

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2 0 0 0 0 0	
Product Status	Discontinued at Digi-Key
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104gddfb-x0

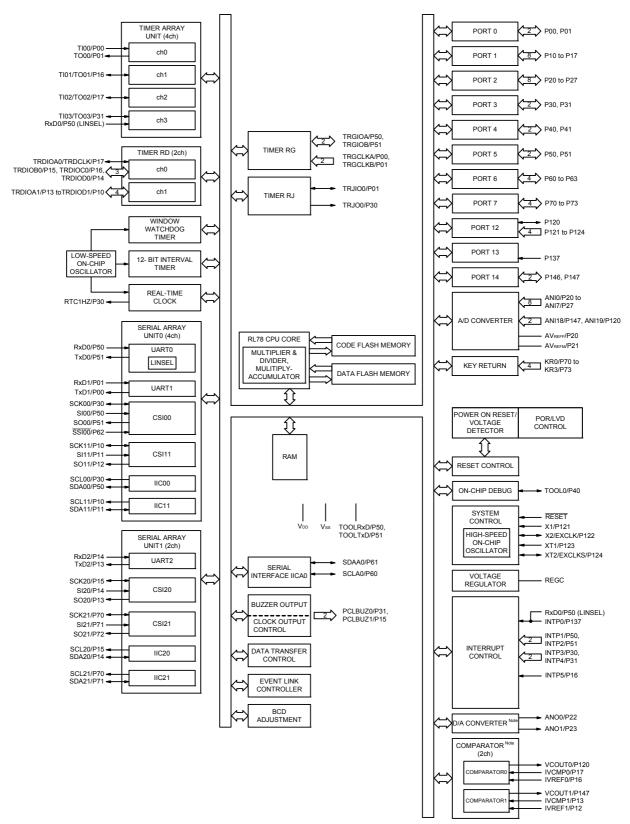

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.3 Pin Configuration (Top View)

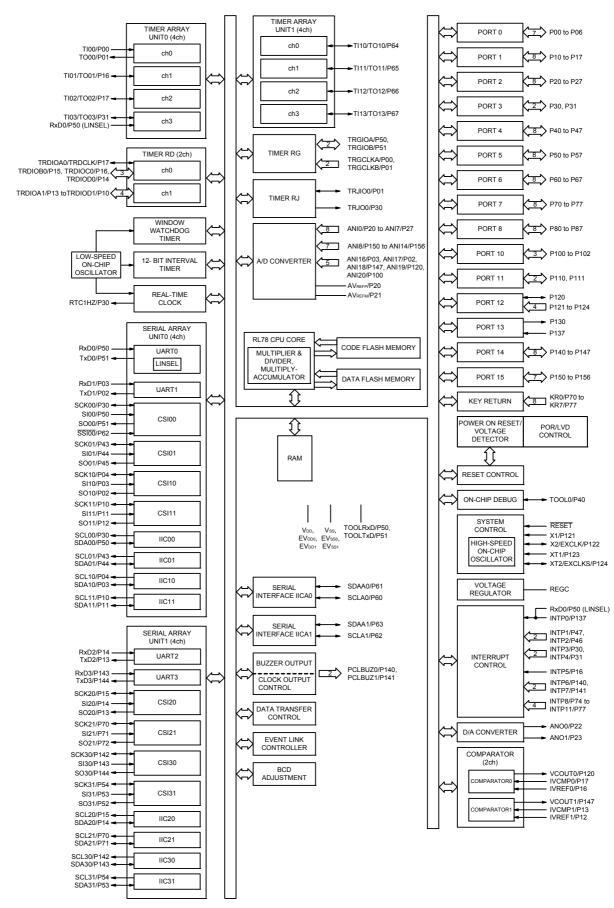
1.3.1 30-pin products

• 30-pin plastic LSSOP (7.62 mm (300), 0.65 mm pitch)


Note Mounted on the 96 KB or more code flash memory products.

Caution Connect the REGC pin to Vss pin via a capacitor (0.47 to 1 $\mu\text{F}\text{)}.$

- Remark 1. For pin identification, see 1.4 Pin Identification.
- **Remark 2.** Functions in parentheses in the above figure can be assigned via settings in the peripheral I/O redirection register 0, 1 (PIOR0, 1).


1.5.5 44-pin products

Note Mounted on the 96 KB or more code flash memory products.

1.5.10 100-pin products

Note	The flash library uses RAM in self-programming and rewriting of the data flash memory.
	The target products and start address of the RAM areas used by the flash library are shown below.
	R5F104xD (x = A to C, E to G, J, L): Start address FE900H
	R5F104xE (x = A to C, E to G, J, L): Start address FE900H
	For the RAM areas used by the flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family
	(R20UT2944).

2.3 DC Characteristics

2.3.1 Pin characteristics

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$1.6 \text{ V} \le \text{EVdd} \le 5.5 \text{ V}$			-10.0 Note 2	mA
		Total of P00 to P04, P40 to P47,	$4.0~V \leq EV_{DD0} \leq 5.5~V$			-55.0	mA
		P102, P120, P130, P140 to P145	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-10.0	mA
			$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			-5.0	mA
			$1.6 \text{ V} \le \text{EV}_{\text{DD0}} < 1.8 \text{ V}$			-2.5	mA
		P30, P31, P50 to P57, 2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-80.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-19.0	mA
		P64 to P67, P70 to P77, P80 to P87, P100, P101, P110,	$1.8 \text{ V} \le \text{EV}_{\text{DD0}} \le 2.7 \text{ V}$			-10.0	mA
			1.6 V ≤ EVDD0 < 1.8 V			-5.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$1.6 \text{ V} \le \text{EVDD0} \le 5.5 \text{ V}$			-135.0 Note 4	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$1.6 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-0.1 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$1.6~V \le V \text{DD} \le 5.5~V$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor ≤ 70%. The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

• Total output current of pins = $(IOH \times 0.7)/(n \times 0.01)$ <Example> Where n = 80% and IOH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Note 4. -100 mA for industrial applications (R5F104xxDxx, R5F104xxGxx).

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
 - HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
 - LS (low-speed main) mode: $1.8 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 8 MHz
 - LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}$ @1 MHz to 4 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** file: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol		Conditions	HS (high-s main) mo		LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	t КСҮ1	$\label{eq:kcy1} \begin{array}{l} \mbox{tkcy1} \geq \mbox{4/fclk} & \mbox{4.0 V} \leq \mbox{EV} \mbox{DD0} \leq \mbox{5.5 V}, \\ & \mbox{2.7 V} \leq \mbox{V}_b \leq \mbox{4.0 V}, \\ & \mbox{C}_b = \mbox{30 pF}, \mbox{ R}_b = \mbox{1.4 k} \mbox{A} \end{array}$		300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
				1150		1150		1150		ns
SCKp high-level tk width	tкнı	$4.0 V \le EV_{DD0}$ 2.7 V $\le V_b \le 4$ C _b = 30 pF, Rb	.0 V,	tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$		tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns
		$1.8 V \le EV_{DD0}$ $1.6 V \le V_b \le 2.0$ $C_b = 30 \text{ pF, Rb}$	0 V Note,	tксү1/2 - 458		tксү1/2 - 458		tксү1/2 - 458		ns
SCKp low-level width	tĸ∟1	L1 4.0 V ≤ EVDD0 ≤ 5.5 V, 2.7 V ≤ Vb ≤ 4.0 V, Cb = 30 pF, Rb = 1.4 kΩ		tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2 \\ C_{b} = 30 \ pF, \ R_{b} \end{array}$.7 V,	tксү1/2 - 18		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} \\ 1.6 \ V \leq V_b \leq 2. \\ C_b = 30 \ pF, \ R_b \end{array}$	0 V ^{Note} ,	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note Use it with $EVDD0 \ge Vb$.

(Remarks are listed two pages after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(2) I²C fast mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	(Conditions	· · ·	h-speed mode	LS (low-speed main) mode		LV (low-voltage main) mode		Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCLA0 clock frequency	fsc∟	Fast mode:	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	400	0	400	0	400	kHz
		fc∟k ≥ 3.5 MHz	$1.8~V \leq EV_{\text{DD0}} \leq 5.5~V$	0	400	0	400	0	400	kHz
Setup time of restart condi-	tsu: sta	$2.7~V \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
tion		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			0.6		0.6		μs
Hold time Note 1	thd: STA	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
Hold time when SCLA0 = "L"	t∟ow	$2.7 \text{ V} \leq EV_{DD0} \leq$	$2.7 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$			1.3		1.3		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	1.3		1.3		1.3		μs
Hold time when SCLA0 = "H"	tнigн	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$		0.6		0.6		0.6		μs
Data setup time (reception)	tsu: dat	$2.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$		100		100		100		ns
		$1.8 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$		100		100		100		ns
Data hold time (transmission)	thd: dat	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Note 2		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0	0.9	0	0.9	0	0.9	μs
Setup time of stop condition	tsu: sto	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	0.6		0.6		0.6		μs
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} \leq$	5.5 V	0.6		0.6		0.6		μs
Bus-free time	t BUF	$2.7 \text{ V} \leq EV_{DD0} \leq$	5.5 V	1.3		1.3		1.3		μs
		$1.8 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$		1.3		1.3		1.3		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DEAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of C_b (communication line capacitance) and the value of R_b (communication line pull-up resistor) at that time in each mode are as follows.

Fast mode: C_b = 320 pF, R_b = 1.1 k Ω

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI14, ANI16 to ANI20

(TA = -40 to +85°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD = EVDD1 \leq VDD, Vss = EVss0 = EVss1 = 0 V, Reference voltage (+) = VBGR ^{Note 3}, Reference voltage (-) = AVREFM = 0 V ^{Note 4}, HS (high-speed main) mode)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES				8		
Conversion time	tCONV	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN		·	0		VBGR Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 2.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error:Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.Integral linearity error:Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.Differential linearity error:Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

	-	$\mathbf{E}\mathbf{V}\mathbf{D}\mathbf{D}0 = \mathbf{E}\mathbf{V}\mathbf{D}\mathbf{D}1 \leq \mathbf{V}\mathbf{D}\mathbf{D} \leq 5.3 \mathbf{V},$,			(4/:
Items	Symbol	Condition	IS	MIN.	TYP.	MAX.	Unit
Output voltage, high	Voh1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	$\begin{array}{l} 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, \\ \\ \text{IOH1} = -3.0 \text{ mA} \end{array}$	EVDD0 - 0.7			V
		P80 to P87, P100 to P102, P110,	2.7 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -2.0 mA	EVDD0 - 0.6			V
		P111, P120, P130, P140 to P147	2.4 V ≤ EVDD0 ≤ 5.5 V, Іон1 = -1.5 mA	EVDD0 - 0.5			V
	Voh2	P20 to P27, P150 to P156	2.4 V ≤ Vdd ≤ 5.5 V, Ioh2 = -100 μA	VDD - 0.5			V
Output voltage, low	Vol1	P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57,	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL1}} = 8.5 \text{ mA}$			0.7	V
		P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL1}} = 3.0 \ \text{mA} \end{array}$			0.6	V
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL1 = 1.5 mA			0.4	V
			$\begin{array}{l} 2.4 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL1}} = 0.6 \ \text{mA} \end{array}$			0.4	V
	Vol2	P20 to P27, P150 to P156	$\begin{array}{l} 2.4 \ V \leq V \text{dd} \leq 5.5 \ V, \\ I \text{OL2} = 400 \ \mu A \end{array}$			0.4	V
	Vol3	P60 to P63	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 15.0 mA			2.0	V
			$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ $I_{\text{OL3}} = 5.0 \text{ mA}$			0.4	V
			$\begin{array}{l} 2.7 \ \text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \\ \text{I}_{\text{OL3}} = 3.0 \ \text{mA} \end{array}$			0.4	V
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V},$ IOL3 = 2.0 mA			0.4	V

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(4/5)

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

(1) Flash ROM: 16 to 64 KB of 30- to 64-pin products

Parameter	Symbol			Conditions	MIN.	TYP.	MAX.	Unit	
Supply current	IDD2	HALT mode	HS (high-speed main)	fносо = 64 MHz,	VDD = 5.0 V		0.80	4.36	m/
Note 1	Note 2		mode Note 7	fiн = 32 MHz Note 4	VDD = 3.0 V		0.80	4.36	
				fносо = 32 MHz,	VDD = 5.0 V		0.49	3.67	
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.49	3.67	
				fносо = 48 MHz,	VDD = 5.0 V		0.62	3.42	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.62	3.42	
				fносо = 24 MHz,	VDD = 5.0 V		0.4	2.85	
				fiн = 24 MHz Note 4	VDD = 3.0 V		0.4	2.85	
				fносо = 16 MHz,	VDD = 5.0 V		0.37	2.08	
				fiн = 16 MHz Note 4	VDD = 3.0 V		0.37	2.08	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	2.45	m
			mode Note 7	VDD = 5.0 V	Resonator connection		0.40	2.57	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.28	2.45	-
				VDD = 3.0 V	Resonator connection		0.40	2.57	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.19	1.28	
				VDD = 5.0 V	Resonator connection		0.25	1.36	
				f _{MX} = 10 MHz ^{Note 3} ,	Square wave input		0.19	1.28	
				VDD = 3.0 V	Resonator connection		0.25	1.36	
			Subsystem clock	fsue = 32.768 kHz Note 5,	Square wave input		0.25	0.57	μ
			operation	TA = -40°C	Resonator connection		0.44	0.76	
				fsub = 32.768 kHz ^{Note 5} , TA = +25°C	Square wave input		0.30	0.57	
					Resonator connection		0.49	0.76	
				fsue = 32.768 kHz Note 5,	Square wave input		0.36	1.17	
				TA = +50°C	Resonator connection		0.59	1.36	
				fsue = 32.768 kHz Note 5,	Square wave input		0.49	1.97	
				TA = +70°C	Resonator connection		0.72	2.16	
				fsue = 32.768 kHz Note 5,	Square wave input		0.97	3.37	
				TA = +85°C	Resonator connection		1.16	3.56	
				fsue = 32.768 kHz Note 5,	Square wave input		3.20	17.10	
				TA = +105°C	Resonator connection		3.40	17.50	
	IDD3	STOP mode	TA = -40°C	·	·		0.18	0.51	μ
	Note 6	Note 8	TA = +25°C				0.24	0.51	-
			TA = +50°C				0.29	1.10	
			TA = +70°C				0.41	1.90	
			T _A = +85°C				0.90	3.30	
			T _A = +105°C			1	3.10	17.00	

$(T_A = -40 \text{ to } +105^{\circ}\text{C}, 2.4 \text{ V} < \text{EV}_{DD0} < 0.4 \text{ V}$	\leq VDD \leq 5.5 V, VSS = EVSS0 = 0 V)(2/2)

(Notes and Remarks are listed on the next page.)

RL78/G14

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.

Note 5.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V} @1 \text{ MHz}$ to 32 MHz

 $2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 16 MHz

Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)

- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fill: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

- Note 1. Total current flowing into VDD, EVDD0, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. During HALT instruction execution by flash memory.
- Note 3. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 4.** When high-speed system clock and subsystem clock are stopped.
- **Note 5.** When high-speed on-chip oscillator and high-speed system clock are stopped. When RTCLPC = 1 and setting ultra-low current consumption (AMPHS1 = 1). The current flowing into the RTC is included. However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 6. Not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- Note 7.Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.
HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}$ @1 MHz to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Note 8. Regarding the value for current to operate the subsystem clock in STOP mode, refer to that in HALT mode.
- Remark 1. fMX: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHOCO: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation and STOP mode, temperature condition of the TYP. value is TA = 25°C

<R>

	1	°C, 2.4 V ≤ I	$EVDD0 = EVDD1 \leq V$	$V \le EVDD0 = EVDD1 \le VDD \le 5.5 V$, VSS = EVSS0 = EVSS1 = 0 V)					
Parameter	Symbol		Conditions			MIN.	TYP.	MAX.	Unit
Supply cur- rent ^{Note 1}	IDD2 Note 2	HALT mode	HS (high-speed main)	fHOCO = 64 MHz,	VDD = 5.0 V		0.93	5.16	mA
rent Note 1	NOLE 2		mode Note 7	fiн = 32 MHz Note 4	VDD = 3.0 V		0.93	5.16	_
				fHOCO = 32 MHz,	VDD = 5.0 V		0.5	4.47	_
				fiH = 32 MHz Note 4	VDD = 3.0 V		0.5	4.47	
				fносо = 48 MHz,	VDD = 5.0 V		0.72	4.08	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.72	4.08	
				fносо = 24 MHz,	VDD = 5.0 V		0.42	3.51	
				fiH = 24 MHz Note 4	VDD = 3.0 V		0.42	3.51	
				fносо = 16 MHz,	VDD = 5.0 V		0.39	2.38	
				fiн = 16 MHz Note 4	VDD = 3.0 V		0.39	2.38	
			HS (high-speed main)	f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.83	mA
			mode Note 7	VDD = 5.0 V	Resonator connection		0.41	2.92	
				f _{MX} = 20 MHz ^{Note 3} ,	Square wave input		0.31	2.83	
				VDD = 3.0 V	Resonator connection		0.41	2.92	
				f _{MX} = 10 MHz Note 3,	Square wave input		0.21	1.46	
				VDD = 5.0 V	Resonator connection		0.26	1.57	
				$f_{MX} = 10 \text{ MHz} \text{ Note } 3$,	Square wave input		0.21	1.46	
				VDD = 3.0 V	Resonator connection		0.26	1.57	
		Subsystem clock oper- fsuB = 32.768 kHz Note	fsue = 32.768 kHz Note 5,	Square wave input		0.31	0.76	μA	
			ation	TA = -40°C	Resonator connection		0.50	0.95	
				fsue = 32.768 kHz Note 5,	Square wave input		0.38	0.76	
				TA = +25°C	Resonator connection		0.57	0.95	
				fsue = 32.768 kHz Note 5,	Square wave input		0.47	3.59	
				TA = +50°C	Resonator connection		0.70	3.78	
				fsue = 32.768 kHz Note 5,	Square wave input		0.80	6.20	
				TA = +70°C	Resonator connection		1.00	6.39	
				fsue = 32.768 kHz Note 5,	Square wave input		1.65	10.56	
				TA = +85°C	Resonator connection		1.84	10.75	
				fsue = 32.768 kHz Note 5,	Square wave input		8.00	65.7	
				TA = +105°C	Resonator connection		8.00	65.7	
	IDD3	STOP mode	TA = -40°C				0.19	0.63	μA
	Note 6	Note 8	T _A = +25°C				0.30	0.63	1
		TA = +50°C				0.41	3.47	1	
			T _A = +70°C				0.80	6.08	1
			TA = +85°C				1.53	10.44	1
			T _A = +105°C				6.50	67.14	1

(3) Flash ROM: 384 to 512 KB of 48- to 100-pin products

(Notes and Remarks are listed on the next page.)

(4) During communication at same potential (simplified I²C mode)

(TA = -40 to +105°C, 2.4 V \leq EV	$IDD0 = EVDD1 \le VD$	$D \leq 5.5 V$, VSS = EVSS0 = E	EVss1 = 0 V)

Parameter	Symbol	Conditions	HS (high-speed	main) mode	Unit
			MIN.	MAX.	
SCLr clock frequency	fsc∟	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$		400 Note 1	kHz
		$\begin{array}{l} 2.4 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 100 \ \text{pF}, \ \text{R}_{\text{b}} = 3 \ \text{k}\Omega \end{array}$		100 Note 1	kHz
Hold time when SCLr = "L"	tLOW	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$\begin{array}{l} 2.4V \leq EV_{DD0} \leq 5.5 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 3 \; k\Omega \end{array}$	4600		ns
Hold time when SCLr = "H"	tніgн	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1200		ns
		$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V},$ Cb = 100 pF, Rb = 3 k Ω	4600		ns
Data setup time (reception)	tsu: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	1/fMCK + 220 Note 2		ns
		$\begin{array}{l} 2.4V \leq EV_{DD0} \leq 5.5 \; V, \\ C_{b} = 100 \; pF, \; R_{b} = 3 \; k\Omega \end{array}$	1/fMCK + 580 Note 2		ns
Data hold time (transmission)	thd: dat	$\begin{array}{l} 2.7 \ \text{V} \leq E V_{\text{DD0}} \leq 5.5 \ \text{V}, \\ \text{C}_{\text{b}} = 50 \ \text{pF}, \ \text{R}_{\text{b}} = 2.7 \ \text{k}\Omega \end{array}$	0	770	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ C_{b} \texttt{=} 100 \ pF, \ R_{b} \texttt{=} 3 \ k\Omega \end{array}$	0	1420	ns

Note 1. The value must also be equal to or less than fMCK/4.

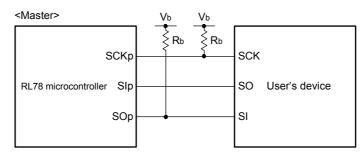
Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the normal input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the normal output mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register h (POMh).

(**Remarks** are listed on the next page.)

(6) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol	Conditions	HS (high-speed main) mode		Unit
			MIN.	MAX.	
SIp setup time (to SCKp↑) ^{Note}	tsiкı		162		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	354		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	958		ns
SIp hold time (from SCKp↑) ^{Note}	tksi1		38		ns
		$\label{eq:VDD0} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$	38		ns
		$\label{eq:2.4} \begin{split} & 2.4 \; V \leq EV_{DD0} < 3.3 \; V, \\ & 1.6 \; V \leq V_b \leq 2.0 \; V, \\ & C_b = 30 \; pF, \; R_b = 5.5 \; k\Omega \end{split}$	38		ns
Delay time from SCKp↓ to SOp output ^{Note}	tkso1			200	ns
		$\label{eq:VDD0} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ & C_{b} = 30 \; pF, \; R_{b} = 2.7 \; k\Omega \end{split}$		390	ns
		$\label{eq:VDD0} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 30 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$		966	ns


Note When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.

(Remarks are listed on the page after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential

- **Remark 5.** Rb[Ω]: Communication line (SCKp, SOp) pull-up resistance, Cb[F]: Communication line (SCKp, SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 6.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 7. fmck: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00))
- Remark 8. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

(4) When reference voltage (+) = Internal reference voltage (ADREFP1 = 1, ADREFP0 = 0), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI0, ANI2 to ANI14, ANI16 to ANI20

(TA = -40 to +105°C, 2.4 V \leq VDD \leq 5.5 V, 1.6 V \leq EVDD = EVDD1 \leq VDD, Vss = EVss0 = EVss1 = 0 V,

Reference voltage (+) = VBGR Note 3, Reference voltage (-) = AVREFM = 0 V Note 4, HS (high-speed main) mode)

Parameter	Symbol	Co	MIN.	TYP.	MAX.	Unit	
Resolution	RES			8			bit
Conversion time	tCONV	8-bit resolution	$2.4~\text{V} \leq \text{V}\text{DD} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±0.60	% FSR
Integral linearity error Note 1	ILE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±2.0	LSB
Differential linearity error Note 1	DLE	8-bit resolution	$2.4~V \leq V_{DD} \leq 5.5~V$			±1.0	LSB
Analog input voltage	VAIN			0		VBGR Note 3	V

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (% FSR) to the full-scale value.

Note 3. Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

Note 4. When reference voltage (-) = Vss, the MAX. values are as follows.

Zero-scale error:Add ±0.35%FSR to the MAX. value when reference voltage (-) = AVREFM.Integral linearity error:Add ±0.5 LSB to the MAX. value when reference voltage (-) = AVREFM.Differential linearity error:Add ±0.2 LSB to the MAX. value when reference voltage (-) = AVREFM.

REVISION HISTORY

RL78/G14 Datasheet

Rev.	Date		Description	
Rev.	Date	Page	Summary	
0.01	Feb 10, 2011	—	First Edition issued	
0.02	May 01, 2011	1 to 2	1.1 Features revised	
		3	1.2 Ordering Information revised	
		4 to 13	1.3 Pin Configuration (Top View) revised	
		14	1.4 Pin Identification revised	
		15 to 17	1.5.1 30-pin products to 1.5.3 36-pin products revised	
		23 to 26	1.6 Outline of Functions revised	
0.03	Jul 28, 2011	1	1.1 Features revised	
1.00	Feb 21, 2012	1 to 40	1. OUTLINE revised	
		41 to 97	2. ELECTRICAL SPECIFICATIONS added	
2.00	Oct 25, 2013	1	Modification of 1.1 Features	
		3 to 8	Modification of 1.2 Ordering Information	
		9 to 22	Modification of package type in 1.3 Pin Configuration (Top View)	
		34 to 43	Modification of description of subsystem clock in 1.6 Outline of Functions	
		34 to 43	Modification of description of timer output in 1.6 Outline of Functions	
		34 to 43	Modification of error of data transfer controller in 1.6 Outline of Functions	
		34 to 43	Modification of error of event link controller in 1.6 Outline of Functions	
		45, 46	Modification of description of Tables in 2.1 Absolute Maximum Ratings	
		47	Modification of Tables, notes, cautions, and remarks in 2.2 Oscillator Characteristics	
		48	Modification of error of conditions of high level input voltage in 2.3.1 Pin characteristics	
		49	Modification of error of conditions of low level output voltage in 2.3.1 Pin characteristics	
		53 to 62	Modification of Notes and Remarks in 2.3.2 Supply current characteristics	
		65, 66	Addition of Minimum Instruction Execution Time during Main System Clock Operation	
		67 to 69	Addition of AC Timing Test Points	
		70 to 97	Addition of LS mode and LV mode characteristics in 2.5.1 Serial array unit	
		98 to 101	Addition of LS mode and LV mode characteristics in 2.5.2 Serial interface IICA	
		102 to 105	Addition of characteristics about conversion of internal reference voltage and temperature sensor in 2.6.1 A/D converter characteristics	
		107	Addition of characteristic in 2.6.4 Comparator	
		107	Deletion of detection delay in 2.6.5 POR circuit characteristics	
		109	Modification of 2.6.7 Power supply voltage rising slope characteristics	
		110	Modification of 2.7 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	
		110	Addition of characteristic in 2.8 Flash Memory Programming Characteristics	
		111	Addition of description in 2.10 Timing for Switching Flash Memory Programming Modes	

Notice 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits software or information 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product. 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc. "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc. Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics. 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations. 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information.

RENESAS

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130 Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004 **Renesas Electronics Europe Limited** Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900 Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327 Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679 Renesas Electronics (Shanghai) Co., Ltd. Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333 Tei: +86-21-2226-0888, Fax: +86-21-2226-0999 Renesas Electronics Hong Kong Limited Non-sease Lectronics nong round Limited Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022 Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670 Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949 Tel: +55-631-30200, Fax: +65-6213-0300 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510 Renesas Electronics Malaysia Sdn.Bhd. Unit 1207. Block B. Menara Amcorp. Amco Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777 Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141