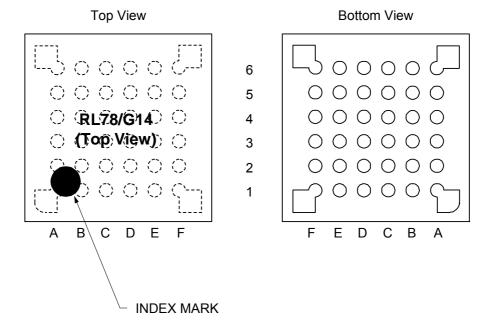


Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

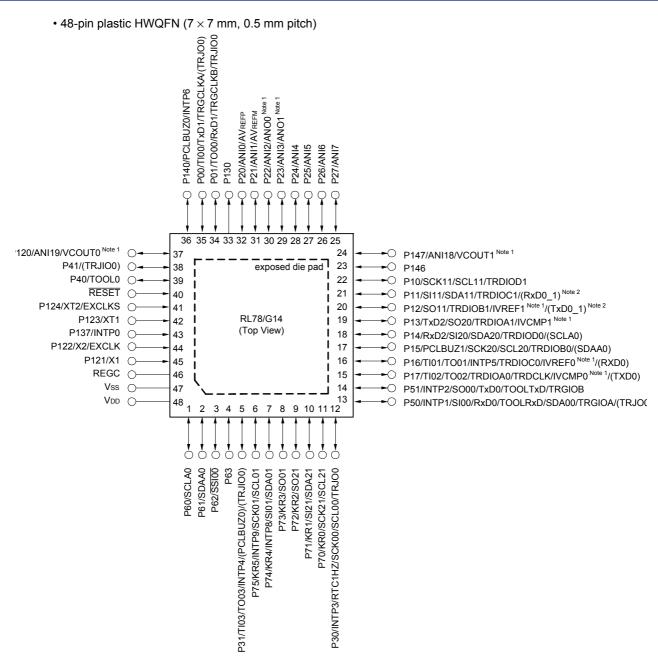

D-1-9-	
Details	
Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104gdafb-50

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

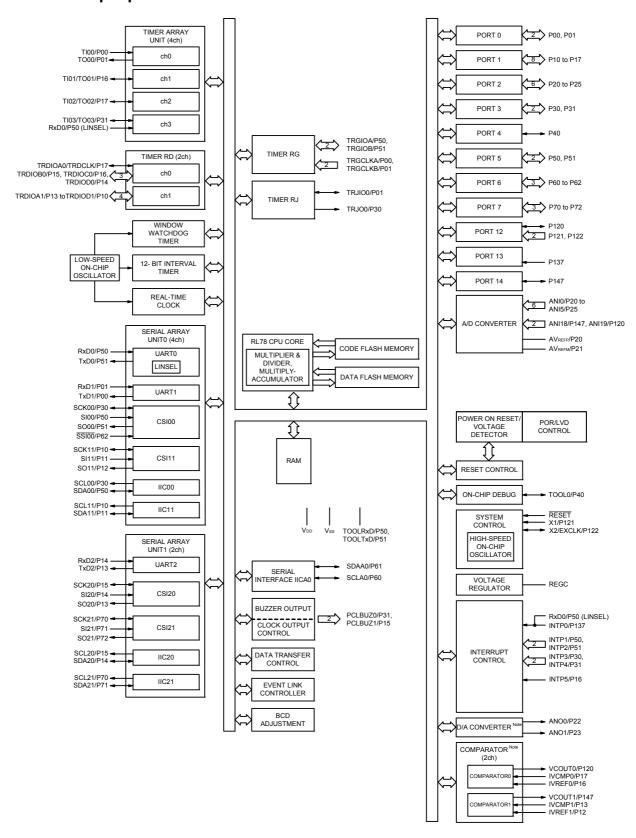
1.3.3 36-pin products

• 36-pin plastic WFLGA (4 × 4 mm, 0.5 mm pitch)


	Α	В	С	D	E	F	
6	P60/SCLA0	VDD	P121/X1	P122/X2/EXCLK	P137/INTP0	P40/TOOL0	6
5	P62/SSI00	P61/SDAA0	Vss	REGC	RESET	P120/ANI19/ VCOUT0 Note	5
4	P72/SO21	P71/SI21/ SDA21	P14/RxD2/SI20/ SDA20/TRDIOD0/ (SCLA0)	P31/TI03/TO03/ INTP4/PCLBUZ0/ (TRJIO0)	P00/TI00/TxD1/ TRGCLKA/ (TRJO0)	P01/TO00/ RxD1/TRGCLKB/ TRJIO0	4
3	P50/INTP1/ SI00/RxD0/ TOOLRxD/ SDA00/TRGIOA/ (TRJO0)	P70/SCK21/ SCL21	P15/PCLBUZ1/ SCK20/SCL20/ TRDIOB0/ (SDAA0)	P22/ANI2/ ANO0 Note	P20/ANI0/ AVREFP	P21/ANI1/ AVREFM	3
2	P30/INTP3/ SCK00/SCL00/ TRJO0	P16/TI01/TO01/ INTP5/TRDIOC0/ IVREF0 Note/ (RXD0)	P12/SO11/ TRDIOB1/ IVREF1 Note	P11/SI11/ SDA11/ TRDIOC1	P24/ANI4	P23/ANI3/ ANO1 ^{Note}	2
1	P51/INTP2/ SO00/TxD0/ TOOLTxD/ TRGIOB	P17/TI02/TO02/ TRDIOA0/ TRDCLK/ IVCMP0 Note/ (TXD0)	P13/TxD2/ SO20/TRDIOA1/ IVCMP1 Note	P10/SCK11/ SCL11/ TRDIOD1	P147/ANI18/ VCOUT1 Note	P25/ANI5	1
•	Δ	R	C.	n	F	F	

Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).


Remark 1. For pin identification, see 1.4 Pin Identification.

Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).

- Note 1. Mounted on the 96 KB or more code flash memory products.
- Note 2. Mounted on the 384 KB or more code flash memory products.
- Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 μ F).
- Remark 1. For pin identification, see 1.4 Pin Identification.
- Remark 2. Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).
- Remark 3. It is recommended to connect an exposed die pad to Vss.

1.5.3 36-pin products

Note Mounted on the 96 KB or more code flash memory products.

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xJ (x = F, G, J, L, M, P): Start address F9F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

Note

The flash library uses RAM in self-programming and rewriting of the data flash memory.

The target products and start address of the RAM areas used by the flash library are shown below.

R5F104xL (x = G, L, M, P): Start address F3F00H

For the RAM areas used by the flash library, see **Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944)**.

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	1.6 V ≤ EVDD0 ≤ 5.5 V			-10.0 Note 2	mA	
		Total of P00 to P04, P40 to P47,	4.0 V ≤ EVDD0 ≤ 5.5 V			-55.0	mA
		P102, P120, P130, P140 to P145	2.7 V ≤ EV _{DD0} < 4.0 V			-10.0	mA
		(When duty ≤ 70% Note 3)	1.8 V ≤ EVDD0 < 2.7 V			-5.0	mA
			1.6 V ≤ EV _{DD0} < 1.8 V			-2.5	mA
		, , , , , , , , , , , , , , , , , , , ,	4.0 V ≤ EVDD0 ≤ 5.5 V			-80.0	mA
		P30, P31, P50 to P57,	2.7 V ≤ EVDD0 < 4.0 V			-19.0	mA
		P64 to P67, P70 to P77, P80 to P87, P100, P101, P110,	1.8 V ≤ EVDD0 < 2.7 V			-10.0	mA
		P111, P146, P147 (When duty ≤ 70% Note 3)	1.6 V ≤ EVDD0 < 1.8 V			-5.0	mA
_		Total of all pins (When duty ≤ 70% Note 3)	1.6 V ≤ EVDD0 ≤ 5.5 V			-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27, P150 to P156	1.6 V ≤ VDD ≤ 5.5 V			-0.1 Note 2	mA
		Total of all pins (When duty ≤ 70% Note 3)	1.6 V ≤ VDD ≤ 5.5 V			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDDO, EVDD1, VDD pins to an output pin.

Note 3. Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = (IoH \times 0.7)/(n \times 0.01) <Example> Where n = 80% and IoH = -10.0 mA Total output current of pins = (-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7 mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

Note 4. -100 mA for industrial applications (R5F104xxDxx, R5F104xxGxx).

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Note 2. Do not exceed the total current value.

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/5)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, low Note 1	IOL1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147				20.0 Note 2	mA
		Per pin for P60 to P63				15.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	4.0 V ≤ EVDD0 ≤ 5.5 V			70.0	mA
		P102, P120, P130, P140 to P145	2.7 V ≤ EV _{DD0} < 4.0 V			15.0	mA
		(When duty ≤ 70% Note 3)	1.8 V ≤ EVDD0 < 2.7 V			9.0	mA
			1.6 V ≤ EVDD0 < 1.8 V			4.5	mA
		Total of P05, P06, P10 to P17,	4.0 V ≤ EVDD0 ≤ 5.5 V			80.0	mA
		P30, P31, P50 to P57,	2.7 V ≤ EVDD0 < 4.0 V			35.0	mA
		P60 to P67, P70 to P77, P80 to P87, P100, P101, P110,	1.8 V ≤ EVDD0 < 2.7 V			20.0	mA
		P111, P146, P147 (When duty ≤ 70% Note 3)	1.6 V ≤ EVDD0 < 1.8 V			10.0	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})				150.0	mA
	lol2	Per pin for P20 to P27, P150 to P156				0.4 Note 2	mA
		Total of all pins (When duty ≤ 70% ^{Note 3})	1.6 V ≤ VDD ≤ 5.5 V			5.0	mA

- **Note 1.** Value of current at which the device operation is guaranteed even if the current flows from an output pin to the EVsso, EVss1, and Vss pins.
- Note 2. Do not exceed the total current value.
- **Note 3.** Specification under conditions where the duty factor $\leq 70\%$.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IoL \times 0.7)/(n \times 0.01)$

<Example> Where n = 80% and lol = 10.0 mA

Total output current of pins = $(10.0 \times 0.7)/(80 \times 0.01) \approx 8.7 \text{ mA}$

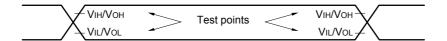
However, the current that is allowed to flow into one pin does not vary depending on the duty factor.

A current higher than the absolute maximum rating must not flow into one pin.

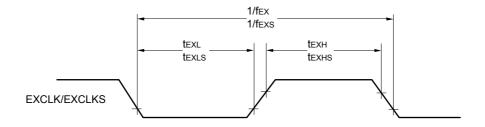
(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(4/5)

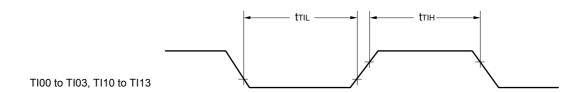
Items	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit
Output voltage, high	Vон1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -10.0 mA	EVDD0 - 1.5		1.3 0.7 0.6 0.4 0.4 0.4 2.0	٧
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -3.0 mA	EVDD0 - 0.7			V
		P111, P120, P130, P140 to P147	1.8 V ≤ EVDD0 ≤ 5.5 V, IOH1 = -1.5 mA	EVDD0 - 0.5			V
			1.6 V ≤ EV _{DD0} < 1.8 V, IOH1 = -1.0 mA	EVDD0 - 0.5		1.3 0.7 0.6 0.4 0.4 0.4 2.0	٧
	VOH2	P20 to P27, P150 to P156	1.6 V ≤ VDD ≤ 5.5 V, IOH2 = -100 μA	VDD - 0.5		1.3 0.7 0.6 0.4 0.4 0.4 2.0 0.4 0.4	V
Output voltage, low	Vol1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL1 = 20.0 mA			1.3	٧
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110,	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL1 = 8.5 mA			0.7	٧
		P111, P120, P130, P140 to P147	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 3.0 mA			1.3 0.7 0.6 0.4 0.4 0.4 2.0 0.4 0.4	V
			2.7 V ≤ EVDD0 ≤ 5.5 V, loL1 = 1.5 mA		0.4	V	
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ $\text{IOL1} = 0.6 \text{ mA}$			0.4	٧
			1.6 V ≤ EVDD0 ≤ 5.5 V, IOL1 = 0.3 mA			0.4	V
	VOL2	P20 to P27, P150 to P156	$1.6 \text{ V} \le \text{Vdd} \le 5.5 \text{ V},$ $\text{Iol2} = 400 \ \mu\text{A}$			0.4	٧
	Vol3	P60 to P63	4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 15.0 mA			2.0	V
			4.0 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 5.0 mA			0.4	V
			2.7 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 3.0 mA			0.4	V
			1.8 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 2.0 mA			0.4	V
			1.6 V ≤ EVDD0 ≤ 5.5 V, IOL3 = 1.0 mA			0.7 0.6 0.4 0.4 0.4 0.4 2.0 0.4 0.4	V

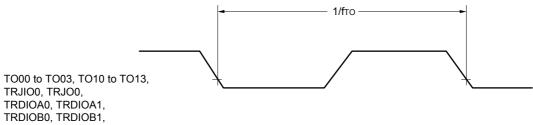

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)


(5/5)

Items	Symbol	Conditi	ons		MIN.	TYP.	MAX.	Unit
Input leakage cur- rent, high	ILIH1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	VI = EVDD0			1	μΑ	
	ILIH2	P20 to P27, P137, P150 to P156, RESET	VI = VDD				1	μΑ
		P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VDD In input port or external clock input				1	μА
				In resonator con- nection			10	μА
Input leakage current, low	ILIL1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Vı = EVsso				-1	μΑ
	ILIL2	P20 to P27, P137, P150 to P156, RESET	Vı = Vss				-1	μΑ
	ILIL3	P121 to P124 (X1, X2, EXCLK, XT1, XT2, EXCLKS)	VI = VSS	In input port or external clock input			-1	μΑ
				In resonator con- nection			-10	μА
On-chip pull-up resistance	Rυ	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P140 to P147	Vi = EVsso	, In input port	10	20	100	kΩ


AC Timing Test Points



External System Clock Timing

TI/TO Timing

TRDIOCO, TRDIOC1, TRDIODO, TRDIOD1,

TRGIOA, TRGIOB

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions		HS (high-s main) mo		LS (low-speed mode	,	LV (low-vo main) mo	•	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	$ \begin{aligned} 4.0 & \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 & \ V \leq V_b \leq 4.0 \ V, \\ C_b & = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{aligned} $	300		1150		1150		ns
			$ \begin{aligned} 2.7 & \ V \leq EV_{DDO} < 4.0 \ V, \\ 2.3 & \ V \leq V_b \leq 2.7 \ V, \\ C_b & = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{aligned} $	500		1150		1150		ns
			$ \begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V} \text{ Note}, \\ &C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned} $	1150		1150		1150		ns
SCKp high-level width	tкн1	$ 4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, \\ 2.7 \text{ V} \le \text{V}_{\text{b}} \le 4.0 \text{ V}, \\ \text{C}_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 1.4 \text{ k}\Omega $		tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		ns
		$\begin{split} 2.7 \ V &\leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V &\leq V_b \leq 2.7 \ V, \\ C_b &= 30 \ pF, \ R_b = 2.7 \ k\Omega \end{split}$		tkcy1/2 - 170		tксү1/2 - 170		tксу1/2 - 170		ns
		$\begin{aligned} &1.8 \text{ V} \leq \text{EV}_{\text{DDO}} < 3.3 \text{ V}, \\ &1.6 \text{ V} \leq \text{V}_{\text{b}} \leq 2.0 \text{ V}^{\text{Note}}, \\ &\text{C}_{\text{b}} = 30 \text{ pF}, \text{R}_{\text{b}} = 5.5 \text{ k}\Omega \end{aligned}$		tkcy1/2 - 458		tkcy1/2 - 458		tkcy1/2 - 458		ns
SCKp low-level width			0 V,	tксү1/2 - 12		tkcy1/2 - 50		tксү1/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V},$ $2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$ $C_{\text{b}} = 30 \text{ pF}, R_{\text{b}} = 2.7 \text{ k}\Omega$		tксү1/2 - 18		tkcy1/2 - 50		tксү1/2 - 50		ns
		1.8 V ≤ EVDD0 1.6 V ≤ Vb ≤ 2 Cb = 30 pF, Rb	0 V Note,	tkcy1/2 - 50		tксү1/2 - 50		tkcy1/2 - 50		ns

Note Use it with $EVDD0 \ge V_b$.

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(Remarks are listed two pages after the next page.)

2.6 Analog Characteristics

2.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = VDD Reference voltage (-) = VSS	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI14	Refer to 2.6.1 (1).	Refer to 2.6.1 (3).	Refer to 2.6.1 (4).
ANI16 to ANI20	Refer to 2.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 2.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +85°C, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Condition	ns	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8		10	bit	
Overall error Note 1	AINL	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V		1.2	±3.5	LSB	
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AVREFP ≤ 5.5 V Note 4		1.2	±7.0	LSB	
Conversion time	tconv	10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.125		39	μs	
		Target pin: ANI2 to ANI14	2.7 V ≤ V _{DD} ≤ 5.5 V	3.1875		39	μs	
			1.8 V ≤ V _{DD} ≤ 5.5 V	17		39	μs	
			1.6 V ≤ V _{DD} ≤ 5.5 V	57		95	μs	
		10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.375		39	μs	
		and temperature sensor output voltage	2.7 V ≤ VDD ≤ 5.5 V	3.5625		39	μs	
			2.4 V ≤ VDD ≤ 5.5 V	17		39	μs	
Zero-scale error Notes 1, 2	Ezs	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±0.25	%FSR	
		AV _{REFP} = V _{DD} Note 3	0.3	±0.50	%FSR			
Full-scale error Notes 1, 2	Ers	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±0.25	%FSR	
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AVREFP ≤ 5.5 V Note 4			±0.50	%FSR	
Integral linearity error Note 1	ILE	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±2.5	LSB	
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AVREFP ≤ 5.5 V Note 4			±5.0	LSB	
Differential linearity error Note 1	DLE	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±1.5	LSB	
		AV _{REFP} = V _{DD} Note 3	1.6 V ≤ AVREFP ≤ 5.5 V Note 4			±2.0	LSB	
Analog input voltage	Vain	ANI2 to ANI14	•	0		AVREFP	V	
		Internal reference voltage (2.4 V ≤ V _{DD} ≤ 5.5 V, HS (high-speed m	Internal reference voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)		BGR Note	5	V	
	Temperature sensor output voltage (2.4 V ≤ VDD ≤ 5.5 V, HS (high-speed main) mode)					V _{TMPS25} Note 5		

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

Note 3. When AVREFP < VDD, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.

Note 4. Values when the conversion time is set to 57 μ s (min.) and 95 μ s (max.).

Note 5. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

(2) When reference voltage (+) = AVREFP/ANIO (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI16 to ANI20

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, 1.6 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Cond	itions	MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V		1.2	±5.0	LSB
		EVDD0 ≤ AVREFP = VDD Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5		1.2	±8.5	LSB
Conversion time	tconv	10-bit resolution	3.6 V ≤ VDD ≤ 5.5 V	2.125		39	μs
		Target ANI pin: ANI16 to ANI20	2.7 V ≤ VDD ≤ 5.5 V	3.1875		39	μs
			1.8 V ≤ VDD ≤ 5.5 V	17		39	μs
Notes 4.0			1.6 V ≤ VDD ≤ 5.5 V	57		95	μs
Zero-scale error Notes 1, 2 Ezs 10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±0.35	%FSR		
	EV _{DD0} ≤ AV _{REFP} = V _{DD} Notes 3, 4	EV _{DD0} ≤ AV _{REFP} = V _{DD} Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5			±0.60	%FSR
Full-scale error Notes 1, 2	Ers	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±0.35	%FSR
		EVDD0 ≤ AVREFP = VDD Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5			±0.60	%FSR
Integral linearity error Note 1	ILE	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±3.5	LSB
		EVDD0 ≤ AVREFP = VDD Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5			±6.0	LSB
Differential linearity error Note 1	DLE	10-bit resolution	1.8 V ≤ AVREFP ≤ 5.5 V			±2.0	LSB
		EV _{DD0} ≤ AV _{REFP} = V _{DD} Notes 3, 4	1.6 V ≤ AVREFP ≤ 5.5 V Note 5			±2.5	LSB
Analog input voltage	Vain	ANI16 to ANI20		0		AVREFP and EVDD0	V

- Note 1. Excludes quantization error (±1/2 LSB).
- Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.
- **Note 3.** When $EVDD0 \le AVREFP \le VDD$, the MAX. values are as follows.

Overall error: Add ± 1.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add $\pm 0.05\%$ FSR to the MAX. value when AVREFP = VDD.

Integral linearity error/ Differential linearity error: Add ± 0.5 LSB to the MAX. value when AVREFP = VDD.

Note 4. When AVREFP \leq EVDD0 \leq VDD, the MAX. values are as follows.

Overall error: Add ± 4.0 LSB to the MAX. value when AVREFP = VDD. Zero-scale error/Full-scale error: Add $\pm 0.20\%$ FSR to the MAX. value when AVREFP = VDD. Integral linearity error/ Differential linearity error: Add ± 2.0 LSB to the MAX. value when AVREFP = VDD.

Note 5. When the conversion time is set to 57 μs (min.) and 95 μs (max.).

2.6.2 Temperature sensor characteristics/internal reference voltage characteristic

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V, HS (high-speed main) mode)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Temperature sensor output voltage	VTMPS25	Setting ADS register = 80H, TA = +25°C		1.05		V
Internal reference voltage	VBGR	Setting ADS register = 81H	1.38	1.45	1.5	V
Temperature coefficient	FVTMPS	Temperature sensor that depends on the temperature		-3.6		mV/°C
Operation stabilization wait time	tamp		5			μs

2.6.3 D/A converter characteristics

(TA = -40 to +85°C, 1.6 V \leq EVss0 = EVss1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES					8	bit
Overall error	AINL	Rload = 4 MΩ	1.8 V ≤ V _{DD} ≤ 5.5 V			±2.5	LSB
		Rload = 8 MΩ	1.8 V ≤ V _{DD} ≤ 5.5 V			±2.5	LSB
Settling time	tset	Cload = 20 pF	$2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$			3	μs
			1.6 V ≤ V _{DD} < 2.7 V			6	μs

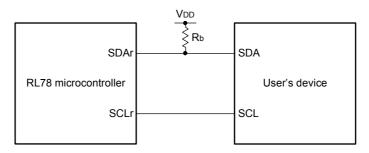
- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 4. When high-speed system clock and subsystem clock are stopped.
- Note 5. When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **Note 7.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @ 1 \text{ MHz to } 32 \text{ MHz}$

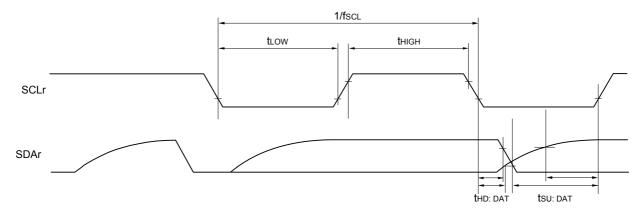
 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz to } 16 \text{ MHz}$

- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fil: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

- Note 5. Current flowing only to the watchdog timer (including the operating current of the low-speed on-chip oscillator).


 The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and IWDT when the watchdog timer is in operation.
- Note 6. Current flowing only to the A/D converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IADC when the A/D converter operates in an operation mode or the HALT mode.
- Note 7. Current flowing only to the LVD circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2 or IDD3 and ILVD when the LVD circuit is in operation.
- Note 8. Current flowing during programming of the data flash.
- Note 9. Current flowing during self-programming.
- Note 10. For shift time to the SNOOZE mode, see 23.3.3 SNOOZE mode in the RL78/G14 User's Manual.
- Note 11. Current flowing only to the D/A converter. The supply current of the RL78 microcontrollers is the sum of IDD1 or IDD2 and IDAC when the D/A converter operates in an operation mode or the HALT mode.
- Note 12. Current flowing only to the comparator circuit. The supply current of the RL78 microcontrollers is the sum of IDD1, IDD2, or IDD3 and ICMP when the comparator circuit is in operation.
- Note 13. A comparator and D/A converter are provided in products with 96 KB or more code flash memory.
- Remark 1. fil: Low-speed on-chip oscillator clock frequency
- Remark 2. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 3. fclk: CPU/peripheral hardware clock frequency
- Remark 4. Temperature condition of the TYP. value is TA = 25°C

(2) During communication at same potential (CSI mode) (master mode, SCKp... internal clock output) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)


•		· · · · · · · · · · · · · · · · · · ·					
Parameter	Symbol	Conditions		HS (high-speed main) mode		Unit	
				MIN.	MAX.	ĺ	
SCKp cycle time	tkcy1	tkcy1 ≥ 4/fclk	2.7 V ≤ EVDD0 ≤ 5.5 V	250		ns	
			2.4 V ≤ EV _{DD0} ≤ 5.5 V	500		ns	
SCKp high-/low-level width	tkH1, tkL1	4.0 V ≤ EVDD0 ≤ 5.5 V		tксү1/2 - 24		ns	
		2.7 V ≤ EVDD0 ≤ 5.5 V		tkcy1/2 - 36		ns	
		2.4 V ≤ EVDD0 ≤ 5.5 V		tkcy1/2 - 76		ns	
SIp setup time (to SCKp†) Note 1	tsıĸ1	4.0 V ≤ EVDD0 ≤ 5.5 V		66		ns	
		2.7 V ≤ EV _{DD0} ≤ 5.5 V		66		ns	
		2.4 V ≤ EV _{DD0} ≤ 5.5 V		113		ns	
SIp hold time (from SCKp↑) Note 2	tksıı			38		ns	
Delay time from SCKp↓ to SOp output Note 3	tkso1	C = 30 pF Note 4			50	ns	
	- 1	-1					

- Note 1. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 2. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. C is the load capacitance of the SCKp and SOp output lines.
- Caution Select the normal input buffer for the SIp pin and the normal output mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg).
- **Remark 1.** p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM number (g = 0, 1, 3 to 5, 14)
- Remark 2. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13))

Simplified I²C mode connection diagram (during communication at same potential)

Simplified I²C mode serial transfer timing (during communication at same potential)

Remark 1. $R_b[\Omega]$: Communication line (SDAr) pull-up resistance, $C_b[F]$: Communication line (SDAr, SCLr) load capacitance

Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 21, 30, 31), g: PIM number (g = 0, 1, 3 to 5, 14), h: POM number (h = 0, 1, 3 to 5, 7, 14)

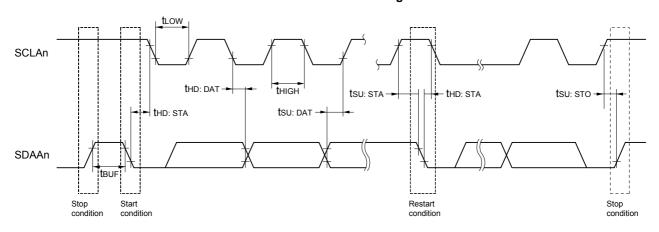
Remark 3. fmck: Serial array unit operation clock frequency
(Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1),
n: Channel number (n = 0 to 3), mn = 00 to 03, 10 to 13)

3.5.2 Serial interface IICA

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	HS (high-speed main) mode			Unit	
			Standard mode		Fast mode		
			MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fscL	Fast mode: fclk ≥ 3.5 MHz	_	_	0	400	kHz
		Standard mode: fclk ≥ 1 MHz	0	100	_	_	kHz
Setup time of restart condition	tsu: sta		4.7		0.6		μs
Hold time Note 1	thd: sta		4.0		0.6		μs
Hold time when SCLA0 = "L"	tLOW		4.7		1.3		μs
Hold time when SCLA0 = "H"	tніgн		4.0		0.6		μs
Data setup time (reception)	tsu: dat		250		100		ns
Data hold time (transmission) Note 2	thd: dat		0	3.45	0	0.9	μs
Setup time of stop condition	tsu: sto		4.0		0.6		μs
Bus-free time	tbuf		4.7		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.


Note 2. The maximum value (MAX.) of thd: DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.

Remark The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: C_b = 400 pF, R_b = 2.7 k Ω Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

IICA serial transfer timing

Remark n = 0, 1

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI14, ANI16 to ANI20

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD = EVDD1 \leq VDD, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM = 0 V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Co	MIN.	TYP.	MAX.	Unit	
Resolution	RES				8		bit
Conversion time	tconv	8-bit resolution	$2.4 \text{ V} \le \text{Vdd} \le 5.5 \text{ V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN		•	0		V _{BGR} Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error: Add $\pm 0.35\%$ FSR to the MAX. value when reference voltage (-) = AVREFM. Integral linearity error: Add ± 0.5 LSB to the MAX. value when reference voltage (-) = AVREFM. Differential linearity error: Add ± 0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.