

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

XFI

Product Status	Active
Core Processor	RL78
Core Size	16-Bit
Speed	32MHz
Connectivity	CSI, I ² C, LINbus, UART/USART
Peripherals	DMA, LVD, POR, PWM, WDT
Number of I/O	34
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	5.5K x 8
Voltage - Supply (Vcc/Vdd)	1.6V ~ 5.5V
Data Converters	A/D 10x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LFQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f104geafb-30

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

[44-pin, 48-pin, 52-pin, 64-pin products (code flash memory 16 KB to 64 KB)]

Caution This outline describes the functions at the time when Peripheral I/O redirection register 0, 1 (PIOR0, 1) are set to 00H.

					(1/2)				
		44-pin	48-pin	52-pin	64-pin				
	Item	R5F104Fx	R5F104Gx	R5F104Jx	R5F104Lx				
		(x = A, C to E)	(x = A, C to E)	(x = C to E)	(x = C to E)				
Code flash men	nory (KB)	16 to 64	16 to 64	32 to 64	32 to 64				
Data flash mem	ory (KB)	4	4	4	4				
RAM (KB)		2.5 to 5.5 Note	2.5 to 5.5 Note	4 to 5.5 Note	4 to 5.5 Note				
Address space		1 MB							
Main system	High-speed system	X1 (crystal/ceramic) os	cillation, external main	system clock input (EX	CLK)				
clock	clock	HS (high-speed main) mode: 1 to 20 MHz ($VDD = 2.7$ to 5.5 V),							
		HS (high-speed main)	mode: 1 to 16 MHz (V	DD = 2.4 to 5.5 V),					
		LS (low-speed main) mode: 1 to 8 MHz (VDD = 1.8 to 5.5 V),							
		$\frac{1}{100} \text{ (low-voltage main) mode: 1 to 4 WHZ (VDD = 1.6 to 5.5 V)}$							
	High-speed on-chip	HS (high-speed main)	mode: 1 to 32 MHz (V	DD = 2.7 to 5.5 V),					
	oscillator clock (fiH)	HS (high-speed main)	mode: 1 to 16 MHz (V	DD = 2.4 to 5.5 V),					
		LS (low-speed main) m	node: 1 to 8 MHz (VD	D = 1.8 to 5.5 V),					
		LV (low-voltage main)	mode: 1 to 4 MHz (VD	D = 1.6 to 5.5 V)					
Subsystem cloc	:k	XT1 (crystal) oscillation	n, external subsystem o	lock input (EXCLKS) 32	2.768 kHz				
Low-speed on-c	chip oscillator clock	15 kHz (TYP.): VDD = 1.6 to 5.5 V							
General-purpos	e register	8 bits \times 32 registers (8	bits \times 8 registers \times 4 ba	inks)					
Minimum instrue	ction execution time	0.03125 μs (High-spee	ed on-chip oscillator clo	ck: fiн = 32 MHz operat	ion)				
		0.05 μs (High-speed sy	ystem clock: fmx = 20 M	IHz operation)					
		30.5 µs (Subsystem cl	оск: fsuв = 32.768 kHz	operation)					
Instruction set		Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits)							
		Adder and subtractor/logical operation (8/16 bits) Multiplication (8 bits × 8 bits 16 bits × 16 bits)							
		 Multiplication (8 bits × 8 bits, 16 bits × 16 bits), Division (16 bits ÷ 16 bits, 32 bits ÷ 32 bits) Multiplication and Accumulation (16 bits × 16 bits + 32 bits) 							
		 Multiplication and Accumulation (16 bits × 16 bits + 32 bits) Rotate barrel shift and bit manipulation (Set reset test and Boolean operation) etc. 							
I/O port	Total	40	44	48	58				
"o port	CMOS I/O	31		38	48				
		5	5	5	5				
	CMOS output	_	1	1	1				
	N-ch open-drain I/O	4	4	4	4				
	(6 V tolerance)	7	7	7	7				
Timer	16-bit timer	8 channels			1				
		(TAU: 4 channels, Time	er RJ: 1 channel, Timer	RD: 2 channels, Timer	RG: 1 channel)				
	Watchdog timer	1 channel							
	Real-time clock	1 channel							
	(RTC)								
	12-bit interval timer	1 channel							
	Timer output	Timer outputs: 13 char	3 channels						
		PWM outputs: 9 chann	els						
	RTC output	1							
		• 1 Hz (subsystem clock: fsub = 32.768 kHz)							

(Note is listed on the next page.)

RENESAS

- Note 1. Total current flowing into VDD, EVDDD, and EVDD1, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDDD, and EVDD1, or Vss, EVss0, and EVss1. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, D/A converter, comparator, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
 Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- Note 3. When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the 12-bit interval timer and watchdog timer.
- Note 5. Relationship between operation voltage width, operation frequency of CPU and operation mode is as below.

HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{\text{DD}} \le 5.5 \text{ V}_{\text{@1}} \text{ MHz to } 32 \text{ MHz}$

2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz

LS (low-speed main) mode: $$1.8~V \le V \mbox{DD} \le 5.5~V \ensuremath{\textcircled{0}}1~\mbox{MHz}$ to 8 MHz}$$

LV (low-voltage main) mode: $1.6 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 4 MHz

- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- **Remark 3.** fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- Remark 4. fsub: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

RL78/G14

(7) Communication at different potential (2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output, corresponding CSI00 only)

Parameter	Symbol		Conditions	HS (high-s main) mo	peed ode	LS (low-speed mode	d main)	LV (low-vo main) mo	ltage ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tксү1 ≥ 2/fc∟к	$\begin{array}{l} 4.0 \; V \leq EV_{DD0} \leq 5.5 \; V, \\ 2.7 \; V \leq V_b \leq 4.0 \; V, \\ C_b = 20 \; pF, \; R_b = 1.4 \; k\Omega \end{array}$	200		1150		1150		ns
			$\begin{array}{l} 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ 2.3 \; V \leq V_{b} \leq 2.7 \; V, \\ C_{b} = 20 \; pF, \; R_{b} = 2.7 \; k\Omega \end{array}$	300		1150		1150		ns
SCKp high-level width	tкнı	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 20 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		tkcy1/2 - 50		tkcy1/2 - 50		tkcy1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ	tксу1/2 - 120 tксу1/2 - 120 tксу1/2 - 120 tксу1/2 - 7 tксу1/2 - 50 tксу1/2 - 50			ns			
SCKp low-level width	tĸ∟ı	$\begin{split} & C_b = 20 \text{ pF, } R_b = 2.7 \text{ k}\Omega \\ & 4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V,} \\ & 2.7 \text{ V} \leq \text{V}_b \leq 4.0 \text{ V,} \\ & C_b = 20 \text{ pF, } R_b = 1.4 \text{ k}\Omega \end{split}$		tксү1/2 - 7		tксү1/2 - 50		tkcy1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 1 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ	tксү1/2 - 10		tkcy1/2 - 50		tkcy1/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 1}	tsiк1	$\begin{array}{l} 4.0 \ V \leq EV_{DDO} \\ 2.7 \ V \leq V_{b} \leq V_{b} \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	0 ≤ 5.5 V, 4.0 V, = 1.4 kΩ	58		479		479		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ	121		479		479		ns
SIp hold time (from SCKp↑) ^{Note 1}	tĸsı1	$\begin{array}{l} 4.0 \ V \leq EV_{DDO} \\ 2.7 \ V \leq V_{b} \leq V_{b} \\ C_{b} \texttt{=} 20 \ pF, \ R_{b} \end{array}$	0 ≤ 5.5 V, 4.0 V, = 1.4 kΩ	10		10		10		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 1 \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ	10		10		10		ns
Delay time from SCKp↓ to SOp out- put ^{Note 1}	tkso1	$\begin{array}{l} 4.0 \ V \leq EV_{DD}\\ 2.7 \ V \leq V_{b} \leq V\\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	0 ≤ 5.5 V, 4.0 V, = 1.4 kΩ		60		60		60	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq \\ C_{b} = 20 \ pF, \ R_{b} \end{array}$	< 4.0 V, 2.7 V, = 2.7 kΩ		130		130		130	ns

(TA = -40 to +85°C, 2.7 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(Notes, Caution, and Remarks are listed on the next page.)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (master mode, SCKp... internal clock output)

Parameter	Symbol		Conditions	HS (high-s main) mo	peed ode	LS (low-speed mode	d main)	LV (low-vol main) mo	ltage ode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү1	tkcy1 ≥ 4/fclk		300		1150		1150		ns
			$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	500		1150		1150		ns
			1150		1150		1150		ns	
$ \begin{array}{c} SCKp \ high-level \\ width \\ \end{array} \begin{array}{c} t_{KH1} \\ z.7 \ V \leq V_b \leq 4.0 \\ C_b = 30 \ pF, \ R_b = \end{array} $		≤ 5.5 V, 0 V, = 1.4 kΩ	tксү1/2 - 75		tксү1/2 - 75		tксү1/2 - 75		ns	
		$\label{eq:2.7} \begin{split} & 2.7 \; V \leq EV_{DD0} < 4.0 \; V, \\ & 2.3 \; V \leq V_b \leq 2.7 \; V, \\ & C_b = 30 \; pF, \; R_b = 2.7 \; k\Omega \end{split}$		tксү1/2 - 170		tксү1/2 - 170		tксү1/2 - 170		ns
		$\begin{split} 1.8 \ V &\leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V &\leq V_b \leq 2.0 \ V \ ^{Note}, \\ C_b &= 30 \ pF, \ R_b = 5.5 \ k\Omega \end{split}$		tксү1/2 - 458		tксү1/2 - 458		tkcy1/2 - 458		ns
SCKp low-level width	tĸL1	$\begin{array}{l} 4.0 \ V \leq EV_{DD0} \leq 5.5 \ V, \\ 2.7 \ V \leq V_b \leq 4.0 \ V, \\ C_b = 30 \ pF, \ R_b = 1.4 \ k\Omega \end{array}$		tксү1/2 - 12		tксү1/2 - 50		tксү1/2 - 50		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} \\ 2.3 \ V \leq V_{b} \leq 2. \\ C_{b} = 30 \ pF, \ R_{b} \end{array}$	< 4.0 V, 7 V, = 2.7 kΩ	tксү1/2 - 18		tксү1/2 - 50		tkcy1/2 - 50		ns
		$1.8 V \le EV_{DD0}$ $1.6 V \le V_b \le 2.$ $C_b = 30 \text{ pF, Rb}$	< 3.3 V, 0 V ^{Note} , = 5.5 kΩ	tксү1/2 - 50		tксү1/2 - 50		tксү1/2 - 50		ns

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Note Use it with $EVDD0 \ge Vb$.

(Remarks are listed two pages after the next page.)

Caution Select the TTL input buffer for the SIp pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SOp pin and SCKp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode serial transfer timing (master mode) (during communication at different potential) (When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1.)

- Remark 1. p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 2. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.

RL78/G14

(9) Communication at different potential (1.8 V, 2.5 V, 3 V) (CSI mode) (slave mode, SCKp... external clock input)

Parameter	Symbol	Cor	nditions	HS (hig main)	h-speed mode	LS (low main)	r-speed mode	LV (low- main)	-voltage mode	Unit
				MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
SCKp cycle time	tксү2	$4.0~V \leq EV_{DD0} \leq 5.5~V,$	24 MHz < fмск	14/fмск		—		_		ns
Note 1		$2.7~V \leq V_b \leq 4.0~V$	$20 \text{ MHz} < f_{MCK} \leq 24 \text{ MHz}$	12/fмск		—				ns
			$8 \text{ MHz} < \text{fmck} \le 20 \text{ MHz}$	10/fмск		_				ns
			$4 \text{ MHz} < f_{MCK} \le 8 \text{ MHz}$	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$2.7~V \leq EV_{DD0} < 4.0~V,$	24 MHz < fмск	20/fмск		—		_		ns
		$2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}$	20 MHz < fмск ≤ 24 MHz	16/fмск		—		_		ns
			16 MHz < fмск ≤ 20 MHz	14/fмск		—		_		ns
			$8 \text{ MHz} < \text{fmck} \le 16 \text{ MHz}$	12/fмск		_		_		ns
			$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	8/fмск		16/fмск		_		ns
			fмск ≤ 4 MHz	6/fмск		10/fмск		10/fмск		ns
		$1.8 \text{ V} \leq \text{EV}_{\text{DD0}} < 3.3 \text{ V},$	24 MHz < fмск	48/fмск		_		_		ns
$\begin{array}{c} 1.6 \ V \leq V_b \leq 2.0 \ V \\ \text{Note 2} \end{array}$	1.6 V ≤ Vb ≤ 2.0 V Note 2	20 MHz < fмск ≤ 24 MHz	36/fмск		_		_		ns	
		16 MHz < fmck \leq 20 MHz	32/fмск		—		_		ns	
		$8 \text{ MHz} < \text{fmck} \le 16 \text{ MHz}$	26/fмск		_		_		ns	
		$4 \text{ MHz} < \text{fmck} \le 8 \text{ MHz}$	16/fмск		16/fмск		_		ns	
			fмск ≤ 4 MHz	10/fмск		10/fмск		10/fмск		ns
SCKp high-/ low-level width	tкн2, tкL2	$4.0 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}, 2$	$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	tксү2/2 - 12		tксү2/2 - 50		tксү2/2 - 50		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2$	$2.3 \text{ V} \leq V_b \leq 2.7 \text{ V}$	tксү2/2 - 18		tксү2/2 - 50		tксү2/2 - 50		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, ^{2}$	$1.6 \text{ V} \leq V_b \leq 2.0 \text{ V} \text{ Note } 2$	tксү2/2 - 50		tксү2/2 - 50		tксү2/2 - 50		ns
SIp setup time (to SCKp↑) ^{Note 3}	tsık2	$4.0 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}, 2$	$2.7 \text{ V} \leq V_b \leq 4.0 \text{ V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$2.7 \text{ V} \le \text{EV}_{\text{DD0}} < 4.0 \text{ V}, 2$	$2.3 \text{ V} \leq \text{V}_b \leq 2.7 \text{ V}$	1/fмск + 20		1/fмск + 30		1/fмск + 30		ns
		$1.8 \text{ V} \le \text{EV}_{\text{DD0}} < 3.3 \text{ V}, ^{2}$	$1.6 \text{ V} \leq V_b \leq 2.0 \text{ V} \text{ Note 2}$	1/fмск + 30		1/fмск + 30		1/fмск + 30		ns
SIp hold time (from SCKp↑) Note 4	tksi2			1/fмск + 31		1/fмск + 31		1/fмск + 31		ns
Delay time from SCKp↓ to SOp	tkso2	4.0 V \leq EVDD0 \leq 5.5 V, 2 Cb = 30 pF, Rb = 1.4 kΩ	$2.7 \text{ V} \leq \text{Vb} \leq 4.0 \text{ V},$		2/fмск + 120		2/fмск + 573		2/fмск + 573	ns
output ^{Note 5}		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, 2 \\ C_b = 30 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	$2.3 \text{ V} \le \text{V}_{\text{b}} \le 2.7 \text{ V},$		2/fмск + 214		2/fмск + 573		2/fмск + 573	ns
		$\begin{array}{l} 1.8 \ V \leq EV_{DD0} < 3.3 \ V, \\ C_b = 30 \ pF, \ R_V = 5.5 \ k\Omega \end{array}$	$1.6 \text{ V} \le \text{V}_b \le 2.0 \text{ V} \text{ Note 2},$		2/fмск + 573		2/fмск + 573		2/fмск + 573	ns

($(T_A = -40 \text{ to } +85^{\circ}\text{C})$	18V<	< Vnn < 5 5 V	Vss = EVsso	= FVSS1 = 0	٧١
	1A = -40 10 + 00 0	1.0 V -		, v 33 – L v 330		• /

(Notes, Caution, and Remarks are listed on the next page.)

- Note 1. Transfer rate in the SNOOZE mode: MAX. 1 Mbps
- Note 2. Use it with $EVDD0 \ge Vb$.
- Note 3. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The SIp setup time becomes "to SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 4. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The Slp hold time becomes "from SCKp↓" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Note 5. When DAPmn = 0 and CKPmn = 0, or DAPmn = 1 and CKPmn = 1. The delay time to SOp output becomes "from SCKp↑" when DAPmn = 0 and CKPmn = 1, or DAPmn = 1 and CKPmn = 0.
- Caution Select the TTL input buffer for the SIp pin and SCKp pin, and the N-ch open drain output (VoD tolerance (for the 30- to 52-pin products)/EVoD tolerance (for the 64- to 100-pin products)) mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

CSI mode connection diagram (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SOp) pull-up resistance, Cb[F]: Communication line (SOp) load capacitance, Vb[V]: Communication line voltage
- **Remark 2.** p: CSI number (p = 00, 01, 10, 20, 30, 31), m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3), g: PIM and POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number, n: Channel number (mn = 00, 01, 02, 10, 12, 13))
- Remark 4. CSI01 of 48-, 52-, 64-pin products, and CSI11 and CSI21 cannot communicate at different potential. Use other CSI for communication at different potential.
 Also, communication at different potential cannot be performed during clock synchronous serial communication with the slave select function.

(1) I²C standard mode

(TA = -40 to +85°C, 1.6 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

(2/2)

Parameter	Symbol	Conditions	HS (high-s mo	beed main) bde	LS (low-sp mo	beed main) bde	LV (low-vol mo	ltage main) ode	Unit
			MIN.	MAX.	MIN.	MAX.	MIN.	MAX.	
Data setup time (reception)	tsu: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	250		250		250		ns
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	250		250		250		ns
		$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$	250		250		250		ns
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	250		250		ns
Data hold time (transmission)	thd: dat	$2.7~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
Note 2		$1.8~V \leq EV_{DD0} \leq 5.5~V$	0	3.45	0	3.45	0	3.45	μs
		$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$	0	3.45	0	3.45	0	3.45	μs
		$1.6 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	-	_	0	3.45	0	3.45	μs
Setup time of stop condition	tsu: sto	$2.7~V \leq EV_{DD0} \leq 5.5~V$	4.0		4.0		4.0		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	4.0		4.0		4.0		μs
		$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$	4.0		4.0		4.0		μs
		$1.6 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	-	_	4.0		4.0		μs
Bus-free time	t BUF	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	4.7		4.7		4.7		μs
		$1.8 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	4.7		4.7		4.7		μs
		$1.7 \text{ V} \leq EV_{DD0} \leq 5.5 \text{ V}$	4.7		4.7		4.7		μs
		$1.6~V \leq EV_{DD0} \leq 5.5~V$	-	_	4.7		4.7		μs

Note 1. The first clock pulse is generated after this period when the start/restart condition is detected.

Note 2. The maximum value (MAX.) of the DE DAT is during normal transfer and a wait state is inserted in the ACK (acknowledge) timing.

- Caution The values in the above table are applied even when bit 2 (PIOR02) in the peripheral I/O redirection register 0 (PIOR0) is 1. At this time, the pin characteristics (IOH1, IOL1, VOH1, VOL1) must satisfy the values in the redirect destination.
- **Remark** The maximum value of Cb (communication line capacitance) and the value of Rb (communication line pull-up resistor) at that time in each mode are as follows.

Standard mode: Cb = 400 pF, Rb = 2.7 k Ω

2.7 **RAM Data Retention Characteristics**

(TA = -40 to +85°C, Vss = 0V)									
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit			
Data retention supply voltage	VDDDR		1.46 Note		5.5	V			

The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR reset Note is effected, but RAM data is not retained when a POR reset is effected.

2.8 **Flash Memory Programming Characteristics**

$(1A = -40 tO + 60 C, 1.6 V \le VDD \le 0.5 V, VSS = 0 V$	$(T_A = -40 \text{ to } +85^{\circ}\text{C}.)$	$1.8 \text{ V} \leq \text{VDD} \leq 5.5$	V. Vss = 0 V)
---	--	--	-----------------

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
System clock frequency	fclk	$1.8~V \leq V_{DD} \leq 5.5~V$	1		32	MHz
Number of code flash rewrites Notes 1, 2, 3	Cerwr	Retained for 20 years Ta = 85°C	1,000			Times
Number of data flash rewrites Notes 1, 2, 3		Retained for 1 year TA = 25°C		1,000,000		
		Retained for 5 years TA = 85°C	100,000			
		Retained for 20 years TA = 85°C	10,000			

Note 1. 1 erase + 1 write after the erase is regarded as 1 rewrite. The retaining years are until next rewrite after the rewrite.

Note 2. When using flash memory programmer and Renesas Electronics self-programming library

Note 3. These are the characteristics of the flash memory and the results obtained from reliability testing by Renesas Electronics Corporation.

2.9 **Dedicated Flash Memory Programmer Communication (UART)**

(TA = -40 to +85°C, 1.8 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Transfer rate		During serial programming	115,200		1,000,000	bps

3.3 DC Characteristics

3.3.1 Pin characteristics

$(Ta = -40 \text{ to } +105^{\circ}C, 2.4 \text{ V} \le EVDD0 = EVDD1 \le VDD \le 5.5 \text{ V}, \text{ Vss} = EVss0 = EVss1 = 0 \text{ V})$

Items	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Output current, high Note 1	Іон1	Per pin for P00 to P06, P10 to P17, P30, P31, P40 to P47, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100 to P102, P110, P111, P120, P130, P140 to P147	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-3.0 Note 2	mA
		Total of P00 to P04, P40 to P47, P102, P120, P130, P140 to P145 (When duty \leq 70% ^{Note 3})	$4.0~V \le EV_{DD0} \le 5.5~V$			-30.0	mA
			$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-10.0	mA
			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$			-5.0	mA
		Total of P05, P06, P10 to P17,	$4.0~V \le EV_{DD0} \le 5.5~V$			-30.0	mA
		P30, P31, P50 to P57, P64 to P67, P70 to P77, P80 to P87, P100, P101, P110, P111, P146, P147 (When duty \leq 70% ^{Note 3})	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 4.0 \text{ V}$			-19.0	mA
			2.4 V ≤ EVDD0 < 2.7 V			-10.0	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$			-60.0	mA
	Іон2	Per pin for P20 to P27, P150 to P156	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-0.1 Note 2	mA
		Total of all pins (When duty \leq 70% ^{Note 3})	$2.4 \text{ V} \leq \text{VDD} \leq 5.5 \text{ V}$			-1.5	mA

Note 1. Value of current at which the device operation is guaranteed even if the current flows from the EVDD0, EVDD1, VDD pins to an output pin.

Note 2. Do not exceed the total current value.

Note 3. Specification under conditions where the duty factor \leq 70%.

The output current value that has changed to the duty factor > 70% the duty ratio can be calculated with the following expression (when changing the duty factor from 70% to n%).

- Total output current of pins = (IOH × 0.7)/(n × 0.01)
- <Example> Where n = 80% and IOH = -10.0 mA Total output current of pins = $(-10.0 \times 0.7)/(80 \times 0.01) \approx -8.7$ mA

However, the current that is allowed to flow into one pin does not vary depending on the duty factor. A current higher than the absolute maximum rating must not flow into one pin.

Caution P00, P02 to P04, P10, P11, P13 to P15, P17, P30, P43 to P45, P50 to P55, P71, P74, P80 to P82, and P142 to P144 do not output high level in N-ch open-drain mode.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port pins.

- Note 1. Total current flowing into VDD and EVDD0, including the input leakage current flowing when the level of the input pin is fixed to VDD, EVDD0 or Vss, EVss0. The values below the MAX. column include the peripheral operation current. However, not including the current flowing into the A/D converter, LVD circuit, I/O port, and on-chip pull-up/pull-down resistors and the current flowing during data flash rewrite.
- Note 2. When high-speed on-chip oscillator and subsystem clock are stopped.
- **Note 3.** When high-speed system clock and subsystem clock are stopped.
- **Note 4.** When high-speed on-chip oscillator and high-speed system clock are stopped. When AMPHS1 = 1 (Ultra-low power consumption oscillation). However, not including the current flowing into the RTC, 12-bit interval timer, and watchdog timer.
- **Note 5.** Relationship between operation voltage width, operation frequency of CPU and operation mode is as below. HS (high-speed main) mode: $2.7 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}_{@}1 \text{ MHz}$ to 32 MHz
 - 2.4 V \leq VDD \leq 5.5 V@1 MHz to 16 MHz
- Remark 1. fmx: High-speed system clock frequency (X1 clock oscillation frequency or external main system clock frequency)
- Remark 2. fHoco: High-speed on-chip oscillator clock frequency (64 MHz max.)
- Remark 3. fin: High-speed on-chip oscillator clock frequency (32 MHz max.)
- **Remark 4.** fsuB: Subsystem clock frequency (XT1 clock oscillation frequency)
- Remark 5. Except subsystem clock operation, temperature condition of the TYP. value is TA = 25°C

Parameter	Symbol	Condit	ions	MIN.	TYP.	MAX.	Unit
Low-speed on-chip oscilla- tor operating current	I _{FIL} Note 1				0.20		μA
RTC operating current	IRTC Notes 1, 2, 3				0.02		μA
12-bit interval timer operat- ing current	IIT Notes 1, 2, 4				0.02		μA
Watchdog timer operating current	IWDT Notes 1, 2, 5	fı∟ = 15 kHz	fi∟ = 15 kHz		0.22		μA
A/D converter operating cur- rent	IADC Notes 1, 6	When conversion at maximum speed	Normal mode, AV _{REFP} = V _{DD} = 5.0 V		1.3	1.7	mA
			Low voltage mode, AVREFP = VDD = 3.0 V		0.5	0.7	mA
A/D converter reference voltage current	IADREF Note 1				75.0		μA
Temperature sensor operat- ing current	ITMPS Note 1				75.0		μA
D/A converter operating cur- rent	IDAC Notes 1, 11, 13	Per D/A converter channel				1.5	mA
Comparator operating cur- rent	I _{CMP} Notes 1, 12, 13	V _{DD} = 5.0 V, Regulator output voltage = 2.1 V	Window mode		12.5		μA
			Comparator high-speed mode		6.5		μA
			Comparator low-speed mode		1.7		μA
		V _{DD} = 5.0 V, Regulator output voltage = 1.8 V	Window mode		8.0		μA
			Comparator high-speed mode		4.0		μA
			Comparator low-speed mode		1.3		μA
LVD operating current	ILVD Notes 1, 7				0.08		μΑ
Self-programming operat- ing current	IFSP Notes 1, 9				2.50	12.20	mA
BGO operating current	IBGO Notes 1, 8				2.50	12.20	mA
SNOOZE operating current	Isnoz Note 1	ADC operation	The mode is performed Note 10		0.50	1.10	mA
			The A/D conversion opera- tions are performed, Low volt- age mode, AV _{REFP} = V _{DD} = 3.0 V		1.20	2.04	
		CSI/UART operation			0.70	1.54	
		DTC operation			3.10		

(4) Peripheral Functions (Common to all products)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

Note 1. Current flowing to VDD.

Note 2. When high speed on-chip oscillator and high-speed system clock are stopped.

Note 3. Current flowing only to the real-time clock (RTC) (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IRTC, when the real-time clock operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added. IDD2 subsystem clock operation includes the operational current of the real-time clock.

Note 4. Current flowing only to the 12-bit interval timer (excluding the operating current of the low-speed on-chip oscillator and the XT1 oscillator). The supply current of the RL78 microcontrollers is the sum of the values of either IDD1 or IDD2, and IIT, when the 12-bit interval timer operates in operation mode or HALT mode. When the low-speed on-chip oscillator is selected, IFIL should be added.

3.4 AC Characteristics

Items	Symbol		Conditions		MIN.	TYP.	MAX.	Unit
Instruction cycle (min-	Тсү	Main system	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
imum instruction exe- cution time)		clock (fmain) operation	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
		Subsystem clo	ock (fsub) operation	$2.4~V \leq V_{DD} \leq 5.5~V$	28.5	30.5	31.3	μs
		In the self-	HS (high-speed main)	$2.7~V \leq V_{DD} \leq 5.5~V$	0.03125		1	μs
		program- ming mode	mode	$2.4 \text{ V} \leq \text{V}_{DD} < 2.7 \text{ V}$	0.0625		1	μs
External system clock	fEX	$2.7~V \leq V_{DD} \leq$	5.5 V		1.0		20.0	MHz
frequency		$2.4 \text{ V} \leq \text{V}\text{DD} \leq 2.7 \text{ V}$			1.0		16.0	MHz
	fexs				32		35	kHz
External system clock	texн, texL	$2.7~V \leq V_{DD} \leq 5.5~V$			24			ns
input high-level width,		$2.4~V \leq V_{DD} \leq$	2.7 V		30			ns
low-level width	texhs, texls				13.7			μs
TI00 to TI03, TI10 to	tтін, tті∟				1/fмск + 10			ns
TI13 input high-level width, low-level width					Note			
Timer RJ input cycle	fc	TRJIO		$2.7~V \leq EV \text{DD0} \leq 5.5~V$	100			ns
				$2.4~V \leq EV_{DD0} < 2.7~V$	300			ns
Timer RJ input high-	tтjiн,	TRJIO		$2.7 \text{ V} \leq EV_{\text{DD0}} \leq 5.5 \text{ V}$	40			ns
level width, low-level width	t⊤ji∟			$2.4 \text{ V} \le \text{EV}_{\text{DD0}} < 2.7 \text{ V}$	120			ns

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, VSS = EVSS0 = EVSS1 = 0 V)

NoteThe following conditions are required for low voltage interface when EVDD0 < VDD2.4 V $\leq EVDD0 < 2.7$ V: MIN. 125 ns

 Remark
 fmck: Timer array unit operation clock frequency

 (Operation clock to be set by the CKSmn bit of timer mode register mn (TMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0 to 3))

Interrupt Request Input Timing INTPO to INTP11 Key Interrupt Input Timing KR0 to KR7 RESET Input Timing

RESET

(3) During communication at same potential (CSI mode) (slave mode, SCKp... external clock input) (TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)

(TA = -40 to +105°C, 2.4 V \leq EVDD0 = EVDD1 \leq VDD \leq 5.5 V, Vss = EVss0 = EVss1 = 0 V)						
Parameter	Symbol	Conditions		HS (high-speed	Unit	
				MIN.	MAX.	
SSI00 setup time	tssik	DAPmn = 0	$2.7~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	400		ns
		DAPmn = 1	$2.7 \text{ V} \le \text{EV}_{\text{DD0}} \le 5.5 \text{ V}$	1/fмск + 240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	1/fмск + 400		ns
SSI00 hold time	tĸssi	DAPmn = 0	$2.7~V \leq EV_{DD0} \leq 5.5~V$	1/fмск + 240		ns
			$2.4~\text{V} \leq \text{EV}_{\text{DD0}} \leq 5.5~\text{V}$	1/fмск + 400		ns
		DAPmn = 1	$2.7~V \leq EV_{DD0} \leq 5.5~V$	240		ns
			$2.4 \text{ V} \leq \text{EV}_{\text{DD0}} \leq 5.5 \text{ V}$	400		ns

Caution Select the normal input buffer for the SIp pin and SCKp pin and the normal output mode for the SOp pin by using port input mode register g (PIMg) and port output mode register g (POMg).

Remark p: CSI number (p = 00), m: Unit number (m = 0), n: Channel number (n = 0), g: PIM number (g = 3, 5)

CSI mode connection diagram (during communication at same potential)

CSI mode connection diagram (during communication at same potential) (Slave Transmission of slave select input function (CSI00))

SCK00	SCK
SI00 RL78 microcontroller SO00	 SO User's device SI
<u>SSI00</u>	<u>SSO</u>

Remark 1. p: CSI number (p = 00, 01, 10, 11, 20, 21, 30, 31) Remark 2. m: Unit number, n: Channel number (mn = 00 to 03, 10 to 13)

(8) Communication at different potential (1.8 V, 2.5 V, 3 V) (simplified I²C mode)

1	[/ – -40 to +105°C 24 V < EV_00 – EV_01 < V00 < 55 V V99 – EV990 – EV991 − 0	n vn
1	$A = -40 \ 10 + 103 \ C, 2.4 \ V \ge EVDD0 = EVDD1 \ge VDD \ge 3.5 \ V, V33 = EV330 = EV331 = 0$, v)

(2/2)

Parameter	Symbol	Conditions	HS (high-speed r	nain) mode	Unit
			MIN.	MAX.	
Data setup time (reception)	tsu:dat		1/f _{MCK} + 340 Note 2		ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 340 Note 2		ns
			1/fmck + 760 Note 2		ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	1/fмск + 760 Note 2		ns
		$\label{eq:2.4} \begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	1/fмск + 570 Note 2		ns
Data hold time (transmission)	thd:dat		0	770	ns
		$\begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 50 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	770	ns
			0	1420	ns
		$\label{eq:2.7} \begin{array}{l} 2.7 \ V \leq EV_{DD0} < 4.0 \ V, \\ 2.3 \ V \leq V_b \leq 2.7 \ V, \\ C_b = 100 \ pF, \ R_b = 2.7 \ k\Omega \end{array}$	0	1420	ns
		$\begin{array}{l} 2.4 \ V \leq EV_{DD0} < 3.3 \ V, \\ 1.6 \ V \leq V_b \leq 2.0 \ V, \\ C_b = 100 \ pF, \ R_b = 5.5 \ k\Omega \end{array}$	0	1215	ns

Note 1. The value must also be equal to or less than fMCK/4.

Note 2. Set the fMCK value to keep the hold time of SCLr = "L" and SCLr = "H".

Caution Select the TTL input buffer and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SDAr pin and the N-ch open drain output (VDD tolerance (for the 30- to 52-pin products)/EVDD tolerance (for the 64- to 100-pin products)) mode for the SCLr pin by using port input mode register g (PIMg) and port output mode register g (POMg). For VIH and VIL, see the DC characteristics with TTL input buffer selected.

(**Remarks** are listed on the next page.)

Simplified I²C mode connection diagram (during communication at different potential)

Simplified I²C mode serial transfer timing (during communication at different potential)

- **Remark 1.** Rb[Ω]: Communication line (SDAr, SCLr) pull-up resistance, Cb[F]: Communication line (SDAr, SCLr) load capacitance, Vb[V]: Communication line voltage
- Remark 2. r: IIC number (r = 00, 01, 10, 11, 20, 30, 31), g: PIM, POM number (g = 0, 1, 3 to 5, 14)
- Remark 3. fMCK: Serial array unit operation clock frequency
 - (Operation clock to be set by the CKSmn bit of serial mode register mn (SMRmn). m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00, 01, 02, 10, 12, 13)

3.6 Analog Characteristics

3.6.1 A/D converter characteristics

Classification of A/D converter characteristics

Reference Voltage Input channel	Reference voltage (+) = AVREFP Reference voltage (-) = AVREFM	Reference voltage (+) = V _{DD} Reference voltage (-) = V _{SS}	Reference voltage (+) = V _{BGR} Reference voltage (-)= AV _{REFM}
ANI0 to ANI14	Refer to 3.6.1 (1).	Refer to 3.6.1 (3).	Refer to 3.6.1 (4).
ANI16 to ANI20	Refer to 3.6.1 (2).		
Internal reference voltage Temperature sensor output voltage	Refer to 3.6.1 (1) .		_

(1) When reference voltage (+) = AVREFP/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AVREFM/ANI1 (ADREFM = 1), target pin: ANI2 to ANI14, internal reference voltage, and temperature sensor output voltage

(TA = -40 to +105°C, 2.4 V \leq AVREFP \leq VDD \leq 5.5 V, Vss = 0 V, Reference voltage (+) = AVREFP, Reference voltage (-) = AVREFM = 0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
Resolution	RES			8		10	bit
Overall error Note 1	AINL	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$		1.2	±3.5	LSB
Conversion time	tconv	10-bit resolution	$3.6~V \leq V_{DD} \leq 5.5~V$	2.125		39	μs
		Target pin: ANI2 to ANI14	$2.7~V \leq V_{DD} \leq 5.5~V$	3.1875		39	μs
			$2.4~V \leq V_{DD} \leq 5.5~V$	17		39	μs
		10-bit resolution Target pin: Internal reference voltage,	$3.6~V \leq V_{DD} \leq 5.5~V$	2.375		39	μs
			$2.7~V \leq V_{DD} \leq 5.5~V$	3.5625		39	μs
	age (HS (high-speed main) mode)		$2.4~\text{V} \leq \text{V}_{\text{DD}} \leq 5.5~\text{V}$	17		39	μs
Zero-scale error Notes 1, 2	Ezs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
Full-scale error Notes 1, 2	Efs	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \leq \text{AV}_{\text{REFP}} \leq 5.5 \text{ V}$			±0.25	%FSR
Integral linearity error Note 1	ILE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±2.5	LSB
Differential linearity error Note 1	DLE	10-bit resolution AV _{REFP} = V _{DD} Note 3	$2.4 \text{ V} \le \text{AV}_{\text{REFP}} \le 5.5 \text{ V}$			±1.5	LSB
Analog input voltage	Vain	ANI2 to ANI14		0		AVREFP	V
		Internal reference voltage output (2.4 V \leq V _{DD} \leq 5.5 V, HS (high-speed main) mode)		V _{BGR} Note 4			V
	Temperature sensor output voltage (2.4 V \leq VDD \leq 5.5 V, HS (high-speed main) mode)		V _{TMPS25} Note 4			V	

Note 1. Excludes quantization error (±1/2 LSB).

Note 2. This value is indicated as a ratio (%FSR) to the full-scale value.

 Note 3.
 When AVREFP < VDD, the MAX. values are as follows.</td>

 Overall error:
 Add ±1.0 LSB to the MAX. value when AVREFP = VDD.

 Zero-scale error/Full-scale error:
 Add ±0.05%FSR to the MAX. value when AVREFP = VDD.

 Integral linearity error/ Differential linearity error:
 Add ±0.5 LSB to the MAX. value when AVREFP = VDD.

 Note 4.
 Refer to 3.6.2 Temperature sensor characteristics/internal reference voltage characteristic.

4.3 36-pin products

R5F104CAALA, R5F104CCALA, R5F104CDALA, R5F104CEALA, R5F104CFALA, R5F104CGALA R5F104CAGLA, R5F104CCGLA, R5F104CDGLA, R5F104CEGLA, R5F104CFGLA, R5F104CGGLA

©2012 Renesas Electronics Corporation. All rights reserved.

4.8 64-pin products

R5F104LCAFA, R5F104LDAFA, R5F104LEAFA, R5F104LFAFA, R5F104LGAFA, R5F104LHAFA, R5F104LJAFA R5F104LCDFA, R5F104LDDFA, R5F104LEDFA, R5F104LFDFA, R5F104LGDFA, R5F104LHDFA, R5F104LJDFA R5F104LCGFA, R5F104LDGFA, R5F104LEGFA, R5F104LFGFA, R5F104LGGFA, R5F104LHGFA, R5F104LJGFA R5F104LKAFA, R5F104LLAFA

R5F104LKGFA, R5F104LLGFA

Each lead centerline is located within 0.13 mm of its true position at maximum material condition.

©2012 Renesas Electronics Corporation. All rights reserved.

