subsystem clock Normal Square wave input operation operation $T_A = -40^{\circ}C$ Resonator connection 4.9 7.1 fsub = 32.768 kHz Note 4 Normal Square wave input 4.9 7.1 $T_A = +25^{\circ}C$ operation 4.9 7.1 Resonator connection Normal 5.1 8.8 fsub = 32.768 kHz Note 4 Square wave input $T_A = +50^{\circ}C$ operation 8.8 Resonator connection 5.1 10.5 fsub = 32.768 kHz Note 4 Square wave input 5.5 Normal TA = +70°C operation Resonator connection 5.5 10.5 fsub = 32.768 kHz Note 4 Normal 6.5 14.5 Square wave input TA = +85°C operation 6.5 14.5 Resonator connection fsub = 32.768 kHz Note 4 Normal Square wave input 13.0 58.0

 $T_{A} = +105^{\circ}C$

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(Notes and Remarks are listed on the next page.)

operation

Resonator connection

Unit

mΑ

mΑ

mΑ

μA

13.0

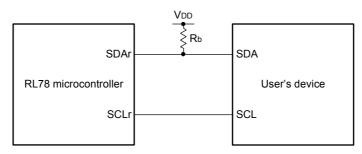
58.0

<R> <R>

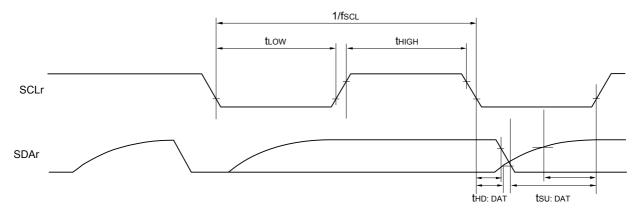
<R> <R>

<R> <R>

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products


(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol		Conditions						MAX.	Uni
Supply	IDD1	Operat-	HS (high-speed main)	fносо = 64 MHz,	Basic	VDD = 5.0 V		2.9		mA
current		ing mode	mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.9		1
Note 1				fносо = 32 MHz,	Basic	VDD = 5.0 V		2.5		1
				fiH = 32 MHz Note 3	operation	VDD = 3.0 V		2.5		1
			HS (high-speed main)	fносо = 64 MHz,	Normal	VDD = 5.0 V		6.0	11.2	m/
			mode Note 5	fiH = 32 MHz Note 3	operation	VDD = 3.0 V		6.0	11.2	
				fносо = 32 MHz,	Normal	VDD = 5.0 V		5.5	10.6	
			fiH = 32 MHz Note 3	operation	VDD = 3.0 V		5.5	10.6		
			fiH = 24 MHz Note 3operationfHOCO = 24 MHz,Normal	VDD = 5.0 V		4.7	8.6			
				operation	VDD = 3.0 V		4.7	8.6		
				VDD = 5.0 V		4.4	8.2			
				fiH = 24 MHz Note 3	operation	VDD = 3.0 V		4.4	8.2	
				fносо = 16 MHz,	Normal	VDD = 5.0 V		3.3	5.9	
				fiH = 16 MHz Note 3	operation	VDD = 3.0 V		3.3	5.9	1
			HS (high-speed main)	fmx = 20 MHz Note 2,	Normal	Square wave input		3.7	6.8	m
			mode Note 5	VDD = 5.0 V	operation	Resonator connection		3.9	7.0	1
				fmx = 20 MHz Note 2, VDD = 3.0 V fmx = 10 MHz Note 2, VDD = 5.0 V fmx = 10 MHz Note 2,	Normal	Square wave input		3.7	6.8]
					operation	Resonator connection		3.9	7.0	1
					Normal	Square wave input		2.3	4.1	
					operation	Resonator connection		2.3	4.2	1
					Normal operation	Square wave input		2.3	4.1	1
				VDD = 3.0 V		Resonator connection		2.3	4.2	1
			Subsystem clock	fsub = 32.768 kHz Note 4	Normal	Square wave input		5.2	7.7	μ
			operation	TA = -40°C	operation	Resonator connection		5.2	7.7	1
				fsub = 32.768 kHz Note 4	Normal	Square wave input		5.3	7.7	1
				TA = +25°C	operation	Resonator connection		5.3	7.7	1
				fsub = 32.768 kHz Note 4	Normal	Square wave input		5.5	10.6	1
				TA = +50°C	operation	Resonator connection		5.5	10.6	1
				fsue = 32.768 kHz Note 4	Normal	Square wave input		5.9	13.2	
			TA = +70°C	operation	Resonator connection		6.0	13.2	1	
				fsuв = 32.768 kHz ^{Note 4}	Normal	Square wave input		6.8	17.5	1
				$T_A = +85^{\circ}C$	operation	Resonator connection		6.9	17.5	-
				fsue = 32.768 kHz ^{Note 4}	Normal	Square wave input		15.5	77.8	1
				$T_A = +105^{\circ}C$	operation				-	-
						Resonator connection		15.5	77.8	L


(Notes and Remarks are listed on the next page.)

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

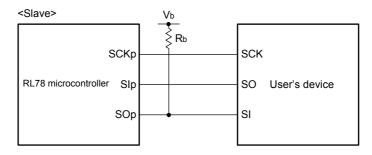
Remark 1. Rb[Ω]: Communication line (SDAr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance

- **Remark 2.** r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 3 to 5, 14),
 - h: POM number (h = 0, 1, 3 to 5, 7, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	C	onditions	HS (high-speed	main) mode	Unit
				MIN.	MAX.	
SCKp cycle time	tксү1	tkCY1 tKCY1 ≥ 4/fCLK 4.0 V ≤ E 2.7 V ≤ V Cb = 30 p		600		ns
			$\label{eq:VDD0} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$	1000		ns
			$\begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	2300		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ ' \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \end{array}$,	tĸcy1/2 - 150		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 - 340		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		tксү1/2 - 916		ns
SCKp low-level width	tĸL1	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ ' \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \end{array}$,	tксү1/2 - 24		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \end{array}$,	tkcy1/2 - 36		ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		tксү1/2 - 100		ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

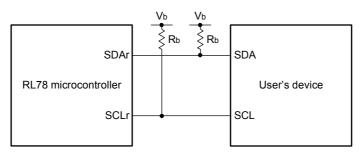

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed two pages after the next page.)

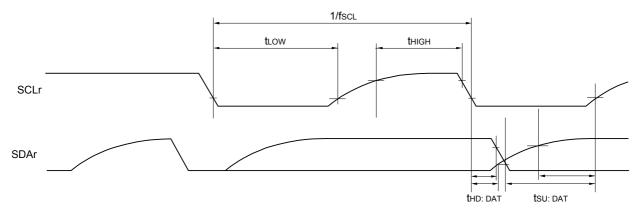
- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).


m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))

Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.


Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 30, 31), g: PIM, POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10, 12, 13)

