

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104gaafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

○ ROM, RAM capacities

Flash ROM	Data flash	RAM	RL78/G14						
TIASH NOW	Data liasii	r\Alvi	30 pins	32 pins	36 pins	40 pins			
192 KB	8 KB	20 KB	—	—	—	R5F104EH			
128 KB	8 KB	16 KB	R5F104AG	R5F104BG	R5F104CG	R5F104EG			
96 KB	8 KB	12 KB	R5F104AF	R5F104BF	R5F104CF	R5F104EF			
64 KB	4 KB	5.5 KB Note	R5F104AE	R5F104BE	R5F104CE	R5F104EE			
48 KB	4 KB	5.5 KB Note	R5F104AD	R5F104BD	R5F104CD	R5F104ED			
32 KB	4 KB	4 KB	R5F104AC	R5F104BC	R5F104CC	R5F104EC			
16 KB	4 KB	2.5 KB	R5F104AA	R5F104BA	R5F104CA	R5F104EA			

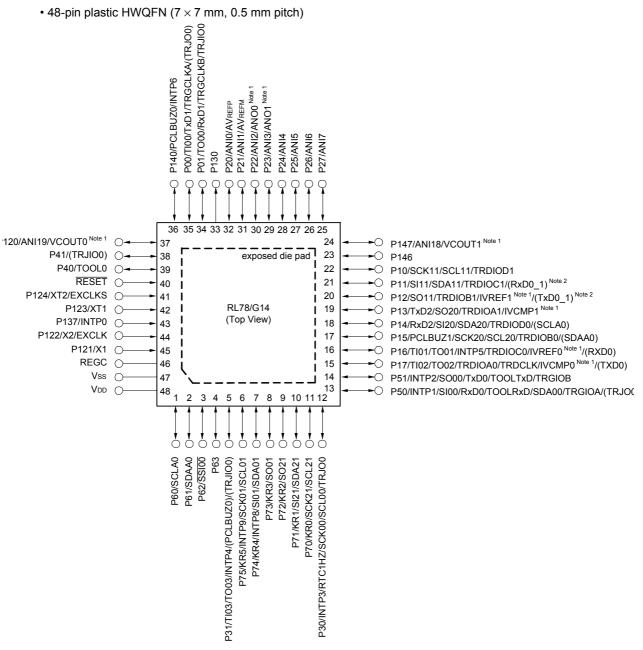
Flash ROM	Data flash	RAM		RL78/G14						
T IdSIT KOW	Data liasii		44 pins	48 pins	52 pins	64 pins				
512 KB	8 KB	48 KB Note	_	R5F104GL	—	R5F104LL				
384 KB	8 KB	32 KB	_	R5F104GK	—	R5F104LK				
256 KB	8 KB	24 KB Note	R5F104FJ	R5F104GJ	R5F104JJ	R5F104LJ				
192 KB	8 KB	20 KB	R5F104FH	R5F104GH	R5F104JH	R5F104LH				
128 KB	8 KB	16 KB	R5F104FG	R5F104GG	R5F104JG	R5F104LG				
96 KB	8 KB	12 KB	R5F104FF	R5F104GF	R5F104JF	R5F104LF				
64 KB	4 KB	5.5 KB Note	R5F104FE	R5F104GE	R5F104JE	R5F104LE				
48 KB	4 KB	5.5 KB Note	R5F104FD	R5F104GD	R5F104JD	R5F104LD				
32 KB	4 KB	4 KB	R5F104FC	R5F104GC	R5F104JC	R5F104LC				
16 KB	4 KB	2.5 KB	R5F104FA	R5F104GA	_	_				

Flash ROM	Data flash	n RAM -	RL78	3/G14
FIDSII ROIVI	Dala liash		80 pins	100 pins
512 KB	8 KB	48 KB Note	R5F104ML	R5F104PL
384 KB	8 KB	32 KB	R5F104MK	R5F104PK
256 KB	8 KB	24 KB Note	R5F104MJ	R5F104PJ
192 KB	8 KB	20 KB	R5F104MH	R5F104PH
128 KB	8 KB	16 KB	R5F104MG	R5F104PG
96 KB	8 KB	12 KB	R5F104MF	R5F104PF

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

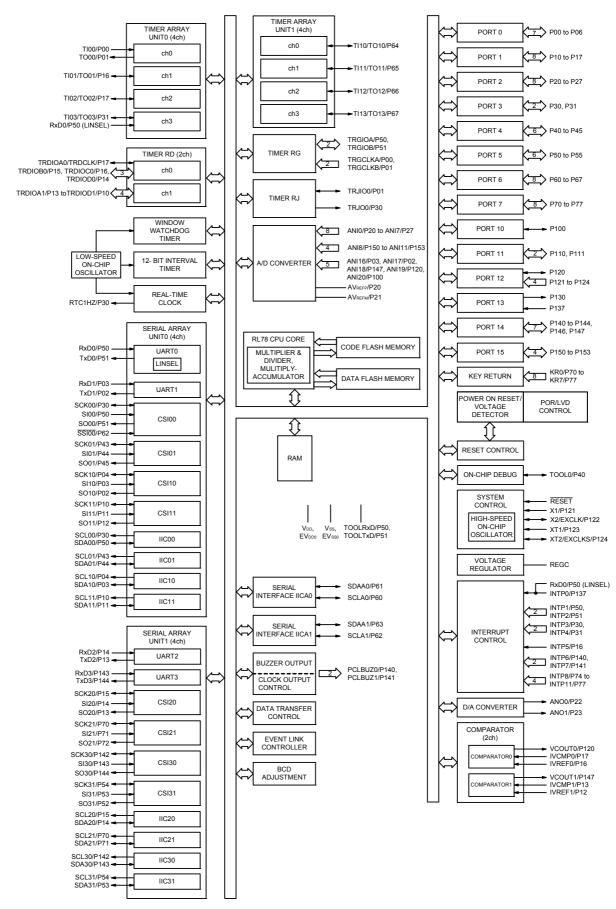
R5F104xD (x = A to C, E to G, J, L): Start address FE900H


R5F104xE (x = A to C, E to G, J, L): Start address FE900H

R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H

R5F104xL (x = G, L, M, P): Start address F3F00H

For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944).


Note 1. Mounted on the 96 KB or more code flash memory products.

Note 2. Mounted on the 384 KB or more code flash memory products.

- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).
- Remark 3. It is recommended to connect an exposed die pad to Vss.

1.5.9 80-pin products

[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 96 KB to 256 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

	(PIORU, I) are set to				(1/2				
		44-pin	48-pin	52-pin	64-pin				
	Item	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx				
		(x = F to H, J)	(x = F to H, J)	(x = F to H, J)	(x = F to H, J)				
Code flash me	emory (KB)	96 to 256	96 to 256	96 to 256	96 to 256				
Data flash me	emory (KB)	8	8	8	8				
RAM (KB)		12 to 24 Note	12 to 24 Note	12 to 24 Note	12 to 24 Note				
Address space	e	1 MB							
Main system clock	High-speed system clock	X1 (crystal/ceramic) oscillation, external main system clock input (EXCLK) HS (high-speed main) mode: 1 to 20 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)							
	High-speed on-chip oscillator clock (fiH)	HS (high-speed main) mode: 1 to 32 MHz (VDD = 2.7 to 5.5 V), HS (high-speed main) mode: 1 to 16 MHz (VDD = 2.4 to 5.5 V), LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V), LV (low-voltage main) mode: 1 to 4 MHz (VDD = 1.6 to 5.5 V)							
Subsystem clo	ock	XT1 (crystal) oscillation	n, external subsystem o	clock input (EXCLKS) 32	2.768 kHz				
Low-speed on	n-chip oscillator clock	15 kHz (TYP.): Vod = 1.6 to 5.5 V							
General-purpo	ose register	8 bits \times 32 registers (8	bits \times 8 registers \times 4 ba	anks)					
Minimum instruction execution time		0.03125 μs (High-spee	d on-chip oscillator clo	ck: fiн = 32 MHz operat	ion)				
		0.05 µs (High-speed s	ystem clock: fmx = 20 M	IHz operation)					
		30.5 µs (Subsystem cl	ock: fsuв = 32.768 kHz	operation)					
	ı	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (Set, reset, test, and Boolean operation), etc. 							
I/O port	Total	40	44	48	58				
	port Total CMOS I/O	31	34	38	48				
	CMOS input	5	5	5	5				
	CMOS output	—	1	1	1				
	N-ch open-drain I/O (6 V tolerance)	4	4	4	4				
Timer	16-bit timer	8 channels (TAU: 4 channels, Time	er RJ: 1 channel, Timer	r RD: 2 channels, Timer	RG: 1 channel)				
	Watchdog timer	1 channel							
	Real-time clock (RTC)	1 channel							
		1 channel							
	12-bit interval timer	i channei	Timer outputs: 14 channels PWM outputs: 9 channels						
	12-bit interval timer Timer output	Timer outputs: 14 char							

(Note is listed on the next page.)

RENESAS

1	ი	in	١
(2	12)

		80-pin	(2/2) 100-pin			
	tem	· · · · · · · · · · · · · · · · · · ·	•			
1	tem	R5F104Mx (x = K, L)	R5F104Px (x = K, L)			
Clock output/buzz	zer output	2	2			
		 2.44 kHz, 4.88 kHz, 9.76 kHz, 1.25 MHz, 2. (Main system clock: fMAIN = 20 MHz operati 256 Hz, 512 Hz, 1.024 kHz, 2.048 kHz, 4.03 (Subsystem clock: fsub = 32.768 kHz operation) 	1			
8/10-bit resolution	n A/D converter	17 channels	20 channels			
D/A converter		2 channels	2 channels			
Comparator 2 channels			2 channels			
Serial interface		 [80-pin, 100-pin products] CSI: 2 channels/UART (UART supporting LIN-bus): 1 channel/simplified I²C: 2 channels CSI: 2 channels/UART: 1 channel/simplified I²C: 2 channels 				
	I ² C bus	2 channels	2 channels			
Data transfer controller (DTC) 39 sources 39 sources						
Event link control	ler (ELC)	Event input: 26 Event trigger output: 9				
Vectored inter-	Internal	32	32			
rupt sources	External	13	13			
Key interrupt		8	8			
Reset		Reset by RESET pin Internal reset by watchdog timer Internal reset by power-on-reset Internal reset by voltage detector Internal reset by illegal instruction execution ^{Note} Internal reset by RAM parity error Internal reset by illegal-memory access				
Power-on-reset c	ircuit	• Power-on-reset: $1.51 \pm 0.04 \text{ V}$ (TA = -40 1.51 $\pm 0.06 \text{ V}$ (TA = -40 • Power-down-reset: $1.50 \pm 0.04 \text{ V}$ (TA = -40 1.50 $\pm 0.06 \text{ V}$ (TA = -40	0 to +105°C) 0 to +85°C)			
Voltage detector		1.63 V to 4.06 V (14 stages)				
On-chip debug fu	nction	Provided				
Power supply vol	tage	V _{DD} = 1.6 to 5.5 V (T _A = -40 to +85°C) V _{DD} = 2.4 to 5.5 V (T _A = -40 to +105°C)				
Operating ambier	nt temperature	$T_A = -40$ to +85°C (A: Consumer applications $T_A = -40$ to +105°C (G: Industrial applications				

Note

The illegal instruction is generated when instruction code FFH is executed.

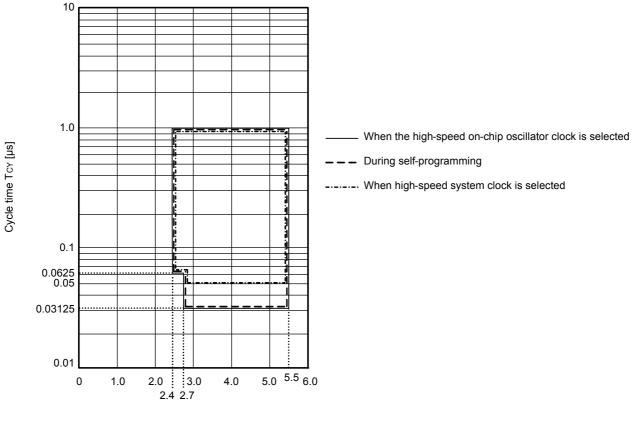
Reset by the illegal instruction execution is not issued by emulation with the in-circuit emulator or onchip debug emulator.

Parameter	Symbol			Conditions		MIN.	TYP.	MAX.	Unit
Supply cur-	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.93	3.32	mA
rent Note 1	Note 2		mode Note 7	fiн = 32 MHz ^{Note 4}	VDD = 3.0 V		0.93	3.32	
				fносо = 32 MHz,	VDD = 5.0 V		0.5	2.63	1
				fiн = 32 MHz ^{Note 4}	VDD = 3.0 V		0.5	2.63	1
				fносо = 48 MHz,	VDD = 5.0 V		0.72	2.60	1
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.72	2.60	1
				fносо = 24 MHz,	VDD = 5.0 V		0.42	2.03	1
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.42	2.03	1
				fносо = 16 MHz,	VDD = 5.0 V		0.39	1.50	
				fiн = 16 MHz Note 4	VDD = 3.0 V		0.39	1.50	1
			LS (low-speed main)	fносо = 8 MHz,	VDD = 3.0 V		270	800	μA
			mode Note 7	fiH = 8 MHz Note 4	VDD = 2.0 V		270	800	1
			LV (low-voltage main)	fносо = 4 MHz,	VDD = 3.0 V		450	755	μA
			mode Note 7	fiH = 4 MHz Note 4	VDD = 2.0 V		450	755	1
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.69	mA
			mode Note 7	VDD = 5.0 V	Resonator connection		0.41	1.91	1
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	1.69	1
				VDD = 3.0 V	Resonator connection		0.41	1.91	1
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.94	1
				VDD = 5.0 V	Resonator connection		0.26	1.02	1
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.21	0.94	1
				VDD = 3.0 V	Resonator connection		0.26	1.02	1
			LS (low-speed main)	f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	610	μA
			mode Note 7	VDD = 3.0 V	Resonator connection		150	660	1
				f _{MX} = 8 MHz ^{Note 3} ,	Square wave input		110	610	1
				VDD = 2.0 V	Resonator connection		150	660	1
			Subsystem clock oper-	fsub = 32.768 kHz Note 5,	Square wave input		0.31		μA
			ation	TA = -40°C	Resonator connection		0.50		1
				fsub = 32.768 kHz Note 5,	Square wave input		0.38	0.76	1
				TA = +25°C	Resonator connection		0.57	0.95	1
				fsue = 32.768 kHz Note 5,	Square wave input		0.47	3.59	1
				TA = +50°C	Resonator connection		0.70	3.78	1
				fsub = 32.768 kHz Note 5,	Square wave input		0.80	6.20	1
				TA = +70°C	Resonator connection		1.00	6.39	1
				fsub = 32.768 kHz Note 5,	Square wave input		1.65	10.56	1
				TA = +85°C	Resonator connection		1.84	10.75	1
	IDD3	STOP mode	TA = -40°C				0.19		μA
	Note 6	Note 8	TA = +25°C				0.30	0.59	1
			T _A = +50°C				0.41	3.42	1
			TA = +70°C				0.80	6.03	1
			TA = +85°C				1.53	10.39	1

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(Notes and Remarks are listed on the next page.)

Items	Symbol	Conditio	ons	MIN.	TYP.	MAX.	Unit
Timer RD input high-level width, low-level width	tтdін, tтdі∟	TRDIOA0, TRDIOA1, TRDIOI TRDIOC0, TRDIOC1, TRDIO		3/fclk			ns
Timer RD forced cutoff signal	t TDSIL	P130/INTP0	2MHz < fclk ≤ 32 MHz	1			μs
input low-level width			fclk ≤ 2 MHz	1/fclk + 1			
Timer RG input high-level	tтgiн,	TRGIOA, TRGIOB		2.5/fclk			ns
width, low-level width	t⊤GIL						
TO00 to TO03,	fто	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
TO10 to TO13,			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			8	MHz
TRJIO0, TRJO0, TRDIOA0, TRDIOA1,			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1, TRGIOA, TRGIOB output frequency			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed main) mode	$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LV (low-voltage main) mode	$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			2	MHz
PCLBUZ0, PCLBUZ1 output	f PCL	HS (high-speed main) mode	$4.0~V \leq EV_{DD0} \leq 5.5~V$			16	MHz
frequency			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}$			8	MHz
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LS (low-speed main) mode	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
		LV (low-voltage main) mode	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			4	MHz
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			2	MHz
Interrupt input high-level	tinth,	INTP0	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$	1			μs
width, low-level width	tintl	INTP1 to INTP11	$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1			μs
Key interrupt input low-level	tĸĸ	KR0 to KR7	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	250			ns
width			1.6 V ≤ EVDD0 < 1.8 V	1			μs
RESET low-level width	trsl		1	10			μs


(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Minimum Instruction Execution Time during Main System Clock Operation

TCY vs VDD (HS (high-speed main) mode)



Supply voltage VDD [V]

2.5 Peripheral Functions Characteristics

AC Timing Test Points

2.5.1 Serial array unit

(1) During communication at same potential (UART mode)

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions	、 U	n-speed main) Mode	`	-speed main) Mode		oltage main) <i>I</i> ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Transfer rate		$2.4~V \leq EV \text{DD0} \leq 5.5~V$		fMCK/6 Note 2		fмск/6		fмск/6	bps
Note 1		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		5.3		1.3		0.6	Mbps
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		fмск/6 Note 2		fмск/6		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		5.3		1.3		0.6	Mbps
		1.7 V ≤ EVDD0 ≤ 5.5 V		fMCK/6 Note 2		fMCK/6 Note 2		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		5.3		1.3		0.6	Mbps
		$1.6 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		—		fMCK/6 Note 2		fмск/6	bps
		Theoretical value of the maximum transfer rate fMCK = fCLK Note 3		_		1.3		0.6	Mbps

Note 1. Transfer rate in the SNOOZE mode is 4800 bps only.

However, the SNOOZE mode cannot be used when FRQSEL4 = 1.

Note 2. The following conditions are required for low voltage interface when EVDD0 < VDD.

- 2.4 V ≤ EVDD0 < 2.7 V: MAX. 2.6 Mbps
- $1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 2.4 \text{ V}$: MAX. 1.3 Mbps

 $1.6 \text{ V} \leq \text{EV}_{\text{DD0}} < 1.8 \text{ V}$: MAX. 0.6 Mbps

Note 3. The maximum operating frequencies of the CPU/peripheral hardware clock (fcLK) are:

 HS (high-speed main) mode:
 $32 \text{ MHz} (2.7 \text{ V} \le \text{VDD} \le 5.5 \text{ V})$

 16 MHz (2.4 V \le \text{VDD} \le 5.5 \text{ V})

 LS (low-speed main) mode:
 $8 \text{ MHz} (1.8 \text{ V} \le \text{VDD} \le 5.5 \text{ V})$

 LV (low-voltage main) mode:
 $4 \text{ MHz} (1.6 \text{ V} \le \text{VDD} \le 5.5 \text{ V})$

Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed mode		LV (low-vo main) mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t КСҮ1	tксү1 ≥ 4/fc∟к		300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
				1150		1150		1150		ns
SCKp high-level width	tкнı			tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟1	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 30 \; p\text{F}, \; R_b = 1.4 \; k\Omega \end{array}$		tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
		$2.3~V \leq V_b \leq 2$	2.7 V \leq EV _{DD0} < 4.0 V, 2.3 V \leq V _b \leq 2.7 V, C _b = 30 pF, R _b = 2.7 k Ω			tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} \\ 1.6 \ V \leq V_b \leq 2. \\ C_b = 30 \ pF, \ R_b \end{array}$	0 V ^{Note} ,	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note Use it with $EVDD0 \ge Vb$.

(Remarks are listed two pages after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(3/3)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions		peed main) ode	· · ·	peed main) ode		ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SIp setup time (to SCKp↓) ^{Note 1}	tsıĸı		44		110		110		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	44		110		110		ns
		$ \begin{split} & 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{\text{b}} \leq 2.0 \ \text{V} \ \text{Note} \ ^2, \\ & \text{C}_{\text{b}} = 30 \ \text{pF}, \ \text{R}_{\text{b}} = 5.5 \ \text{k}\Omega \end{split} $	110		110		110		ns
SIp hold time (from SCKp↓) ^{Note 1}	tksi1		19		19		19		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	19		19		19		ns
		$\label{eq:linear} \begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V \ ^{Note \ 2}, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	19		19		19		ns
Delay time from SCKp↑ to SOp output ^{Note 1}	tkso1			25		25		25	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		25		25		25	ns
		$ \begin{split} & 1.8 \ \text{V} \leq \text{EV}_{\text{DD0}} < 3.3 \ \text{V}, \\ & 1.6 \ \text{V} \leq \text{V}_{b} \leq 2.0 \ \text{V} \ ^{\text{Note 2}}, \\ & \text{C}_{b} = 30 \ \text{pF}, \ \text{R}_{b} = 5.5 \ \text{k}\Omega \end{split} $		25		25		25	ns

$(TA = -40 \text{ to } +85^{\circ}C, 1.8 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le \text{VDD} \le 5.5 \text{ V}, \text{ Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$

Note 1. When DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.

Note 2. Use it with $EV_{DD0} \ge V_b$.

(**Remarks** are listed on the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions	HS (high-speed main) mode		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	250		250		ns
Data hold time (transmission) Note 2	thd: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	0	3.45	0	3.45	μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$	4.0		4.0		4.0		μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.0		4.0		μs
Bus-free time	t BUF	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.8~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.7~V \leq EV_{DD0} \leq 5.5~V$	4.7		4.7		4.7		μs
		$1.6~V \le EV_{DD0} \le 5.5~V$	-	_	4.7		4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DE DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb = 400 pF, Rb = 2.7 k Ω

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI14, ANI16 to ANI20

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD = EVDD1 \leq VDD, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VBGR ^{Note 3}, Reference voltage (-) = AVREFM = 0 V ^{Note 4}, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		bit
Conversion time	tCONV	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN		·	0		VBGR Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error:Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (-) = AVREFM.Integral linearity error:Add ± 0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.Differential linearity error:Add ± 0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

Parameter Symbo Conditions MIN. TYP. MAX. fносо = 64 MHz, $V_{DD} = 5.0 V$ 2.6 Supply DD1 Operat-HS (high-speed main) Basic current ing mode mode Note 5 fill = 32 MHz Note 3 operation VDD = 3.0 V 2.6 Note 1 fносо = 32 MHz. Basic VDD = 5.0 V 2.3 fiH = 32 MHz Note 3 operation VDD = 3.0 V 2.3 fносо = 64 MHz, VDD = 5.0 V HS (high-speed main) Normal 5.4 10.9 mode Note 5 fiH = 32 MHz Note 3 operation $V_{DD} = 3.0 V$ 54 10.9 VDD = 5.0 V 10.3 fносо = 32 MHz. Normal 5.0 fin = 32 MHz Note 3 operation VDD = 3.0 V 10.3 5.0 VDD = 5.0 V fHOCO = 48 MHz. 42 82 Normal fiH = 24 MHz Note 3 operation VDD = 3.0 V 4.2 8.2 fносо = 24 MHz, Normal VDD = 5.0 V 4.0 7.8 fill = 24 MHz Note 3 operation VDD = 3.0 V 40 78 fносо = 16 MHz, Normal VDD = 5.0 V 3.0 5.6 fin = 16 MHz Note 3 operation VDD = 3.0 V 3.0 5.6 HS (high-speed main) 3.4 f_{MX} = 20 MHz Note 2 Normal Square wave input 6.6 mode Note 5 VDD = 5.0 V operation Resonator connection 3.6 6.7 f_{MX} = 20 MHz Note 2, Normal Square wave input 34 6.6 operation $V_{DD} = 3.0 V$ Resonator connection 3.6 6.7 fmx = 10 MHz Note 2, 2.1 3.9 Normal Square wave input VDD = 5.0 V operation Resonator connection 22 4.0 f_{MX} = 10 MHz Note 2. Normal Square wave input 2.1 3.9 VDD = 3.0 V operation Resonator connection 2.2 4.0 fsub = 32.768 kHz Note 4 49 71 Subsystem clock Normal Square wave input operation operation $T_A = -40^{\circ}C$ Resonator connection 4.9 7.1 fsub = 32.768 kHz Note 4 Normal Square wave input 4.9 7.1 $T_A = +25^{\circ}C$ operation 4.9 7.1 Resonator connection Normal 5.1 8.8 fsub = 32.768 kHz Note 4 Square wave input $T_A = +50^{\circ}C$ operation 8.8 Resonator connection 5.1 10.5 fsub = 32.768 kHz Note 4 Square wave input 5.5 Normal TA = +70°C operation Resonator connection 5.5 10.5 fsub = 32.768 kHz Note 4 Normal 6.5 14.5 Square wave input TA = +85°C operation 6.5 14.5 Resonator connection fsub = 32.768 kHz Note 4 Normal Square wave input 13.0 58.0

 $T_{A} = +105^{\circ}C$

(2) Flash ROM: 96 to 256 KB of 30- to 100-pin products

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(Notes and Remarks are listed on the next page.)

operation

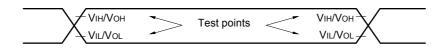
Resonator connection

Unit

mΑ

mΑ

mΑ


μA

13.0

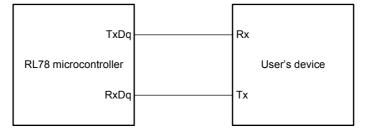
58.0

3.5 Peripheral Functions Characteristics

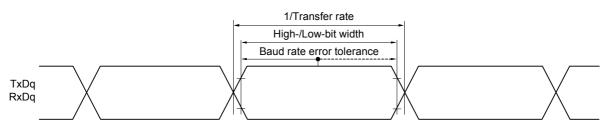
AC Timing Test Points

3.5.1 Serial array unit

(1) During communication at same potential (UART mode)


$(TA = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} \le \text{EVDD0} = \text{EVDD1} \le 5.5 \text{ V}, \text{Vss} = \text{EVss0} = \text{EVss1} = 0 \text{ V})$

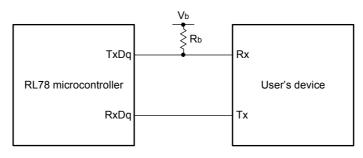
Parameter	Symbol	Conditions	HS (high-speed main) Mode		Unit
			MIN.	MAX.	
Transfer rate Note 1		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$		fмск/12 Note 2	bps
		Theoretical value of the maximum transfer rate $f_{MCK} = f_{CLK} Note 3$		2.6	Mbps


Note 1.Transfer rate in the SNOOZE mode is 4800 bps only.
However, the SNOOZE mode cannot be used when FRQSEL4 = 1.Note 2.The following conditions are required for low voltage interface when EVDD0 < VDD.
 $2.4 V \le EVDD0 < 2.7 V$: MAX. 1.3 MbpsNote 3.The maximum operating frequencies of the CPU/peripheral hardware clock (fcLk) are:
HS (high-speed main) mode: 32 MHz (2.7 V $\le VDD \le 5.5 V$)
16 MHz (2.4 V $\le VDD \le 5.5 V$)

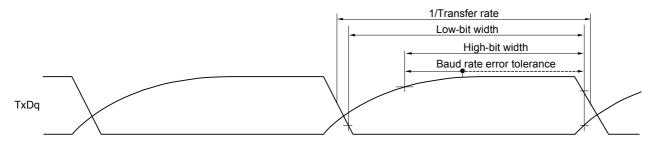
Caution Select the normal input buffer for the RxDq pin and the normal output mode for the TxDq pin by using port input mode register g (PIMg) and port output mode register g (POMg).

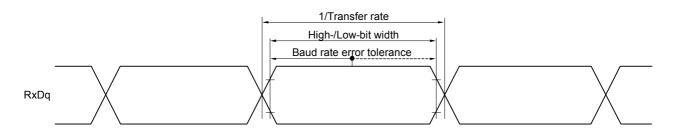
UART mode connection diagram (during communication at same potential)

UART mode bit width (during communication at same potential) (reference)



Remark 1. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14) **Remark 2.** fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))



UART mode connection diagram (during communication at different potential)

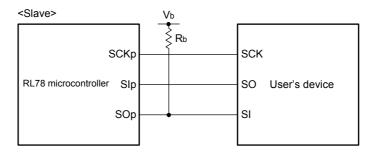
UART mode bit width (during communication at different potential) (reference)

Remark 1. Rb[Ω]: Communication line (TxDq) pull-up resistance,

Cb[F]: Communication line (TxDq) load capacitance, Vb[V]: Communication line voltage

Remark 2. q: UART number (q = 0 to 3), g: PIM and POM number (g = 0, 1, 5, 14)

Remark 3. fMCK: Serial array unit operation clock frequency


(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Remark 4. UART2 cannot communicate at different potential when bit 1 (PIOR01) of peripheral I/O redirection register 0 (PIOR0) is 1.

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

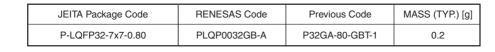
- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn).

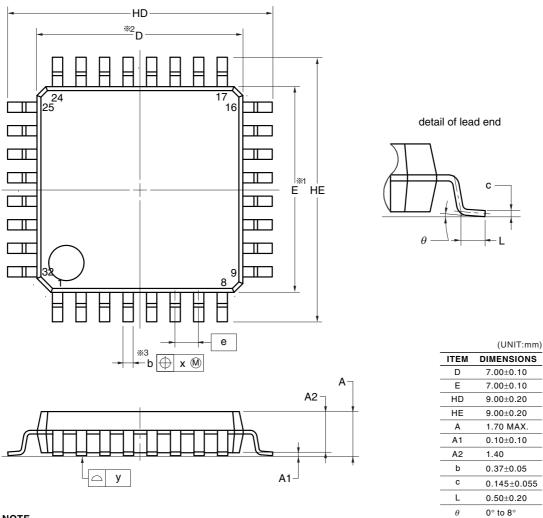
m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))

Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)


(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 \approx	= 0 V)
	-••,


(1/2)

Parameter	Symbol	Conditions	HS (high-spe	Unit	
			MIN.	MAX.	
SCLr clock frequency	fsc∟			400 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		400 Note 1	kHz
				100 Note 1	kHz
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 100 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$		100 Note 1	kHz
		$\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	t∟ow		1200		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1200		ns
			4600		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	4600		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ 1.6 \; V \leq V_b \leq 2.0 \; V, \\ C_b = 100 \; pF, \; R_b = 5.5 \; k\Omega \end{array}$	4650		ns
Hold time when SCLr = "H"	tнigн		620		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_b \leq 2.7 \; V, \\ C_b = 50 \; pF, \; R_b = 2.7 \; k\Omega \end{array}$	500		ns
			2700		ns
		$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	2400		ns
		$\begin{array}{l} 2.4 \; V \leq {\sf EV}_{{\sf DD0}} < 3.3 \; {\sf V}, \\ 1.6 \; V \leq {\sf V}_{{\sf b}} \leq 2.0 \; {\sf V}, \\ C_{{\sf b}} = 100 \; {\sf pF}, \; {\sf R}_{{\sf b}} = 5.5 \; {\sf k}\Omega \end{array}$	1830		ns

R5F104BAAFP, R5F104BCAFP, R5F104BDAFP, R5F104BEAFP, R5F104BFAFP, R5F104BGAFP R5F104BADFP, R5F104BCDFP, R5F104BDDFP, R5F104BEDFP, R5F104BFDFP, R5F104BGDFP R5F104BAGFP, R5F104BCGFP, R5F104BDGFP, R5F104BEGFP, R5F104BFGFP, R5F104BGGFP

NOTE

Dimensions "%1" and "%2" do not include mold flash.
 Dimension "%3" does not include trim offset.

© 2012 Renesas Electronics Corporation. All rights reserved.

е

у

0.80

0.20

0.10

REVISION HISTORY

RL78/G14 Datasheet

Rev.	Date	Description	
Rev.	Date	Page	Summary
0.01	Feb 10, 2011	—	First Edition issued
0.02	May 01, 2011	1 to 2	1.1 Features revised
		3	1.2 Ordering Information revised
		4 to 13	1.3 Pin Configuration (Top View) revised
		14	1.4 Pin Identification revised
		15 to 17	1.5.1 30-pin products to 1.5.3 36-pin products revised
		23 to 26	1.6 Outline of Functions revised
0.03	Jul 28, 2011	1	1.1 Features revised
1.00	Feb 21, 2012	1 to 40	1. OUTLINE revised
		41 to 97	2. ELECTRICAL SPECIFICATIONS added
2.00	Oct 25, 2013	1	Modification of 1.1 Features
		3 to 8	Modification of 1.2 Ordering Information
		9 to 22	Modification of package type in 1.3 Pin Configuration (Top View)
		34 to 43	Modification of description of subsystem clock in 1.6 Outline of Functions
		34 to 43	Modification of description of timer output in 1.6 Outline of Functions
		34 to 43	Modification of error of data transfer controller in 1.6 Outline of Functions
		34 to 43	Modification of error of event link controller in 1.6 Outline of Functions
		45, 46	Modification of description of Tables in 2.1 Absolute Maximum Ratings
		47	Modification of Tables, notes, cautions, and remarks in 2.2 Oscillator Characteristics
		48	Modification of error of conditions of high level input voltage in 2.3.1 Pin characteristics
		49	Modification of error of conditions of low level output voltage in 2.3.1 Pin characteristics
		53 to 62	Modification of Notes and Remarks in 2.3.2 Supply current characteristics
		65, 66	Addition of Minimum Instruction Execution Time during Main System Clock Operation
		67 to 69	Addition of AC Timing Test Points
		70 to 97	Addition of LS mode and LV mode characteristics in 2.5.1 Serial array unit
		98 to 101	Addition of LS mode and LV mode characteristics in 2.5.2 Serial interface IICA
		102 to 105	Addition of characteristics about conversion of internal reference voltage and temperature sensor in 2.6.1 A/D converter characteristics
		107	Addition of characteristic in 2.6.4 Comparator
		107	Deletion of detection delay in 2.6.5 POR circuit characteristics
		109	Modification of 2.6.7 Power supply voltage rising slope characteristics
		110	Modification of 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics
		110	Addition of characteristic in 2.8 Flash Memory Programming Characteristics
		111	Addition of description in 2.10 Timing for Switching Flash Memory Programming Modes